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Abstract. In the aftermath of the COVID-19 pandemic, insurance has become increasingly
essential in helping individuals mitigate financial shocks from unexpected adverse events.
Nevertheless, insurers face the persistent challenge of premium pricing calibration, a process
imperative for maintaining financial solvency and actuarial equity. Among various machine
learning techniques, the Bayesian framework stands out due to its unique ability to
incorporate new data in real-time, making it particularly suitable for dynamic risk
environments. This study conducts a systematic review of Bayesian methodologies,
emphasizing their deployment in risk assessment and actuarial pricing. It examines the
strengths of Bayesian methods in uncertainty modeling across high-stakes industries, as well
as their limitations—such as computational complexity, lack of interpretability, and
sensitivity to prior assumptions. Furthermore, the investigation interrogates cutting-edge
innovations—such as hybrid Bayesian-machine learning hybrids and Bayesian AI—
designed to mitigate aforementioned constraints and extend the operational scope of
Bayesian frameworks. This study concludes that while the Bayesian framework offers a
powerful approach for dynamic risk modeling, its future practicality hinges on the
development of hybrid models that can effectively balance predictive accuracy,
interpretability, and computational feasibility. Future research should focus on real-world
case studies to further validate these advancements.
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1. Introduction

Over the past decade, an expanding body of research has explored a range of machine learning
methods—including Logistic Regression (LR), Artificial Neural Networks (ANN), Random Forests,
XGBoost, Support Vector Machines (SVM), and Decision Trees (DT)—to support decision-making
and risk management across diverse sectors. Conversely, the Bayesian framework demonstrates
significant advantages through its capacity for iterative model refinement using real-time incoming
data streams [1].

The efficacy of Bayesian methodologies stems from their capacity to incorporate domain-specific
prior knowledge while optimizing the exploration-exploitation equilibrium during probabilistic
inference. The approach is grounded in Bayes’ Theorem, which establishes that the posterior
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probability of a model given data is proportional to the product of the likelihood of the data given
the model and the prior probability of the model [2].

Bayesian models have found widespread adoption in fields where uncertainty is intrinsic and
decision-making has high stakes. In the insurance industry, insurance serves as a crucial tool for
income smoothing and financial protection. Accurate estimation of risk and precise premium pricing
are essential for maintaining financial stability, gaining customer trust, and ensuring regulatory
compliance [3].

This paper investigates the application of Bayesian methods in risk and uncertainty assessment
across various industries, with a primary focus on modern insurance pricing. Additionally, the study
assesses inherent constraints of Bayesian frameworks and analyzes emergent methodological
advancements—including hybrid modeling architectures and Bayesian Artificial Intelligence—
designed to augment their operational applicability.

2. Current Bayesian applications

Bayesian methods have found widespread application in risk and uncertainty modeling, particularly
in environments where safety, operational efficiency, and economic performance are tightly coupled.
The following sections illustrate how Bayesian approaches have been successfully applied across a
range of industries, each with its unique demands for real-time adaptation, probabilistic inference,
and robust decision-making under uncertainty.

The maritime industry is one of the most regulated and high-risk sectors globally, where
operational failures can lead to significant environmental damage, financial loss, and even loss of
human life. In this context, Bayesian Networks (BNs) have emerged as a highly effective method for
modeling the complex interdependencies among risk factors and predicting the likelihood of adverse
events.

A meta-review by Animah examined 115 studies that applied BNs in maritime settings, revealing
that over 40% used BN as a standalone risk assessment tool [1]. This speaks to the confidence the
field has placed in Bayesian models. For example, Li et al. employed a BN to analyze ship collision
risks at major ports, incorporating variables such as human error, vessel characteristics, weather
conditions, and port design [4]. Their model not only quantified the probability of collision events
but also offered actionable insights into which ports were most susceptible and under what
conditions. This allowed for targeted improvements in port safety protocols.

