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Machine learning techniques have developed rapidly in stock market analysis,
bringing new possibilities to predict stock prices and help with financial decisions. This
article focuses on the use of time series models, neural networks, and reinforcement learning
in stock forecasting and trading. We review some traditional statistical methods, such as
ARIMA and GARCH models, and then focus on various model structures in deep learning,
including RNNs and LTM in recurrent neural networks, as well as convolutional networks,
Transformers, and graphical networks. In terms of specific applications, we discuss practical
examples, such as studies showing that LSTM models can achieve 93% accuracy in the
Vietnamese stock market. Finally, we compare the pros and cons of these methods, such as
overfitting, data instability, and difficulty in explaining these problems, as well as the future
directions that can be studied, such as explainable artificial intelligence and more advanced
reinforcement techniques. The biggest challenge right now is to rigorously test machine
learning strategies in real-world market environments to ensure they work reliably and
reliably.

Machine learning, Stock market analysis, Time series forecasting, Neural
networks, Reinforcement learning.

Stock market forecasting is a long-standing challenge at the intersection of finance and computer
science. Traditional financial theory (e.g. the Efficient Market Hypothesis) implies that consistently
beating the market is difficult, yet practitioners continue to seek predictive signals. Early approaches
relied on linear time-series models like ARIMA and GARCH, often using handcrafted technical
indicators (e.g. moving averages, momentum) as inputs . In recent years, advances in data
availability and computing have enabled complex machine learning (ML) techniques. Neural
network models in particular have become mainstream for stock forecasting. They can capture
nonlinear relationships and long-range dependencies in price data (for example, LSTM networks
have demonstrated the ability to learn long-term patterns and outperform simpler benchmarks) [1].
Meanwhile, reinforcement learning (RL) — where an agent learns trading rules by maximizing
returns — has emerged for decision-making tasks.In recent years, as more historical data has
accumulated in the market, coupled with the improvement of computer hardware performance, the
use of data to do research methods has become more and more popular. Now there are cloud
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computing and chips dedicated to computing, such as GPUs and TPUs, which allows researchers to
train complex models on much larger data sets than before. So now people who do research can not
only use traditional price data, but also use news and social media to prevent new data sources.Study
these methods to see how they are designed, how they work, and how they can be used in real
finance.

Classical forecasting relies on econometric models. Autoregressive Integrated Moving Average
(ARIMA) and its variants model prices under stationarity assumptions. GARCH models capture
conditional volatility. Such linear models are interpretable and well-understood, but they often lack
the capacity to model complex patterns in market data. Hybrid approaches combine ARIMA with
machine learning (e.g. support vector machines or boosting) to capture linear trends and nonlinear
residuals. For example, Kumar & Thenmozhi showed that an ARIMA-SVM ensemble could
significantly improve forecast accuracy by fitting both linear and nonlinear components. Overall,
ARIMA-style models remain useful baselines but have been outperformed by deep learning
approaches in recent studies.

Other classical forecasting techniques extend the ARIMA/GARCH framework to cover various
scenarios:

SARIMA: Includes seasonal components (e.g., quarterly earnings or macro cycles) into ARIMA
models. Seasonal ARIMA can model repeating patterns such as earnings seasons or holiday effects.

VAR (Vector Autoregression): Models multiple related time series (e.g. prices of stocks within an
index or economy) simultaneously, capturing interdependencies across assets.

State-space and Kalman filter models: Capture time-varying trends and can handle missing or
irregularly sampled data by modeling hidden states.

Markov regime-switching models: Allow model parameters to change across market.These
methods still rely on linear relationships and stationarity assumptions, which can limit their
performance under regime shifts or turbulent market conditions.

Practitioners often choose models via criteria like AIC/BIC or cross-validated error metrics
(RMSE, MAE). In practice, ARIMA models are preferred for their simplicity and transparency.
However, they may fail to adapt quickly during market shocks; for instance, ARIMA forecasts can
be inaccurate during sudden volatility spikes, since they assume past patterns will persist. Hybrid
ARIMA-ML models remain a compromise: by modeling residuals with machine learning
techniques, researchers attempt to capture both the smooth trend and complex irregularitiesfile-
wbjagx6ymldyvstjfoon6w. Nonetheless, the core limitations of linear models motivate the shift
toward purely data-driven, nonlinear methods.

Feedforward neural networks and multilayer perceptrons can handle complex data relationships, but
people prefer to use sequence models to do this. Recursive networks such as long-term short-term
memory networks and gated loop units are particularly useful because they specialize in processing
time-to-back relationships. One feature of these models is that they can remember information from
a long time ago, so they are particularly suitable for analyzing time series data such as stock.Stock
trends are better than returning to neural networks.
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Neural network inputs often include a variety of financial features:

Price and volume data: These can be fed as raw values or transformed (e.g., returns, log-prices) to
stabilize variance.

