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Abstract: This study integrates Long Short-Term Memory (LSTM) neural networks with the 

traditional mean-variance portfolio optimization model to enhance investment strategies. The 

LSTM model predicts stock returns based on historical data and technical indicators, which 

informs asset selection. The mean-variance model then constructs a portfolio from these pre-

selected stocks, optimizing the balance between expected return and risk. Using FTSE 100 

constituent stocks over 25 years, the proposed approach outperforms alternative models, 

demonstrating the effectiveness of combining advanced machine learning techniques with 

classical financial models.  
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1. Introduction 

Investment portfolio construction is a critical topic in quantitative finance. Effective portfolio 

construction can significantly impact an investor's success, making it a key area of focus for financial 

researchers and practitioners.  

The construction of an investment portfolio can be divided into two primary steps: asset selection 

and asset allocation. The first step is to select the specific assets that will the portfolio. This involves 

filtering and choosing high-quality assets that align with the investor's goals and risk tolerance. The 

next step involves determining the proportion of the total portfolio to allocate to different asset classes 

or individual assets. Various methods can be employed, including the use of optimization models and 

heuristic approaches. 

One of the foundational methods for asset allocation is the mean-variance model introduced by 

Markowitz. This model provides a framework for constructing an optimal portfolio by balancing 

expected returns against the volatility of those returns. The mean-variance model assumes that 

investors are rational, seeking to maximize returns for a given level of risk. 

Effective portfolio construction requires the identification of high-quality assets, which is often 

achieved through pre-selection processes. These processes typically involve forecasting stock market 

performance to identify assets with high potential returns. 

Traditionally, stock prediction has relied on various statistical and econometric methods, such as 

time series analysis and regression models. However, with advancements in technology and data 

availability, machine learning have emerged as powerful tools for stock market prediction. These 

methods can capture complex patterns and interactions in financial data that traditional methods might 

miss. One prominent method in machine learning is the Long Short-Term Memory (LSTM) neural 

network. LSTM excels in time series prediction because it can retain long-term dependencies and 
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patterns within data, making it a valuable tool for forecasting stock prices and recognizing potential 

investment opportunities. 

This paper aims to address the two key steps in investment portfolio construction: stock pre-

selection and mean-variance model construction. First, a method to pre-select stocks based on their 

predicted performance using LSTM will be implemented. Second, a portfolio will be constructed 

using the mean-variance model with the pre-selected stocks. Finally, the performance of the 

constructed portfolios will be evaluated using a series of metrics to compare their effectiveness. This 

comprehensive approach combines modern machine learning techniques with classical financial 

models to enhance portfolio construction strategies. 

2. Related work 

The Efficient Market Hypothesis (EMH) [1] and the Random Walk Hypothesis (RWH) [2] have long 

suggested that stock price movements are largely unpredictable. According to these hypotheses, all 

available information is already reflected in stock prices, and any future price changes are the result 

of new information, which by definition is random and unpredictable. However, recent research has 

challenged this view, suggesting that stock prices can, to some extent, be predicted [3]. 

Several authors have proposed various methodologies for predicting stock prices. The mainstream 

approaches can be broadly categorized into statistical methods and machine learning methods. 

Statistical methods, such as ARCH [4], GARCH [5] and ARIMA [6], have been widely used for time 

series analysis and forecasting in financial markets. These models are valued for their ability to model 

volatility clustering and trends within time series data. Machine learning methods, including Support 

Vector Machines (SVM) [7] and Random Forest [8], have also been applied to stock price prediction 

with notable success. These methods can capture complex, non-linear relationships within data that 

traditional statistical methods may miss. 

With the development of deep learning, there has been a significant shift towards using more 

sophisticated models for stock prediction. Deep learning models, particularly Long Short-Term 

Memory (LSTM) networks, have shown promise in handling the intricacies of stock market data. 

