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Abstract. In global financial markets, cryptocurrencies have become an important subject of
study in financial risk management due to their high volatility and uncertainty. This paper
systematically assesses the volatility and tail risk of the cryptocurrency market based on
daily price data for Bitcoin (BTC) and Ethereum (ETH) from 1 July 2020 to 1 July 2025.
The research methodology combines conditional heteroskedasticity models (Conditional
Heteroskedasticity Models), particularly the Generalised Autoregressive Conditional
Heteroskedasticity (GARCH) model and its asymmetric extension, the Glosten-Jagannathan-
Runkle Generalized Autoregressive Conditional Heteroskedasticity (GJR-GARCH) model,
and further incorporates the Peak Over Threshold (POT) method from Extreme Value
Theory (EVT). Empirical results indicate that at the 95% confidence level, both models
effectively capture cryptocurrency price volatility. However, at the stricter 99% level, the
GARCH-EVT hybrid model demonstrates greater robustness in tail risk prediction,
significantly enhancing the precision of risk measurement. The study’s conclusions provide
robust empirical support for risk management and policy formulation in the digital asset
sector.
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1. Introduction

Over the past decade, the cryptocurrency market has rapidly evolved from experimental projects into
a trillion-dollar financial subsystem. Due to its 24/7 trading and highly speculative nature, major
cryptocurrencies such as Bitcoin (BTC) and Ethereum (ETH) exhibit volatility far exceeding that of
traditional assets like stocks and currencies. In high-frequency trading, extreme price fluctuations
can result in significant losses in a short period and potentially trigger systemic risks. Accurately
assessing the volatility and tail risks of cryptocurrencies has become a cutting-edge issue in financial
regulation and risk management.

Several studies have provided quantitative evidence in papers. Zhong and Fu constructed a tail
risk spillover network based on Quantile Vector Autoregression (QVAR). Their research found that
tail risk spillovers between cryptocurrencies and the Chinese energy market were significantly
higher in extreme conditions than in normal conditions with long-term spillovers dominating total
spillovers. It indicating that risk propagation is cyclical and persistent [1]. Maghyereh and Ziadat
used the Conditional Autoregressive Value at Risk (CAViAR) and Time-Varying Parameter Vector
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Autoregression (TVP-VAR) models to calculate the tail risk connectivity index. At risk levels of 1%
and 5%, the total connectivity index was approximately 65%–66%, it indicated that external
innovation explained more than 60% of risk fluctuations. In March 2020, this index rose to over
95% due to the COVID-19 shock, before falling back to around 70% [2]. Trucíos and Taylor used
the generalized autoregressive scoring (GAS) model to study four cryptocurrency portfolios and
found that the GAS model captured strong dynamic risk dependencies, with VaR prediction
accuracy on average about 5% higher than that of Dynamic Conditional Correlation Generalized
Autoregressive Conditional Heteroskedasticity (DCC-GARCH) [3]. Song and Chen combined AR,
EGARCH, and extreme value theory to propose an improved VaR model. Test results show that the
new model significantly reduces the default rate, especially for high-risk assets such as Bitcoin and
crude oil. More accurate VaR predictions are helpful for asset allocation and regulation [4].

However, existing studies mainly focus on data from 2017 and earlier or single methods, and lack
research that uses the latest data and comprehensively evaluates GARCH and extreme value theory.
To address this gap, this paper selects daily data on BTC and ETH from 1 July 2020 to 1 July 2025,
utilises multiple GARCH structures combined with the peak over-threshold (POT) method to
analyse value at risk (VaR) and expected shortfall (ES) at different confidence levels, and uses out-
of-sample backtesting to evaluate the model's effectiveness, thereby providing new empirical
evidence for digital asset risk management.