Technical indicators: Calculated measures like moving averages, Bollinger Bands, MACD, and
RSI are commonly included to capture momentum or mean-reversion signals.

Fundamental data: Company financials (earnings, revenue, debt ratios) or macroeconomic
variables (interest rates, GDP growth) can provide longer-term context.

Sentiment features: Quantified news sentiment, analyst ratings, or social media indicators can be
incorporated to reflect market mood.Feeding diverse features into neural networks can improve
robustness. Some models use multiple input channels (e.g., combining raw price series with
indicator sequences).

Convolutional neural networks (CNNs) have also been applied by converting price sequences
into images or treating time series like 1D signals; CNNs can extract local patterns or technical
indicator sequences. Recently, Transformer architectures and attention mechanisms, originally from
NLP, are being explored for capturing long-range dependencies in price data. Graph neural networks
(GNNs) model relationships among multiple assets. Generative models such as GANs have been
used to generate synthetic financial data or improve robustness. Emerging trends include using large
language models (LLMs) to incorporate textual news or social media data into forecasting models.
In summary, modern stock prediction models span a variety of neural structures — RNNs, CNNs,
Transformers, GNNs, GANs, etc. — many of which have shown empirical success in learning
nonlinear market dynamics.

RL formulates trading as a sequential decision problem. An RL agent observes market state (e.g.
price history, indicators) and chooses actions (buy, sell, hold, or portfolio weights) to maximize a
cumulative reward (typically profit or risk-adjusted returns). Unlike supervised models that predict
future price directly, RL models learn a trading policy through trial-and-error. Popular deep RL
algorithms applied to trading include Deep Q-Networks (DQN), Double DQN, Policy Gradient
methods (e.g. DDPG, TD3), and Actor-Critic variants. For example, Théate & Ernst introduced a
Trading Deep Q-Network (TDQN) tailored to maximize the Sharpe ratio; they trained the agent on
simulated price trajectories and reported promising outperformance relative to benchmarks [2].
Similarly, Kabbani & Dumanused the TD3 (Twin Delayed DDPG) algorithm, modeling the problem
as a partially-observed Markov decision process; their agent achieved a Sharpe ratio of 2.68 on test
data, indicating strong performance of deep RL over traditional forecasting techniques [3]. RL’s
advantage is the ability to learn from future cumulative outcomes and directly optimize trading
objectives. However, it requires careful design of reward functions and realistic market simulations
to be practical.

Key components of an RL trading framework include:

State representation: The input to the agent often includes recent price returns, technical
indicators, current portfolio holdings, and sometimes market-wide variables (volatility index,
interest rates). Choosing informative state features is crucial.

Action space: This could be discrete (e.g. buy, sell, hold for each asset) or continuous (e.g.
adjusting portfolio weight percentages). Some RL agents decide actions for a single asset at a time,
while others output a vector of weights for an entire portfolio.

Reward function: Common rewards include daily profit/loss or risk-adjusted returns (Sharpe
ratio, Sortino ratio). Designing the reward to balance return vs risk is an active area of research.
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Exploration strategy: To learn effectively, agents must explore different actions. Techniques
include adding randomness (epsilon-greedy, Ornstein—Uhlenbeck noise) or entropy bonuses in
policy gradient methods.

These methods have a great impact on Al performance. For example, if transaction costs are
considered in the reward function, it can avoid frequent Al buying and selling.Al uses this prediction
as a reference to trading decisions. This combination of training works better. There is also a new
direction for multi-agent reinforcement learning, allowing several Als to learn to interact together,
such as simulating the behavior of different traders or institutions. This approach better reflects the
real market situation, because the real market is affected by various traders.

Machine learning models have been applied in various real-world financial contexts. A primary use
is algorithmic trading, where models generate buy/sell signals or manage portfolio weights
automatically. Deep forecasting models (e.g. LSTM) are used to anticipate short-term price
movements, while RL models are used to formulate end-to-end strategies. For example, in an
emerging market case study, Tran et al. combined LSTM forecasts with technical indicators (SMA,
MACD, RSI) for Vietnamese stock indices; their model achieved 93% accuracy in predicting price
direction, demonstrating effective short-term forecasting with deep learning. In another study,
Lahboub and Benali compared ARIMA, Transformers, and LSTM on Moroccan credit stocks and
found LSTM vastly outperformed the others (with R?>0.99 for LSTM, vs. poor performance for the
Transformer model). These applications show that neural models can yield high predictive accuracy
on real financial datasets.

