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Abstract. Delta hedging is a fundamental strategy in options risk management, relying on
continuous adjustment of a replicating portfolio to eliminate risk. However, real markets
exhibit features such as stochastic volatility and jumps that violate the assumptions of the
Black–Scholes model, rendering perfect replication impossible and the market incomplete.
In such cases, hedging can only reduce risk at best, and frequent rebalancing incurs
significant transaction costs. This article investigates discrete delta hedging under stochastic
volatility and jump-diffusion dynamics, quantifying the trade-off between hedging cost and
risk reduction via Monte Carlo simulation. We construct a cost–risk frontier, analogous to an
efficient frontier, that shows the minimal achievable risk for a given cost (and vice versa).
The results demonstrate that increasing the hedge frequency (trading more often) generally
lowers the variance of hedging errors but at a rapidly diminishing rate and with higher
accumulated costs. Even with very frequent rebalancing, a residual risk remains due to
jumps and unhedgeable volatility fluctuations. We discuss how this frontier can inform
optimal hedging policies, balancing transaction costs against risk appetite, and we compare
our findings with prior theoretical and empirical studies.

Keywords: Stochastic Volatility, Transaction Costs, Jump-Diffusion.

1. Introduction

In their seminal work, Black and Scholes showed that under certain idealized conditions (constant
volatility, frictionless trading, continuous time), an option’s payoff can be perfectly replicated by
continuously adjusting a portfolio of the underlying asset and risk-free asset [1]. This continuous
delta hedging strategy leads to a riskless portfolio and yields the celebrated Black–Scholes option
pricing formula. Merton extended this theory, and together they demonstrated that, if the model
assumptions hold, the cost of hedging an option (i.e., the initial option premium) equals the option’s
arbitrage-free price [2]. The necessary conditions for perfect hedging include a single source of
uncertainty (the underlying’s price following a geometric Brownian motion with constant volatility)
and no market frictions. Under these conditions, the market is complete and admits a unique risk-
neutral pricing measure.

However, financial markets in reality violate several Black–Scholes assumptions. Two important
deviations are stochastic volatility and jump discontinuities in asset prices. Empirical evidence
shows that asset return distributions exhibit excess kurtosis (fat tails) relative to the lognormal, and
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volatility is time-varying and stochastic. To address these phenomena, more complex models have
been developed. Notably, jump–diffusion models introduce sudden price jumps [2], and continuous-
time stochastic volatility models introduce additional randomness in volatility [3]. These richer
models can better fit market option price patterns such as implied volatility skews and smiles.
However, they also make the market incomplete – there are now multiple sources of uncertainty
(e.g. a volatility factor or jump shocks) but only one primary asset available for hedging. In an
incomplete market, a contingent claim cannot be perfectly hedged using only the underlying asset.
As a result, there is no unique arbitrage-free price; instead, a continuum of fair prices exists, and
hedging strategies can only minimize risk rather than eliminate it.

Practitioners have responded to incompleteness in various ways. One approach is to augment the
hedging portfolio with additional instruments—for example, using traded options to hedge jump risk
or volatility risk in addition to the underlying stock. It has been shown that holding a short-term
option in the hedge portfolio can significantly mitigate jump-induced losses [4]. Such multi-
instrument hedging can, in theory, restore completeness if a sufficient set of contingent claims is
available (e.g. using a vanilla option to hedge Vega exposure in an SV model). Another approach is
to accept that some risk is unhedgeable and to seek an optimal hedge that balances risk and cost.
Strategies like mean-variance hedging and quadratic risk minimization explicitly choose the hedge
ratio that minimizes the variance of the hedging error, rather than using the Black–Scholes delta.
These optimal hedge ratios generally differ from Black–Scholes delta and do not fully eliminate
risk, but they minimize it under a given criterion.

