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Abstract. This study develops a comprehensive framework for evaluating volatility trading
strategies in crypto-proxy option markets under realistic market conditions. A high-fidelity
backtesting environment is constructed that explicitly incorporates commissions, bid–ask
spreads, slippage, and liquidity limits, ensuring that reported performance metrics reflect
true implementable outcomes rather than theoretical gains. The methodological progression
begins with a simple slope-based trading rule and extends to generalized machine learning
classifiers and reinforcement learning agents. Empirical results demonstrate that the baseline
heuristic and universal machine learning models quickly lose profitability once realistic
frictions are introduced, highlighting the fragility of universal alpha in frictional markets. By
contrast, sector-specific approaches uncover conditional profitability that remains robust
under practical constraints. In particular, XGBoost yields positive returns in Bitcoin spot
exchange-traded funds, while reinforcement learning agents generate consistent gains in
mining and semiconductor sectors. These results collectively support a conditional
efficiency paradigm, whereby market inefficiencies are not broad-based but localized,
context-dependent, and exploitable only through specialized, adaptive modeling techniques.
The framework thus contributes to both academic research and practical trading strategy
design, offering insights into how algorithmic trading in emerging digital asset markets must
evolve to remain viable in the presence of persistent market frictions.
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1. Introduction

The rise of cryptocurrency-linked exchange-traded products has created a complex ecosystem of
“crypto-proxies,” including Bitcoin spot and futures ETFs, mining corporations, and technology
firms with digital asset exposure. These instruments exhibit high volatility and sentiment sensitivity
but also face wide bid–ask spreads and liquidity constraints, raising doubts about the feasibility of
volatility-based strategies.

Extensive research has examined the predictive content of the implied volatility surface, focusing
on term structure slope and skewness [1,2]. However, many anomalies collapse once trading
frictions are included [3]. This tension is particularly relevant in emerging crypto-proxy markets,
where frictions are more severe than in established asset classes.
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This study develops a high-fidelity backtesting framework that embeds commissions, spreads,
slippage, and liquidity limits into performance evaluation. Three paradigms are tested: a slope-based
rule, machine learning classifiers, and reinforcement learning agents. Results show that the baseline
strategy fails under costs, generalized machine learning models cannot overcome heterogeneity, and
conditional alpha appears only in sector-specific contexts. XGBoost achieves profitability in Bitcoin
spot ETFs, while reinforcement learning succeeds in mining and semiconductor sectors.

The contribution is both methodological and empirical: embedding frictions ensures credible
evaluation, and the findings support a conditional efficiency paradigm, where inefficiencies exist but
only in localized, structurally specific markets [4].

2. Data and methodology

2.1. Data and asset universe

The analysis uses 14 U.S.-listed optionable assets with material cryptocurrency exposure, including
Bitcoin spot ETFs, futures ETFs, mining corporations, exchanges, and semiconductors as a control
group. This classification reflects the hypothesis that predictability is conditional on sectoral drivers.
End-of-day option chain data provide implied volatility and trading activity measures, consistent
with established practices in option pricing research [5].

2.2. Feature engineering

Four features summarize the volatility surface: the at-the-money implied volatility of the nearest
maturity, the slope of the term structure, the skew between out-of-the-money calls and puts, and
volume-based metrics. Skewness, often linked to net buying pressure, has been shown to influence
option demand [6]. Together, these features capture structural and behavioral aspects of option
markets. Figures 1 and 2 illustrate the temporal dynamics and correlations among features.

Figure 1. Temporal dynamics of volatility surface features across sectors
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Figure 2. Correlation structure of volatility surface features

2.3. Backtesting framework

The backtesting engine simulates one-day straddle trades with liquidation at the next close. Net
return is defined as:

(1)

Transaction costs include commissions, spreads, and slippage:

(2)

Liquidity constraints cap trade sizes at a fraction of daily volume, ensuring institutional
feasibility.

2.4. Modeling approaches

Rule-based strategy. The baseline model trades on the slope signal, formally introduced in the results
section.

Machine learning. XGBoost and multilayer perceptrons are trained to predict the sign of next-day
changes in implied volatility. Following best practices in empirical asset pricing via machine
learning [7], the binary cross-entropy loss is minimized:

(3)

Feature importance results are reported in Figure 3.

rt =
PnLt,net

Pt−1

C(N ,P) = (4 ⋅ N ⋅ Cfee) + (2 ⋅ N ⋅ P ⋅ M) ⋅ (βspread + δslippage)

L(y, p̂) = − 1
N ∑N

i=1[yilog(p̂ i) + (1 − yi)log(1 − p̂ i)]
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Figure 3. Feature importance rankings from sector-specific XGBoost models

Reinforcement learning. Sector-specific deep Q-networks are deployed, reflecting the suitability
of RL for sequential policies in volatile markets [8]. The reward function is detailed in the results
section.