LSTM, a variant of Recurrent Neural Networks (RNN), addresses some of the key limitations of 

traditional RNN models, such as the vanishing gradient problem and difficulty in managing long 

sequences of data. Hochreiter and Schmidhuber (1997) introduced LSTM networks [9], which use 

carefully designed hidden layer neurons to mitigate the gradient vanishing issue. By maintaining 

long-term dependencies and patterns within the data, LSTM networks are better suited for time series 

prediction tasks like stock price forecasting. 

As deep learning continues to evolve, more researchers such as [10,11] are exploring its potential 

in financial applications. The flexibility and power of LSTM networks make them a popular choice 

for modeling the dynamic and complex nature of stock markets, pushing the boundaries of what is 

considered predictable in the realm of finance. 

3. Methodology 

3.1. LSTM neural networks 

Traditional RNNs are designed to pass information across time steps through hidden layers, allowing 

for sequential data processing. However, they often struggle with long-term dependencies due to 

issues like vanishing and exploding gradients, making it difficult to capture patterns in long sequences.  

LSTM networks overcome these challenges by introducing three key gates: the input gate, forget 

gate, and output gate. These gates work together to manage the flow of information, enabling LSTMs 

to selectively retain or discard data over time. The forget gate decides which information from the 

previous cell state should be forgotten, the input gate determines which new information should be 
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added, and the output gate controls the next hidden state based on the current cell state. This gating 

mechanism allows LSTMs to handle long-term dependencies effectively, making them particularly 

useful for tasks such as time series prediction. In this study, the LSTM model utilizes historical stock 

return data along with technical indicators to predict future returns, leveraging its strength in learning 

from long-term patterns in data. 

 

Figure 1: LSTM memory cell structure 

3.2. Mean-variance model 

The mean-variance model, grounded in the assumption of rational investor behavior, aims to either 

maximize expected return for a given level of risk or minimize risk for a desired return. This model 

identifies the efficient frontier, which represents the optimal trade-off between risk and return across 

all possible portfolios. The core advantage of the Markowitz approach is its provision of an explicit 

analytic solution, allowing for a detailed analysis of portfolio characteristics. The expected return of 

a portfolio is calculated as the weighted sum of the expected returns of individual assets, while the 

portfolio's risk is determined by the variance of returns, which accounts for covariances between 

assets. 

In our study, we first rank the stock returns predicted by the LSTM model, using the expected 

return as the criterion for selecting "high quality assets." Subsequently, the selected stocks are utilized 

to construct the investment portfolio employing the mean-variance model. 

4. Experiment and results 

4.1. Data 

We selected 20 constituent stocks from the FTSE 100 index on Yahoo Finance as our sample data. 

The data selected are at daily frequency. To capture the long-term patterns of stock movements, we 

chose a time span from July 1998 to July 2023, covering 25 years of price and volume data. Sufficient 

data ensures that we can identify significant change characteristics to better predict future stock trends. 

4.1.1. Data preprocessing 

During data observation, we identified a few missing values. Since the FTSE 100 constituents are all 

large enterprises, and only a very small number of individual missing data points were observed, we 

opted to use the forward fill method to address these gaps. We used the forward fill method in the 

Python pandas library to complete these missing values. This method works by propagating the last 

observed value forward to fill any gaps in the data. Specifically, our code ensures that any missing 

values are replaced with the most recent preceding value in the dataset. This approach is particularly 

useful when missing data points are assumed to continue the last known trend. 

Our data comprises historical prices (open, close, high, low) and trading volumes of assets. 

However, since stock prices inherently do not satisfy the stationarity requirement for time series 

analysis, we transformed the price series by calculating stock returns from the downloaded close 
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prices. This transformation allows us to work with a stationary series, which is essential for accurate 

time series modeling. This also means that we used stock returns as the prediction target rather than 

stock prices. The formula for simple returns is as follows: 

Simple Return =
𝑃𝑡 − 𝑃𝑡−1

𝑃𝑡−1
 

4.1.2. Generating technical indicators 

Technical indicators are quantitative tools that predict stock or market trends based on historical price 

and volume data through mathematical calculations. In our LSTM model, we generated technical 

indicators from the downloaded price and volume data using the Python ta-lib library. Due to the 

relatively low signal-to-noise ratio in financial data, models with too many parameters may result in 

overfitting. Therefore, following the method of [10], we selected 20 technical indicators as input 

features. Details of the technical indicators are as follows. 