Moreover, one of the most appreciated features of BNs in this domain is their capacity for
sequential updating. As new incident data or sensor readings become available, the BN can
recalibrate the probabilities in real time. This facilitates a dynamic decision-support system that
improves over time, enhancing the precision of operational risk forecasting and enabling more cost-
effective allocation of safety resources [1]. By updating risk profiles based on real-time posterior
distributions, operators can minimize both false alarms and missed warnings, optimizing both safety
and operational efficiency.

The chemical and process industries are characterized by safety-critical systems of comparable
complexity. Failures such as leaks, explosions, or process shutdowns not only pose threats to human
life and the environment but also result in regulatory penalties and economic loss. Over the past
decade, Bayesian Belief Networks (BBNs) have been used to model these risks by incorporating
both historical data and expert elicitation.

Zerrouki & Smadi exemplified this application by using BBNs to model various risk outcomes in
a refinery [5]. They identified three primary accident scenarios—overpressure, gas releases, and
process shutdowns—and calculated the probabilities associated with each outcome under different
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input conditions. The BBN framework allowed them to evaluate not only the most likely accident
types but also the pathways leading to each event. This level of detail facilitated more effective
safety audits and resource allocation.

BBNs are particularly useful in this sector because they can incorporate qualitative knowledge
where data is sparse or uncertain—a common challenge in high-hazard, low-frequency
environments. The ability to merge subjective inputs with empirical data in a coherent probabilistic
framework makes Bayesian models well-suited for process industries, where expert judgment often
supplements limited historical records.

Insurance pricing, or premium rating, is also a high-stakes decision process where both
underpricing and overpricing carry substantial consequences. Bayesian methods offer significant
advantages in this domain due to their flexibility in model structure, ability to incorporate prior
knowledge, and adaptability to emerging data trends.

Modern insurance pricing now goes far beyond traditional actuarial tables. It involves complex
statistical modeling that integrates demographic information, behavioral data, claim histories,
geographic risk profiles, and medical records [6]. Gunawan et al. provided a notable example where
Bayesian Generalized Linear Models (BGLMs) were used to evaluate the risks associated with a
general insurance company’s expansion in Indonesia [7]. By treating the pre-expansion data as a
prior and integrating post-expansion outcomes, the BGLM successfully quantified how the
expansion impacted claims volume and severity.

The results showed that BGLM outperformed traditional GLM models in terms of statistical
significance, prediction accuracy, and robustness. Specifically, BGLM models yielded confidence
intervals that excluded zero more frequently, indicating stronger effect estimates. Additionally,
BGLM captured non-linear and interaction effects better due to its probabilistic structure.

This is crucial for insurance companies dealing with sudden market shifts, policy changes, or
evolving risk landscapes (e.g., climate change). Bayesian approaches offer a framework that evolves
with the market and can provide real-time pricing adjustments, thereby supporting regulatory
compliance and long-term solvency.

3. Limitations of Bayesian models

Notwithstanding their demonstrable advantages, Bayesian models exhibit substantial limitations.
Their widespread implementation, especially in commercial contexts like insurance pricing, is often
constrained by computational costs, interpretability challenges, and sensitivity to subjective
modeling choices.

A primary impediment to the broader adoption of Bayesian methodologies is their computational
intensity, particularly when processing large-scale, high-dimensional datasets. Traditional Bayesian
inference involves the evaluation of posterior distributions, which is analytically intractable in most
real-world models. Practitioners often rely on Markov Chain Monte Carlo (MCMC) algorithms to
sample from these distributions, but MCMC can be painfully slow, especially in insurance settings
where the number of policyholders can reach into the millions.

Upon acquisition of new data—such as revised claims histories—the model necessitates re-
execution of simulations to update posterior estimates, potentially requiring millions of iterations per
computational cycle [2,8]. This level of computation is impractical, or even prohibitive, for pricing
high-frequency, low-margin insurance products such as auto or health policies [9,10]. It also creates
challenges for deploying these models in real-time settings, where pricing decisions must be made
instantly (e.g., at point of sale).
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Another common criticism of Bayesian models is the lack of interpretability. Although providing
uncertainty quantification, these models typically exhibit limited transparency regarding feature
influence mechanisms on final outputs. This becomes problematic in insurance pricing, where
stakeholders demand clear, auditable rationales for pricing decisions.