Even setting aside model incompleteness, discrete-time hedging (in contrast to continuous
rebalancing) introduces additional imperfection. In practice, hedging adjustments occur at finite
intervals (e.g., daily) rather than continuously. Studies have examined the discretization error
associated with infrequent rebalancing [5-7]. They found that discretely rebalanced hedges lead to a
distribution of final hedging costs or errors, rather than a single deterministic cost equal to the
option’s price. In a Black–Scholes world (no jumps, constant vol), the average outcome of a high-
frequency discrete hedge still equals the Black–Scholes price, but there is appreciable variance
around this mean cost. This variance grows as the rebalancing interval lengthens (i.e. hedging less
frequently), and it represents the residual risk of a discrete hedge.

Another crucial consideration is transaction costs. Continuous hedging is infeasible and would
imply infinite trading costs under frictions. Even a very small proportional cost per trade can
drastically alter hedging strategy and option pricing [6]. Frequent trading becomes expensive,
prompting the question of an optimal rebalancing frequency that balances risk reduction against
cost. Modified option-pricing equations under transaction costs have been derived, effectively
widening the no-arbitrage bounds to account for the cost–risk trade-off [8, 9]. In general, with
transaction costs present, hedging strategies that are too aggressive (trading on every tiny price
move) may over-hedge, spending more on transactions than the incremental risk reduction is worth.
On the other hand, hedging too infrequently leaves substantial risk. Thus, there is an intuitive trade-
off between cost and risk in choosing a hedging policy.

In an incomplete market setting with jumps or SV (or both) and with transaction costs, the
problem becomes finding a strategy that optimally compromises between risk and cost. Recent
research has addressed this problem from various angles. For instance, stochastic control and model
predictive control approaches have been applied to hedging with cost penalization, yielding a
Pareto-optimal frontier of strategies [10]. More directly, “restricted but optimal” delta hedging under
scenarios including jumps, stochastic volatility, and transaction costs has been investigated [7]. In
his analysis, the hedge is only adjusted at discrete intervals and can incorporate realistic costs; the
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optimal strategy is one that minimizes a combination of hedging error variance and cost. Such
studies confirm that incorporating jumps and volatility risk leads to a non-zero minimum attainable
risk – even the best strategy cannot eliminate risk completely, because some sources of uncertainty
remain unhedged. They also underscore that the relationship between how often one hedges and the
resulting cost and risk is nonlinear: beyond a certain point, more frequent hedging yields only
marginal risk reduction but incurs significantly higher costs.

This paper contributes to the literature by explicitly quantifying the cost–risk frontier for discrete
delta hedging in a model that includes both stochastic volatility and jumps. It uses Monte Carlo
simulation to evaluate hedging performance across a range of rebalancing frequencies, from very
frequent (approaching continuous) to very sparse. For each frequency, it computes the expected
transaction cost incurred and the residual risk (measured by the standard deviation of final hedging
P&L). Plotting these as a trade-off curve yields the frontier: strategies on the frontier are Pareto-
optimal in the sense that you cannot reduce risk without increasing cost, or reduce cost without
increasing risk. This provides a concrete illustration of the principle that “there is no free lunch” in
incomplete markets – any reduction in risk must be paid for, either via higher cost or via accepting
some other form of risk.

The remainder of the paper is organized as follows. In Section 2, it describes the market model
(stochastic volatility with jumps) and the discrete delta hedging strategy, including how we
incorporate transaction costs. Section 3 details the Monte Carlo simulation approach and parameter
choices. In Section 4, it presents the results, including the cost–risk frontier chart obtained and
discussion of its shape. Section 5 concludes with insights on practical hedging policy implications
and potential extensions of this work.

2. Model and methodology

Underlying Asset Dynamics: It assumes the underlying asset St follows a stochastic volatility jump-
diffusion process. Specifically, we adopt a variant of the Bates model [11]. Under the risk-neutral
measure, the dynamics are:

•  Stochastic volatility:  , where      is the instantaneous
variance,     is the mean-reversion rate, theta the long-run mean variance,   vol-of-vol, and    a
Wiener process. This is the Heston SV model for volatility. We assume the Feller condition for    
to stay positive. The correlation between the volatility shock     and the asset price shock    
is     (which may be zero or negative as commonly estimated in equity markets).