Table 1: Input feature summary 

Technical Indicator Details Technical Indicator Details 

SMA timeperiod=30 WILLR timeperiod=14 

EMA timeperiod=30 STOCH (Slowk) 

fastk_period=14, 

slowk_period=3, 

slowk_matype=0, 

slowd_period=3, 

slowd_matype=0 

WMA timeperiod=30 CCI timeperiod=14 

TEMA timeperiod=30 AROON timeperiod=14 

BBANDS (Upper 

Band) 
timeperiod=20 STDDEV timeperiod=5, nbdev=1 

ATR timeperiod=14 MINUS_DI timeperiod=14 

RSI timeperiod=14 TRIX timeperiod=30 

MACD 

fastperiod=12, 

slowperiod=26, 

signalperiod=9 

AD / 

SAR 
acceleration=0.02, 

maximum=0.2 
MFI timeperiod=14 

MOM timeperiod=10 ROC timeperiod=10 

 

These technical indicators comprehensively analyze market behavior from multiple dimensions 

by capturing information on price, volume, and momentum. They aim to provide rich and diverse 

feature inputs for the LSTM model, thereby enhancing the model's ability to predict stock returns. 

4.1.3. Generating training sets and testing sets 

As outlined in [10], we plan to randomly select 20 stocks from the FTSE 100 index to predict and 

rank their future returns. Due to the specific characteristics of the LSTM model, we will analyze data 

from 1998 to 2023, a 25-year span, dividing it into overlapping study periods with a 750-day training 

phase followed by a 250-day testing phase. 
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4.2. Model construction 

The primary objective of the model in this study is to predict the stock returns for the next trading 

day (𝑡 + 1) based on information up to time 𝑡. During the training of LSTM networks, numerous 

model parameters need to be set. These parameters are crucial as they significantly impact the model's 

performance. Proper parameter tuning can enhance the model's predictive capabilities. The specific 

parameter choices are as follows: 

1. Input Size: 20, representing 20 technical indicators used as factors. 

2. Look-back Period: 72, which denotes the number of historical input sequences used to predict 

the current output. If this parameter is too small, it can hinder the performance of the recurrent neural 

network. Conversely, if it is too large, it may lead to overfitting, information redundancy, and 

increased computational complexity. Seventy-two trading days roughly encompass the past three 

months of stock data. 

3. Number of Hidden Layers: 2. Using more than one layer can enhance predictive power 

compared to a single layer, balancing improved forecasting capability with lower complexity. 

4. Activation Function: Sigmoid. The sigmoid function is beneficial because it introduces non-

linearity, enabling the network to learn and capture complex patterns. 

5. Optimizer: Adam. The Adam optimizer is chosen for its robustness and accelerated convergence 

properties. 

6. Loss Function: Mean Squared Error (MSE).  

In deep learning, slight changes in hyperparameters can lead to vastly different prediction 

outcomes, which is one of the reasons for the lack of interpretability in deep learning models. 

Therefore, Hyperparameter Optimization (HPO) is a critical task in deep learning, with its primary 

objective being to find the optimal hyperparameter configuration that maximizes the model's 

performance on a specific task. 

Among commonly used hyperparameter optimization algorithms, Grid Search is a fundamental 

and classic method. However, its major drawback is that when the parameter space is large, Grid 

Search requires substantial time and computational resources. As an alternative, we use Random 

Search, which abandons the necessity of exploring the entire hyperparameter space and instead selects 

a subset of parameter combinations to construct a subspace of hyperparameters, within which the 

search is conducted. Unlike Grid Search, Random Search randomly samples combinations within the 

parameter space, significantly reducing time and computational resources while often achieving 

comparable performance, thus saving resources with minimal performance loss.  