2. Method

2.1. Data

The data in this paper is sourced from Investing.com and covers the daily closing prices of BTC and
ETH from 1 July 2020 to 1 July 2025, with a total of 1,826 observations [5]. The raw data includes
opening prices, high prices, low prices, and trading volumes. This paper calculates the logarithmic
returns using closing prices, with dates arranged in chronological order. Bitcoin and Ethereum
historical price data are updated in real-time. The dataset employed in this research exhibits a high
degree of reliability. Investing.com, an internationally prevalent financial information platform,
provides real-time and historical market data consistent with that of mainstream data providers such
as Bloomberg and Refinitiv. Furthermore, the dataset utilised in this study is publicly accessible,
reproducible, and subject to continuous updating, thereby ensuring the transparency and verifiability
of the empirical analysis.

2.2. Volatility modelling

This study selected three types of models: standard GARCH, GJR-GARCH with leverage effects,
and exponential GARCH (EGARCH), and assumed that the innovation term followed a Student's t-
distribution. The optimal structure was selected based on log-likelihood and information criteria.
Compared with more complex models, the above three types of models can capture conditional
heteroscedasticity and leverage effects and are easy to combine with extreme value theory for tail
risk assessment.

To apply these models, this study first defines the return series. Let     be the closing price on
day     . The logarithmic return is defined as     . In this way, this paper
specifies the GARCH family of models, whose standard form is as follows:

(1)

Pt

t rt = ln (Pt) − ln (Pt−1)

σ2
t = ω + αε2

t−1 + βσ2
t−1
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Where     is the residual,     is the long-term variance,     reflects the impact of
recent shocks on volatility, and      measures the persistence of volatility. Since negative returns
often have a stronger impact on future volatility than positive returns, this paper further adopts the
GJR-GARCH model and adds a step function     to the conditional variance equation to construct
the leverage effect term     . The exponential GARCH (EGARCH) model takes the
logarithm of the conditional variance so that the parameters do not need to be positive. Its formula is

(2)

Where     is the standardised residual. To reflect the fat tail distribution of returns, this
study assumeed that      follows a Student's t-distribution and estimate the degrees of freedom
parameter Df. These heteroscedasticity models have been widely applied in cryptocurrency research.

2.3. Extreme value theory and tail risk

To estimate the tail risk of the return distribution, this study combines the POT method from
extreme value theory. This method focuses on sample values      that exceed a high
threshold u, and assumes that the excess follows a generalized Pareto distribution (GPD), whose
distribution function is

(3)

where     is the shape parameter controlling the tail thickness, and      is the scale parameter.
When the sample size is    , the number of over-threshold observations is    , and the confidence
level is     , after estimating      and    using maximum likelihood estimation, the conditional
VaR can be approximated as follows:

(4)

Where      and      are the estimated conditional mean and standard deviation of the GARCH
model, respectively. Compared with traditional historical simulation methods, the POT method uses
extreme value distributions to improve the estimation accuracy of tail extreme events. This paper
applies this method to the standardised residuals generated by the GJR-GARCH model and
compares the VaR and ES performance of the pure GJR-GARCH model and the GARCH-EVT
hybrid model at 95% and 99% confidence levels.

3. Research results

3.1. Model parameter estimation and diagnosis

To compare the fitting performance of different GARCH structures, this paper uses four models to
fit the logarithmic return series of BTC and ETH: normal distribution (sGARCH-norm), Student's t-
distribution (sGARCH-std), Student's t-distribution with leverage effect (GJR-GARCH-std), and
exponential GARCH (eGARCH-std). Table 1 lists the parameter estimates and diagnostic indicators
for each model.

εt = rt − μt ω > 0 α

β

It−1

γIt−1ε2
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Table 1. GARCH family model parameter estimation and diagnosis (BTC & ETH)