Beyond directional forecasting, ML is used for portfolio optimization and asset allocation (e.g.
RL agents learning to balance risk and return), and for risk management by forecasting volatility or
market downturns. In practice, hedge funds and quant firms increasingly integrate ML: large asset
managers and fintech startups use ML-driven signals in automated trading systems. For instance,
Deng et al. developed a Deep Direct RL framework that learned trading policies from raw market
data, and reported that such RL agents could adapt to complex financial signals. (Numerous
proprietary case studies similarly highlight ML’s role in real-world trading engines.) In credit risk
and macro-finance, ML models are used for stress-testing and scenario analysis, though these are
beyond pure stock forecasting.

Overall, deep learning models have largely supplanted classical approaches in recent research.
Studies consistently report that RNN-based models, particularly LSTM, outperform linear and
shallow methods on predictive benchmarks [4]. For example, Liu et al. found LSTM RNNs
significantly outperformed ARIMA and regression neural nets across different time series patterns.
Similarly, Lahboub & Benali observed that LSTM achieved far higher R? than ARIMA or even
advanced Transformer models. Neural networks thus capture nonlinear dependencies that simple
time-series models miss.

However, this performance often comes with higher complexity. Deep networks require large
datasets and careful tuning, whereas ARIMA models are simpler and faster to train[5]. Classical
models are also more interpretable and impose fewer data requirements. Hybrid approaches can
combine the best of both, as evidenced by superior accuracy from ARIMA-ML ensembles.
Reinforcement learning methods can potentially outgain supervised predictors by optimizing for
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long-term returns: the high Sharpe ratios reported in recent RL studiessuggest that RL-based trading
agents can exceed static forecasting schemes. But RL also faces pitfalls (e.g. overfitting to simulated
environments).

In summary, neural models (especially RNNs) generally provide stronger predictive power at the
cost of complexity; RL offers a distinct paradigm focused on decision-making under uncertainty.
The best choice depends on the application: for pure price forecasting, LSTM/CNN models
dominate, whereas for automated trading, deep RL is promising.

Despite successes, significant challenges remain. Financial data is noisy and non-stationary, so
models risk overfitting to past patterns that may not persist. Market regimes can shift, making static
models unreliable. Many studies also omit realistic transaction costs and market impact; as noted by
Jiang, simple trading strategies may be “impractical” when real market frictions are included.
Furthermore, ML models (especially deep nets) are “black boxes” — their decisions lack
transparency, raising concerns for regulatory compliance and risk management. Reinforcement
learning in particular can suffer from high variance and instability; an RL agent that performs well in
simulation might incur large losses in live trading due to unforeseen market moves. Data limitations
are another issue: while big tech datasets are growing, many stock markets still have limited
historical depth, which constrains model training [6].

Overall, ML in finance must contend with efficiency of markets (where arbitrage opportunities
are fleeting), the evolving nature of financial data, and the difficulty of robustly measuring
“success.” These factors complicate both the development and the evaluation of ML models, and
they highlight why even strong in-sample performance may not translate to consistent real-world
gains.

The field is rapidly evolving. Recent surveys and studies suggest several future paths. Explainable
Al is likely to become important: developing interpretable ML models that reveal why they make
certain predictions could foster trust and uncover new financial insights. Hybrid models that
integrate domain knowledge (e.g. economic indicators or structural models) with data-driven ML
may yield more robust forecasts. The use of alternative data (news, social sentiment, satellite
imagery) combined with ML is an active trend, as is leveraging large language models to interpret
textual information for market signals [7].

In reinforcement learning, future work may focus on safer exploration (to limit potential losses)
and multi-agent RL (modeling interactions among traders) [8]. Deep RL’s success in other domains
suggests it will see more adoption in trading, especially with improved simulation
environments. Transfer learning — using models trained on one market or asset and adapting to
another — has shown early promise in stock prediction and is likely to expand. Finally, the
community is also working on robustness: ensuring models can handle adversarial conditions or
extreme market events.

Machine learning has significantly impacted stock market analysis, providing powerful tools for
prediction and decision-making. Time-series methods, while foundational, have largely been
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augmented or replaced by neural network models that capture nonlinear dynamics and temporal
dependencies. Reinforcement learning offers a complementary approach that directly targets trading
performance.Empirical studies indicate that deep ML models often achieve superior accuracy, but
they require careful design to address financial realities. This review has surveyed the recent
landscape of ML in finance, highlighting representative models and their real-world applications.
Moving forward, advancing the practical relevance of these techniques — through explainability,
integration of diverse data sources, and rigorous out-of-sample testing — will be key to realizing their
full potential in industry.

A key takeaway is that ML tools should complement rather than replace traditional financial
expertise. Advanced models can uncover patterns, but domain knowledge remains crucial for
interpreting predictions and guiding investment decisions. Interdisciplinary collaboration (between
data scientists, financial analysts, and regulators) and the development of interpretable ML
techniques will be important for the responsible deployment of Al in finance. Ultimately, bridging
research advances with practical trading systems will require not only sophisticated algorithms but
also robust risk controls and clear understanding of market mechanisms.
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