The random search samples the following parameters: (1) Number of epochs; (2) Number of 

neurons in hidden layers; (3) Dropout rate; (4) Learning rate. For different stocks, we used Random 

Search to obtain different hyperparameter combinations in order to achieve better prediction results. 

4.2.1. Baseline strategies for portfolio formation 

The following baseline strategies are based on the LSTM + Mean-Variance (MV) model proposed in 

the previous section and are used to compare the performance changes and effectiveness of this model. 

1.Alternative Model: ARIMA + MV 

This alternative model uses the ARIMA model for return prediction combined with the MV model 

for portfolio construction. It serves to compare the performance differences between traditional time 

series models and LSTM. By evaluating ARIMA in conjunction with the MV model, we can 

understand how conventional statistical methods stack up against modern neural network approaches. 

2.Alternative Model: LSTM + 1/N 

This alternative model employs the LSTM for return prediction, similar to the original model, but 

utilizes an equal-weighted (1/N) strategy for portfolio construction instead of the MV model. 
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This comparison aims to assess the differences in effectiveness between the MV model and a 

simplistic equal-weighted portfolio approach. By Combining LSTM-driven predictions with a 

straightforward allocation strategy, we can evaluate the added value of more sophisticated portfolio 

optimization techniques. 

4.3. Model evaluation 

4.3.1. Stock return prediction 

We use three criteria to evaluate predictive accuracy: MSE, MAE and RMSE. Since the model is 

trained using a rolling window method, the model is most refined at the end of the data period, so we 

use the last study period for model evaluation. The table below shows the various evaluation metrics 

during the last study period. For MSE, MAE, and RMSE, smaller values indicate better predictive 

performance of the model. It can be seen that, for all stocks, the MSE, MAE, and RMSE of the LSTM 

are significantly smaller than those obtained from the ARIMA. LSTM model predictions outperform 

traditional statistical methods in both accuracy and direction. 

Table 2: Comparison of prediction performance 

Stock MSE MAE RMSE MSE MAE RMSE 

 LSTM ARIMA 

ANTO.L 0.0007 0.0149 0.0258 0.0170 0.0351 0.1304 

AZN.L 0.0002 0.0059 0.0145 0.0025 0.0115 0.0499 

BA.L 0.0002 0.0068 0.0154 0.0027 0.0117 0.0523 

BATS.L 0.0002 0.0049 0.0137 0.0029 0.0121 0.0539 

CNA.L 0.0005 0.0124 0.0233 0.0065 0.0173 0.0805 

DPLM.L 0.0004 0.0112 0.0211 0.0044 0.0146 0.0665 

IMB.L 0.0002 0.0044 0.0131 0.0034 0.0139 0.0581 

PRU.L 0.0007 0.0140 0.0259 0.0061 0.0170 0.0782 

RR.L 0.0010 0.0164 0.0309 0.0141 0.0233 0.1189 

RTO.L 0.0003 0.0074 0.0170 0.0035 0.0131 0.0590 

SDR.L 0.0004 0.0103 0.0200 0.0041 0.0148 0.0640 

SHEL.L 0.0004 0.0088 0.0187 0.0051 0.0156 0.0716 

SMIN.L 0.0002 0.0055 0.0137 0.0037 0.0130 0.0610 

SMT.L 0.0007 0.0146 0.0256 0.0047 0.0157 0.0689 

SPX.L 0.0004 0.0097 0.0191 0.0031 0.0133 0.0559 

SSE.L 0.0003 0.0074 0.0171 0.0043 0.0156 0.0657 

STJ.L 0.0005 0.0115 0.0213 0.0049 0.0166 0.0700 

TSCO.L 0.0002 0.0062 0.0149 0.0022 0.0102 0.0472 

VOD.L 0.0002 0.0064 0.0154 0.0032 0.0125 0.0565 

4.3.2. Model comparison 

The table below shows the performance of the proposed model and two alternative models on three 

metrics: mean return, volatility, and Sharpe ratio. 