•  Jump component: In addition to the diffusive price shock, we include jumps via a Poisson
process with intensity (jumps per year). When a jump occurs, the asset price experiences a
multiplicative jump  , where     is a random jump size (we assume   , i.e., log-
normal jumps). Thus,     satisfies:

(1)

where      is the risk-free rate. We choose     such that      under the risk-neutral
measure (so on average jumps do not drift the price), and      controls jump volatility. Jumps
arriving with intensity      make the price process exhibit sudden discontinuities, contributing to
heavier tails and skewness in returns.

This model incorporates two independent risk factors: the Brownian diffusive risk (with
stochastic variance) and the jump risk. With only the underlying stock available to trade (and
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perhaps a money market account), the market is incomplete. There is no trading strategy in    
alone that can hedge a derivative perfectly, even with continuous trading. Intuitively, continuous
delta-hedging can neutralize the instantaneous diffusion risk (the      term) but cannot foresee
jumps — any jump will cause a discontinuous change in S that leads to a hedging error. Likewise,
unpredictable changes in volatility     will alter the option’s value in ways that cannot be offset by
just trading      This inherent limitation means a delta-hedged portfolio will still exhibit random
P&L fluctuations.

Option and Hedging Setup: For concreteness, we consider hedging a short position in a European
call option on      (strike     , maturity   ). The initial option premium (theoretical fair price) is
denoted C₀. In our risk-neutral simulation,  is computed as the expected discounted payoff 

. At time 0, the hedger sells the call for and begins a delta-hedging strategy.
The strategy is discrete delta hedging, meaning we choose a sequence of rebalancing times

   at which the hedge ratio is updated. Between these times, the
holdings are fixed. At each hedge time   , we set the position in the underlying stock to  ,
where  is an estimate of the option’s delta (sensitivity to  ). In a complete-market setting, the
ideal delta would be the partial derivative    given the model. In our setting, one could use the
theoretical delta from a model (if available in closed form via Heston's formula or simulation). For
simplicity, we use an approximate delta given by the Black–Scholes formula, but updated at each
time with the current observed volatility level. Specifically, we compute:

(2)

where N(·) is the standard normal CDF (the Black–Scholes delta for a call), and 

,

with    interpreted as the current volatility and     the remaining time. This
approach effectively treats the local volatility as    and computes a Black–Scholes delta
with that volatility. While not exact (since the true optimal delta in stochastic volatility differs), this
mimics common practice where traders update greeks based on current implied or local volatilities.
It also ensures  evolves in a plausible manner between 0 and 1 depending on moneyness and
time. At maturity, we do not rebalance (the option payoff is realized).

Trading Costs: Each time the hedge is adjusted, the change in the stock position incurs a
transaction cost. We assume a simple proportional cost model: whenever    is changed, the trader
pays a cost equal to a fraction     of the dollar value of stock traded. For example, if at time   the
position was    and at     the new target is   , and the stock price at    is , then:

(3)

This can represent a bid–ask spread or commission. In our simulations, we take a modest    
(e.g., 0.1% per trade), but accumulated over many trades this can meaningfully erode profits. The
presence of transaction costs discourages extremely frequent rebalancing — the incremental risk
reduction from an extra rebalance must be weighed against the certain cost incurred.