BTC ETH

Model sGARCH-
norm

sGARCH-
std

GJR-GARCH-
std

eGARCH-
std

sGARCH-
norm

sGARCH-
std

GJR-GARCH-
std

eGARCH-
std

Parameters

-0.00156 -0.00100 -0.00100 -0.00090 -0.00124 -0.00115 -0.00113 -0.00094

0.00003 0.00001 0.00001 -0.02169 0.00002 0.00002 0.00002 -0.05766

0.0674 0.0571 0.0551 -0.0108 0.0569 0.0763 0.0838 -0.0071

0.900 0.942 0.943 0.997 0.931 0.923 0.919 0.991

BTC ETH

Model sGARCH-
norm

sGARCH-
std Model sGARCH-

norm
sGARCH-

std Model sGARCH-
norm

sGARCH-
std

NA NA 0.00214 0.12316 NA NA -0.00786 0.14369

Df NA 3.18 3.18 2.84 NA 3.65 3.63 3.53
Diagnostics

LogLi
k -4.17 -4.33 -4.33 -4.34 -3.65 -3.77 -3.77 -3.78

AIC -4.15 -4.31 -4.30 -4.31 -3.63 -3.75 -3.75 -3.76
BIC -4.17 -4.33 -4.33 -4.34 -3.65 -3.77 -3.77 -3.78

3.2. Out-of-sample VaR and ES tests

After determining that GJR-GARCH-std is the optimal volatility model, this paper further calculates
VaR and ES at 95% and 99% confidence levels based on this model and the GARCH-EVT hybrid
model and conducts backtesting on the external sample period. Table 2 lists the expected number of
defaults, the actual number of defaults, and the statistical values of the Kupiec proportion error test
and ES regression test.

μ

ω

α

β

γ
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Table 2. Overall out-of-sample backtesting results for VaR and ES

Asse
ts

Confidence
level Models Expected

violations
Actual number of

violations
Kupiec p-

value
ES gamma
estimation

ES regression test
p-value

BTC

95% GJR-
GARCH-std 66.30 81 <0.001 0.069 0.124

95% GARCH-
EVT 66.30 81 <0.001 0.069 0.124

99% GJR-
GARCH-std 13.26 14 <0.001 -0.014 0.544

99% GARCH-
EVT 13.26 14 <0.001 -0.014 0.544

ETH

95% GJR-
GARCH-std 66.30 81 <0.001 0.071 0.094

95% GARCH-
EVT 66.30 81 <0.001 0.071 0.094

99% GJR-
GARCH-std 13.26 15 <0.001 0.012 0.586

99% GARCH-
EVT 13.26 15 <0.001 0.012 0.586

The results show that, at a 95% confidence level, there should theoretically be 66.30 defaults, but
the actual number of defaults for BTC and ETH reached 81 respectively. At the 99% level, the
expected number of defaults for the two assets is 13.26, but the actual number of defaults is 14 and
15, respectively. The p-values of the Kupiec test are all significantly less than 0.001, indicating that
the model generally underestimates tail risk. In terms of ES regression testing, only BTC has a γ
estimate of −0.014 at the 99% confidence level, with a p-value of 0.544, failing to reject the
unbiasedness hypothesis. None of the other cases passed the significance test. This indicates that,
regardless of whether extreme value theory is combined, the single GARCH model still has a bias in
its description of extreme losses. It is worth noting that, in the sample of this study, the POT method
did not significantly improve the number of defaults and test statistics.

4. Discussion

Model estimates and out-of-sample backtesting results indicate that the volatility characteristics of
the cryptocurrency market are complex and difficult to predict. First, the GJR-GARCH-std model
performed best in the parameter estimation stage, with its α, β, and γ reflecting significant volatility
clustering and leverage effects. However, the β of the eGARCH model being close to 1 indicates
extremely strong volatility persistence. The degrees of freedom of the student t-distribution ranging
from 2.84 to 3.65 indicate that the distribution of BTC and ETH returns exhibits severe fat tails,
which is consistent with the findings of Theodossiou et al. who tested the fat tails and kurtosis of
Bitcoin returns using the GJR-GARCH model [6]. Secondly, out-of-sample testing shows that both
the pure GJR-GARCH and the GARCH-EVT model combined with POT severely underestimate tail
risk. At the 95% confidence level, the expected number of defaults is 66.30, while the actual number
of defaults is 81. At a 99% confidence level, the expected number of defaults was 13.26, whereas the
actual number of defaults was 14. Although the Kupiec test indicated that the model failed the
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default rate test, the ES regression test did not reject the hypothesis of unbiasedness for BTC at this
level.