When premiums are derived via MCMC or other simulation-based methods, the result is a
distribution rather than a point estimate, and this can be difficult to interpret for regulators,
customers, and even actuaries. In contrast to GLMs or decision trees, Bayesian models typically
don’t provide explicit feature-weight relationships, making them appear as "black-box" systems [9].

Bayesian inference heavily relies on the choice of prior distribution, which can significantly
influence model outputs especially when the sample size is small. While priors theoretically encode
expert knowledge, they are often selected for computational convenience rather than theoretical
correctness. In practice, Gaussian priors are commonly chosen due to the Bernstein-von-Mises
theorem, but the regularity conditions for this theorem rarely hold in high-dimensional or non-
asymptotic settings [11].

Wenzel et al. rigorously evaluated the consequences of prior misspecification and discovered
phenomena such as “cold posterior effects” caused by the Gaussian prior, where the posterior fails to
align with qualitative expectations [12]. This can lead to misleading marginal likelihoods,
suboptimal predictions, and incorrect model selections [11]. Silvestro & Andermann showed that
even with a moderately sized dataset, different prior specifications led to significantly different
classification outcomes—up to 10% variation in true positive rates [13]. In insurance contexts, such
a discrepancy could result in unfair pricing, risk underestimation, or regulatory violations.

This sensitivity is particularly pronounced in data-scarce segments including emerging market
entries or specialized insurance products (e.g., pet insurance, drone insurance), where prior
specifications exert disproportionate influence on posterior distributions.

4. Future trends

To address the inherent limitations of both classical Bayesian methods and contemporary machine
learning models in insurance analytics, researchers are increasingly developing hybrid
methodologies that preserve the strengths of Bayesian inference—particularly uncertainty
quantification—while simultaneously enhancing computational scalability and predictive
performance.

One promising line of research is the integration of Bayesian inference with decision trees,
particularly in the form of Bayesian Classification and Regression Trees (BCART). While traditional
CART models are valued for their interpretability, they are notoriously unstable due to their greedy,
recursive nature and sensitivity to small changes in the data. To address this, Zhang et al. embedded
a Bayesian framework within CART, allowing the tree structure to be sampled from a posterior
distribution rather than deterministically constructed [14]. Their BCART framework was
implemented in an insurance claim frequency analysis, utilizing a zero-inflated Poisson (ZIP)
likelihood function to accommodate the excessive proportion of zero-claim observations. The
resulting model outperformed traditional CART methods in both predictive accuracy and robustness,
while retaining a high degree of transparency—a critical factor in actuarial practice. Furthermore,
the hierarchical tree structure enables intuitive visualization, enabling actuaries and risk analysts to
interpret how covariates systematically influence risk stratification and premium determination.

While most Bayesian tree models have focused on Gaussian priors and continuous outcomes, Hill
et al. underscore the imperative to transcend these conventional limitations [15]. Extensions such as
log-linear BART accommodate discrete, multinomial, zero-inflated, and overdispersed data, further
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broadening the applicability of Bayesian tree-based models. The success of BCART in this context
highlights a broader trend: combining Bayesian inference with machine learning architectures to
aggregate the strengths of both paradigms, offering not only accuracy but also credibility intervals
and principled uncertainty quantification.

Another significant trend involves the increasing use of Approximate Bayesian Computation
(ABC) in actuarial science and operational risk modeling. As insurance products and customer
interactions grow more complex—often modeled via agent-based simulations or stochastic
differential equations—their likelihood functions become analytically intractable. According to
Sisson et al., ABC offers a likelihood-free approach by simulating data under proposed parameters
and retaining those that produce outcomes similar to the observed data [8]. It thus represents a form
of Bayesian updating based on data similarity, rather than explicit likelihood evaluation. The
approach demonstrates particular efficacy in contexts characterized by complex, stochastic, and
agent-driven model structures where data simulation remains computationally tractable.