Hedging P&L: The performance of the hedging strategy is evaluated by the profit-and-loss (P&L)
at option expiration. We track the replicating portfolio consisting of shares of stock and a cash
account (financing the stock purchases or generated from stock sales). Starting with initial cash
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(from selling the option) and shares, the portfolio is rebalanced at each . Between hedges, the
stock holding  grows in value as     moves, and the cash earns interest at rate (here we set  
   low or zero for simplicity). At     , we adjust the stock holding by     , and the cash
account changes by the negative of the stock trade plus the transaction cost. At     , the short call
position is settled by paying the payoff   to the option holder. The hedging error (final
P&L) is:

(4)

If   , the hedge perfectly replicated the payoff;    indicates a profit for the hedger (the
strategy over-hedged), and     a loss (under-hedged). In an ideal frictionless complete-market
world, we would have    deterministically for the correct strategy. In our incomplete, discrete,
costly setting,   is a random variable. We focus on its mean and standard deviation as key metrics.
The mean    represents any systematic bias (which in our case comes mostly from transaction
costs — we expect  , i.e., an average loss equal to the total cost paid by the hedger, since
the initial option price was fair). The standard deviation     measures the risk — the volatility of
the hedging outcome. A well-chosen hedge will have a small     , indicating outcomes tightly
clustered around the mean (ideally around zero or a small negative cost). We will use      as our
metric of residual risk, and the average transaction cost    as our cost measure
(since any shortfall in P&L for the hedger is essentially the cost expended, assuming zero drift under
risk-neutral pricing).

3. Simulation and implementation

To investigate the cost–risk trade-off, we perform a Monte Carlo simulation for various hedging
frequencies, and the corresponding results are shown in Table 1. It fixes a set of model parameters
for illustration: an initial stock price , option strike   (at-the-money), maturity 

year. Volatility starts at      (so 20% initial vol). It chooses Heston parameters 
,  ,  , and correlation   (uncorrelated for simplicity). Jump parameters

are (on average one jump per year),   (so about 25% jump size volatility), and  
  (approximately −0.03125) to ensure mean jump size is 1 (no drift). The transaction

cost rate is set to    (0.1% of traded value each hedge).

Table 1. Delta hedging frequency and rebalancing intervals

Hedging frequency    (interval) Notes

Daily hedging    day ~252 hedges per year; effectively as often as trading days allow.
Weekly hedging    days
Monthly hedging    days
Quarterly hedging     days

Semi-annual hedging    days

Annual hedging No interim adjustments; only set initial hedge and hold to expiration.
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For each strategy, it simulates a large number of price paths (on the order of 50,000 or more) to
accurately estimate the distribution of P&L. Each path is generated by discretizing the SDEs for    
and     on a daily time grid (   ). We use an Euler discretization for the volatility process
and incorporate jumps by a simple Poisson sampling each day (if a jump occurs during a day, we
multiply      by the jump factor     ). The delta hedge is applied by sampling the state at the
designated hedge times and rebalancing accordingly.

The entire simulation and analysis were implemented in MATLAB. Figure 1 reports the cost–risk
frontier generated by our Monte Carlo engine for the parameter set described in the Model and
Methodology section. The algorithm simulates Bates dynamics (Heston stochastic volatility with
Merton-type jumps) on a daily grid, applies discrete delta hedging at the stated rebalancing intervals
with proportional transaction costs, and records terminal hedging P&L across simulated paths. For
reproducibility, it initializes the MATLAB random number generator to a fixed state (seed 123456,
twister stream). The fully annotated script and run instructions are provided in the Supplementary
Material (and mirrored at the public repository listed in “Data and Code Availability”).

Figure 1. Cost-risk frontier for discrete delta hedging

The simulation evolves price and variance path-by-path and computes the P&L for each hedging
frequency; we use     paths for the final estimates to control Monte Carlo error. Mean transaction
cost and the standard deviation of the hedging P&L are computed for each frequency, and the
resulting pairs are plotted in Figure 1 to form the empirical cost–risk frontier. To improve efficiency
and comparability across frequencies, we employ vectorization and common random numbers;
Figure 1 was exported from MATLAB in vector format for publication quality.

4. Results and discussion

As Figure 1 shows, Monte Carlo estimated cost–risk frontier for discrete delta hedging under
stochastic volatility and jumps. The x-axis is the risk (standard deviation of hedging P&L) and the y-
axis is the cost (average total transaction costs incurred). Each labeled point corresponds to a
different hedging frequency (e.g. daily, weekly, monthly, etc.). The curve illustrates the trade-off:
achieving lower risk requires higher cost. Notably, the frontier is nonlinear, showing diminishing
risk reduction returns for increasing cost.