3. Empirical results and analysis

3.1. Baseline strategy

The baseline strategy tests whether the slope of the implied volatility term structure provides
tradable alpha. The rule is defined as:

(4)

Applied across all sectors, the strategy produces negative Sharpe ratios and persistent drawdowns
once costs are considered. Figure 4 shows cumulative equity curves, where the baseline consistently
underperforms. This confirms that slope-based rules, often profitable in frictionless tests, collapse
under realistic frictions [1, 3].

Figure 4. Cumulative equity curve comparison across strategies

Signalt = sign(Slopet)
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3.2. Machine learning models

Generalized XGBoost and multilayer perceptron models fail to deliver profitability across the
heterogeneous asset universe. This supports the view that predictive relationships in option surfaces
are not universal [7].

Sector-specific training, however, reveals conditional alpha. For Bitcoin spot ETFs, an XGBoost
classifier generates positive risk-adjusted returns, robust to transaction costs. Feature importance
analysis (Figure 3) highlights slope and skew as dominant drivers in ETFs, while equities rely more
on volume metrics. In mining and exchange sectors, results remain unprofitable, reinforcing the
conditional nature of alpha.

3.3. Reinforcement learning models

Reinforcement learning agents, implemented as deep Q-networks, show superior performance in
sectors with path-dependent volatility dynamics. The reward function guiding training is:

(5)

where at​∈{0,1,2} represents short, neutral, or long exposure.
Results indicate Sharpe ratios above unity for mining and semiconductor sectors, even after costs,

as summarized in Figure 5. Performance in Bitcoin spot ETFs is weaker, reflecting that sequential
adaptation adds limited value in markets dominated by direct underlying volatility. These outcomes
align with advances in deep reinforcement learning, which highlight its ability to uncover sequential
policies [8].

Figure 5. Performance metrics summary for baseline, ML, and RL models

3.4. Interpretation

The results yield three key insights. First, the slope-based baseline fails comprehensively, rejecting
its value as a universal alpha factor. Second, machine learning confirms that volatility surface
features only have predictive power in select sectors, supporting the conditional efficiency view [9].
Third, reinforcement learning agents succeed where static models do not, particularly in markets
shaped by complex, path-dependent dynamics.

Overall, the evidence demonstrates that alpha in crypto-proxy markets is both fragile and
conditional. Inefficiencies persist, but only in specific institutional and structural contexts, and can
be exploited only through specialized, context-aware modeling.

4. Discussion

The findings highlight the fragility of volatility-based strategies under realistic frictions. The slope
of the implied volatility term structure, though long studied, fails to yield tradable alpha once

rt+1 = (at − 1) ⋅ ΔIVt+1
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transaction costs and liquidity limits are considered. This outcome mirrors earlier evidence that
theoretical option models often diverge from empirical performance [5].

Volatility surface features such as skew further illustrate conditionality. While skew has been
linked to order flow imbalances and net buying pressure, its predictive power is evident only in
Bitcoin spot ETFs, where volatility directly reflects cryptocurrency demand [6]. In mining and
exchange sectors, skew loses relevance amid stronger idiosyncratic influences.

The weak performance of generalized machine learning models supports the critique of universal
predictors [10]. By contrast, sector-specific models succeed by tailoring weights to structural
contexts, consistent with evidence that empirical asset pricing via machine learning requires careful
specialization [7].

Reinforcement learning agents achieve the most robust results, uncovering sequential policies in
mining and semiconductor assets. This aligns with advances in deep reinforcement learning, which
emphasize adaptability to path-dependent dynamics [8].

Taken together, the results reinforce a conditional efficiency paradigm: inefficiencies exist, but
only in local, sector-specific contexts, demanding rigorous backtesting and adaptive modeling for
credible exploitation [4].

5. Conclusion

This study introduced a methodological framework for evaluating volatility trading strategies in
crypto-proxy markets under realistic conditions. By embedding commissions, spreads, slippage, and
liquidity constraints into a high-fidelity backtesting engine, the framework ensures that reported
returns reflect implementable performance rather than artifacts of frictionless models.

The evidence delivers three key conclusions. First, the slope of the volatility term structure,
though widely cited, fails to generate positive risk-adjusted returns once frictions are considered,
echoing concerns over the fragility of simple strategies. Second, generalized machine learning
models cannot overcome costs when trained across heterogeneous assets, consistent with warnings
about the limitations of universal predictors. Third, conditional alpha emerges when models are
specialized: XGBoost identifies profitability in Bitcoin spot ETFs, while reinforcement learning
agents, aligned with advances in sequential decision-making, succeed in mining and semiconductor
sectors.

These results support a conditional efficiency paradigm, where inefficiencies persist but only
within particular institutional and structural contexts. Volatility features such as slope and skew
provide value selectively, and their effectiveness is shaped by market frictions and structural
dynamics.

Methodologically, the study demonstrates the necessity of friction-adjusted backtesting for
credible evaluation. Empirically, it shows that sustainable alpha requires sectoral specialization and
adaptive modeling rather than reliance on universal trading rules.

Future research should extend the feature set and explore advanced reinforcement learning
architectures, but the main lesson is clear: alpha in crypto-proxy markets is conditional, localized,
and accessible only through rigorous, context-aware approaches.
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