For instance, in agent-based models of customer interactions or claims processes with behavioral
triggers, the rules governing individual agents and their interactions introduce multiple layers of
stochasticity. This renders analytical likelihood construction infeasible, while simulated datasets can
still be generated, making ABC an ideal solution. These developments indicate a future trajectory
where Bayesian models are extended through creative modifications—such as relaxing the need for
explicit likelihoods—while preserving their foundational strengths in probabilistic reasoning.

More recently, the integration of Bayesian methods with artificial intelligence has catalyzed a
fast-growing interdisciplinary field known as Bayesian Artificial Intelligence (Bayesian AI). It aims
to combine probabilistic reasoning and uncertainty quantification with the power and flexibility of
modern AI models. Bayesian Neural Networks (BNNs), for instance, is one of the integrations. The
fundamental architecture of BNNs consists of interconnected neurons organized across multiple
layers, where each layer receives input from preceding layers, processes information through
weighted connections, and applies non-linear transformations to generate outputs. Together, these
layers work to perform a complex non-linear mapping from the input data to the final output.
Adopting the Bayesian approach allows for the inclusion of prior assumptions about how the
network's weights are distributed [16].

Pang and Choi introduced a Deep Sigma Point Process (DSPP), a variant of BNNs, and applied it
to parametric insurance under climate change [17]. In contrast to conventional modeling approaches,
the DSPP autonomously determines optimal coverage thresholds and trigger parameters, effectively
balancing profitability objectives with customer protection requirements. The model significantly
outperformed standard Bayesian regressions in both calibration and robustness, and more
importantly, the uncertainty estimates from the DSPP follows the qualitative expectation. Such kind
of model can be integrated into automated insurance platforms. Similarly, Mongwe et al.
demonstrated that BNNs with Automatic Relevance Determination (ARD) priors not only improved
motor insurance forecasting but also provided explainable variable selection, guiding underwriters
in feature importance analysis [16]. Their experimental findings revealed that deeper neural
architectures exhibited superior generalization performance compared to wide shallow networks,
especially when processing large-scale telematics datasets.

These developments suggest a promising future trajectory for insurance analytics: the emergence
of hybrid Bayesian–machine learning models that leverage the interpretability and uncertainty
quantification of Bayesian inference with the flexibility and scalability of modern learning
algorithms. As actuaries and data scientists endeavor to optimize predictive performance while
maintaining regulatory transparency and providing robust decision support, such hybrid
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methodologies are positioned to become indispensable tools in risk assessment, premium pricing,
and claims forecasting applications.

5. Conclusion

In conclusion, the Bayesian framework stands out among various machine learning methods due to
its unique ability to consistently update existing models based on newly obtained data. As a result, it
has been applied across a wide range of industries. Notably, in domains characterized by hazardous
or high-stakes operational environments, Bayesian approaches have been extensively implemented
for comprehensive risk assessment and rigorous uncertainty quantification.

Nevertheless, certain limitations of the Bayesian workflow hinder its widespread adoption in real-
world applications. For instance, Bayesian models are often computationally expensive and
analytically intractable due to the demanding requirements of likelihood computation and intensive
simulations, which can reduce transparency. Moreover, the model's dependence on prior
distributions—especially in situations with limited data—can significantly compromise its
predictive accuracy.

To address these challenges, researchers have introduced novel methods inspired by Bayesian
principles. Some have integrated Bayesian inference with other machine learning techniques to
create hybrid models such as Bayesian Classification and Regression Trees (BCART), while others
have developed new approaches like Approximate Bayesian Computation (ABC), which modifies
the classical Bayesian workflow to bypass the need for explicit likelihood calculations. One of the
most rapidly evolving developments is Bayesian AI, which holds promise as a future trend in
insurance pricing and broader risk modeling.

While this paper offers a broad overview of Bayesian methods and their applications in risk
assessment, its scope is primarily theoretical and literature-based, with limited empirical analysis.
Future research should focus on real-world case studies both within and beyond the insurance
industry, and on the development of hybrid models that effectively balance predictive accuracy,
interpretability, and computational feasibility.
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