The cost–risk frontier obtained from the simulation is shown in Figure 1. Each point on the plot
represents one hedging strategy parameterized by rebalancing frequency. The rightmost point
(highest risk, lowest cost) corresponds to a buy-and-hold strategy with essentially no rebalancing (in
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our case, an initial delta hedge set at      and never adjusted, which is analogous to annual
hedging for a 1-year option). The leftmost point (lowest risk, highest cost) corresponds to daily
hedging. As expected, more frequent hedging moves the outcome towards lower risk: the standard
deviation of P&L for daily hedging is substantially smaller than for monthly or quarterly hedging.
Meanwhile, the cumulative transaction costs for daily hedging are much higher than for infrequent
hedging.

Here the frontier delivers four big takeaways. First, even very frequent rebalancing cannot
eliminate risk: jumps (gap risk) and stochastic volatility (unspanned vega risk) leave an irreducible
hedging error when you hedge only with the underlying. Second, increasing hedge frequency
exhibits strong diminishing returns—moving from very infrequent to moderate rebalancing slashes
risk, but beyond that the curve flattens and extra trades mostly buy small variance reductions. Third,
transaction costs reshape the optimum: because every adjustment burns cash and adds cost
variability, extremely frequent hedging can raise total risk after costs; the efficient choice is an
interior cadence on the flat part of the frontier where the marginal risk reduction roughly equals the
marginal cost. Fourth, the mean P&L is negative across strategies, effectively matching average
transaction costs, so delta hedging behaves like paying an insurance premium to compress tails
rather than a profit center.

Managerially, the slope of the frontier at a candidate cadence is the “price of risk reduction.”
Choose the frequency where that price aligns with risk appetite or capital constraints. Parameter
shifts move the whole curve: more frequent/larger jumps or higher vol-of-vol push it right (more
residual risk), while higher trading frictions push it up (greater cost). Thus, a jumpier asset or wider
spreads warrant less aggressive rebalancing; quieter markets with tight spreads can justify more. If
deeper risk cuts are required, adding a second instrument (e.g., a short-dated option for vega/jump
exposure) doesn’t change the trade-off logic but can shift the entire frontier inward, achieving lower
risk for the same cost.

Overall, the cost–risk frontier quantifies the intuitive idea that you can buy reduced risk by
paying higher transaction cost. Each point on the frontier could be seen as an efficient hedging
strategy for a particular risk tolerance: a risk-averse hedger might choose a high-frequency, high-
cost strategy to minimize variance, whereas a cost-sensitive (or less risk-averse) hedger might accept
more risk in exchange for lower costs.

It is important to note that the exact shape and numbers on the frontier will depend on model
parameters (volatility of volatility, jump intensity, etc.) and on the option’s characteristics (maturity,
strike). For instance, a higher jump intensity     or larger jump size     would increase the residual
risk for all strategies (shifting the frontier rightwards – more risk) because jumps are harder to
hedge. A higher transaction cost rate     would make the high-frequency strategies even more costly
(shifting the frontier upwards – more cost). The frontier we present is thus illustrative, but the
methodology can be applied to specific situations to determine an appropriate hedging frequency or
to estimate the efficient frontier for that scenario.

Our findings are consistent with previous analytical results in the literature. As Merton (1976)
pointed out, in a jump-diffusion setting a delta-hedged portfolio will still experience jumps in value
leading to losses. Our simulation shows those losses manifest as a baseline level of risk that cannot
be diversified away by faster trading. Similarly, the transaction cost effects we observe align with
Leland’s theory that effective volatility is increased by transaction costs – in other words, the
presence of costs makes it as if the option is riskier, because one cannot chase the deltas as closely.
What we see in the frontier’s flattening is essentially that phenomenon: beyond a point, increasing
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hedge frequency yields minimal risk reduction because effectively the strategy is “running in place”
– incurring costs to shave off ever smaller risk components.