The LSTM+MV model performs the best across these three key metrics, demonstrating its superior 

ability in return prediction and risk management. Although the LSTM+1/N model has higher 

volatility, its Sharpe ratio is still better than that of the ARIMA+MV model, indicating relatively 
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better returns at a certain level of risk. While the ARIMA+MV model has some advantage in mean 

return, its performance in volatility and Sharpe ratio is inferior to the other models. 

Table 3: Comparison of portfolio performance 

Metrics LSTM+MV LSTM+1/N ARIMA+MV 

mean return 1.1007 0.1211 0.5024 

volatility 0.0098 0.0209 0.0166 

sharpe ratio 1.1298 0.5810 0.3102 

4.3.3. Robustness check 

To determine if there is a significant difference in predictive ability between the two models, we apply 

the Diebold and Mariano test for comparing predictive accuracy. Given the weak time-series 

dependence in stock returns, as noted in [12], we do not compare predictions for each individual stock. 

Instead, we modify the Diebold-Mariano test for our analysis by comparing the cross-sectional 

average of prediction errors from each model, rather than individual return errors. We define the test 

statistic 𝐷𝑀 =  𝑑̅ / 𝜎̂, where 

𝑑𝑡+1 =  
1

𝑛
∑((𝑒̂𝑖,𝑡+1

(1)
)

2

− (𝑒̂𝑖,𝑡+1
(2)

)
2

)

𝑛

𝑖=1

, 

𝑒̂𝑖,𝑡+1
(1)

 and 𝑒̂𝑖,𝑡+1
(2)

 represent the prediction errors for stock return 𝑖 at time 𝑡 using each method, 

where n is the number of stocks, and 𝜎̂ denote the Newey-West standard error of 𝑑𝑡. This modified 

Diebold-Mariano test statistic is more likely to provide appropriate p-values for our model 

comparison tests. 

The test results indicate a DM test statistic of 4.112 with a p-value of 3.925 ∗ 10−5 , which is 

nearly zero. This strongly rejects the null hypothesis, confirming a significant difference in the 

predictive abilities of the two models. The results suggest the robustness and reliability of the model. 

5. Conclusions 

This paper combines LSTM-based stock return prediction with the mean-variance optimization model 

to improve investment portfolio construction. By utilizing LSTM neural networks for asset selection 

and the mean-variance model for portfolio optimization, the approach enhances the balance between 

risk and return. Validation using FTSE 100 stocks over 25 years shows that this method outperforms 

traditional models, highlighting the potential of integrating modern machine learning techniques with 

classical financial strategies. 

5.1. Limitations and future research 

The definition of high-quality assets used in this study needs further refinement. High-quality assets 

are not only those that yield high investment returns; from the perspective of the entire portfolio, 

assets with low correlation coefficients among each other contribute more to the overall portfolio 

performance than single assets with high returns. 

Additionally, improvements can be made in the prediction targets. This study currently focuses on 

predicting the next day's stock returns. However, we observed a potential issue when the actual return 

is positive but very low; the predicted value might sometimes be negative due to errors, resulting in 

an incorrect prediction of the stock's direction. This slight discrepancy could lead to a portfolio which 

is not optimal. In future research, we could explore the use of hybrid models for prediction. For 
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instance, we could first classify whether the return is positive or negative and then predict the return 

for those expected to be positive. 

The number of stocks considered in this study is also limited and should be expanded. A larger 

pool of stocks would allow for more robust portfolio diversification. By including a broader range of 

stocks, the portfolio can benefit from a wider selection of low-correlation assets, potentially 

enhancing overall performance and reducing risk. 

Moreover, this study does not take transaction costs into account. According to [13], Transaction 

costs can significantly impact the net returns of a portfolio, especially in high-frequency trading or 

strategies involving frequent rebalancing. Future studies should incorporate transaction costs to 

provide a more accurate assessment of the portfolio's performance. This inclusion will help in 

evaluating the practicality and real-world applicability of the proposed models, ensuring that the 

benefits observed in simulations translate effectively to actual trading scenarios. 

Future research can enhance asset selection, prediction accuracy, stock coverage, and trading 

strategy evaluation by building on this study's findings. 
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