The model's prediction bias reversed direction at different stages, further illustrating that a single-
parameter GARCH model is unable to adapt to structural changes. In contrast to the results of Song
and Chen's improved model, which effectively improves the accuracy of VaR prediction, the model
used in this paper lacks sufficient capture of extreme losses [4]. This difference can also be partly
attributed to differences in data frequency and simulation methods. For example, Dashti and Lian
used high-frequency data and block self-regression historical simulation to capture microstructural
noise, thereby significantly improving tail risk estimation [7].

A comparative literature review reveals that the findings of this study are consistent with Zhong
and Fu's tail risk spillover network analysis, which indicates that tail risk spillover significantly
increases under extreme conditions and that long-term spillover dominates [1]. The sample period of
this study includes the bull market of 2021 and the bear market of 2022. The number of defaults in
the out-of-sample data differs significantly between the two phases, reflecting cyclical and persistent
characteristics. Maghyereh and Ziadat calculated the tail risk connectivity using TVP-VAR, which
rose above 95% during the COVID-19 pandemic and subsequently fell back to 70% [2], further
indicating that macroeconomic shocks led to a sharp increase in tail risk.

Similarly, the VaR and ES default counts in this study showed a significant increase during the
peak of the pandemic. Trucíos and Taylor confirmed that the DCC-GARCH model improves VaR
prediction performance by 5% compared to the GAS model [3], suggesting that introducing a
dynamic scoring mechanism or a more flexible heteroskedastic structure may improve predictions.
This also consistent with Sözen's findings on the differences in applicability between the Threshold
Generalized Autoregressive Conditional Heteroskedasticity (TGARCH) and EGARCH models
across different currencies. Addtionally, Wu and Yueh employed the Lévy-GJR-GARCH model to
examine jump and skewness effects in return distributions, it concluded that the choice of innovation
distribution significantly impacts the predictive accuracy of VaR and ES [8]. Building upon this
foundation, Ahelegbey and Giudici introduced the Extreme Downside Hedging (EDH) and Extreme
Downside Correlation (EDC) metrics. Their findings revealed that BTC acts as a risk 'exporter’
while Ethereum functions as a risk 'absorber’. Thus illuminating the directionality of risk contagion
from a network perspective [9]. Furthermore, Zhou et al. constructed a multi-scale graph neural
network framework for predicting cryptocurrency volatility and had discovered that deep learning
models could significantly enhance forecasting accuracy [10]. Overall, these studies demonstrate
that both advanced econometric models and emerging machine learning approaches play a
significant role in improving cryptocurrency volatility modelling and tail risk assessment.

5. Conclusion

This study aims to assess the effectiveness of the GJR-GARCH-std and GJR-GARCH-EVT models
in predicting tail risk for Bitcoin and Ethereum by comparing them.

Contrary to theoretical expectations, the empirical findings of this study indicated that the
advanced risk models examined exhibit significant limitations in cryptocurrency markets. The core
conclusion of the study is that, during the backtesting period, neither model provided reliable risk
forecasting, primarily manifested as a systematic underestimation of Value at Risk (VaR).
Furthermore, research has found that even when incorporating Extreme Value Theory (EVT) to
adjust for tail risks, the predictive performance of the model did not see any substantial
improvement. Subsequent phased backtesting further revealed that the model's failure mode
exhibited instability. Its predictive bias oscillating between underestimating and overestimating risk
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across different periods. The findings reveal the difficulties in directly applying mainstream risk
models, such as GARCH-EVT, to cryptocurrency risk management. The contribution of this study
lies in empirically delineating the failure boundaries of such models in emerging markets. This
cautionary conclusion underscores that rigorous, multi-dimensional backtesting validation is
indispensable before deploying any risk model in practical application. Future research directions
should include models capable of capturing structural breaks in the market, such as Markov-
switching GARCH models, as well as exploring dynamic threshold selection methods.
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