One interesting aspect worth discussing is that in our simulation we used a simple Black–Scholes
delta estimate. One could ask: would using a more optimal delta (for example, the mean-variance
optimal hedge ratio given the model) improve the trade-off? Potentially yes – an optimal strategy
could achieve a lower variance for the same cost. In that case, our frontier would shift towards the
origin (improvement). However, the general shape would remain – there would still be a convex,
diminishing-return curve. Our focus here was on delta hedging as it is a common baseline. Future
work could incorporate optimal hedging rules or non-linear instruments to see how the frontier shifts
(for example, adding a second instrument like a short-term put might allow further risk reduction,
effectively pushing the frontier downward at the low-risk end by completing more of the market).

We also note that the distribution of hedging P&L (not just its variance) is of interest. In our
simulation, the unhedged position (short call without any hedge) would have a very dispersed P&L
distribution, effectively the negative of the call’s payoff distribution. Hedging narrows this
distribution. We observed that with daily hedging, the P&L distribution becomes more concentrated
around a small loss (the cost), whereas with monthly hedging the distribution is wider. Hedging
particularly trims the extreme tail outcomes – for example, scenarios where the stock price
skyrockets at expiration (which would be a huge loss for an unhedged short call) are substantially
mitigated by delta hedging, since the hedger would have acquired a lot of stock in those scenarios.
However, jump risk implies that a sudden large move just before a hedge adjustment can still
produce a significant loss. This highlights that while delta hedging addresses continuous price risk
effectively, it is less effective for gap risk. In practice, risk managers often complement delta
hedging with other tools (like stop-loss rules or options positions) to handle jump risk.

5. Conclusion

Here we examined discrete-time delta hedging in an equity market with stochastic volatility and
jumps, using Monte Carlo simulation to map the trade-off between hedging cost and residual risk.
Unlike the idealized Black–Scholes setting—where continuous rebalancing with constant volatility
yields exact replication—the presence of volatility randomness and discontinuous price jumps
makes the market intrinsically incomplete. Even with very frequent rebalancing, a nontrivial,
irreducible variance of the hedging error persists because trading the underlying alone cannot span
volatility and jump risks. Discreteness compounds this limitation: in a Black–Scholes world,
discrete hedging produces a distribution of replication outcomes with zero mean and nonzero
variance; in our richer setting, proportional transaction costs push the mean outcome negative while
leaving a wider dispersion of P&L. As trading frequency increases, variance typically falls, but at a
diminishing rate, while costs climb quickly; beyond moderate frequencies, additional rebalancing
primarily purchases marginal risk reduction at disproportionate expense. The resulting cost–risk
frontier makes this trade-off explicit, tracing the Pareto set of efficient strategies from low-cost/high-
risk to high-cost/low-risk. This frontier offers a practical decision tool: risk managers can select a
rebalancing cadence consistent with their risk appetite and cost budget, or assess whether a targeted
variance reduction justifies the incremental transaction cost. The framework is readily extensible.
The same simulation engine can be adapted to different maturities and strikes, to alternative
instruments (e.g., American-style contracts, bearing in mind early-exercise complexity), and to
multi-asset portfolios where cross-greeks matter. Likewise, the risk axis need not be the standard
deviation of hedging P&L; Value-at-Risk or Expected Shortfall can be substituted to produce
frontiers aligned with regulatory or internal risk metrics. Overall, our findings formalize a central
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practical insight: in incomplete markets with frictions, hedging precision is bought—not assumed—
and the efficient purchase happens along a quantifiable cost–risk frontier.

In practice, traders often use a mix of strategies to manage risks from jumps and volatility. This
might include holding residual positions in options (vega hedges or jump hedges), or structuring
trades such that extreme moves are limited (through stop-loss orders). Those approaches lie outside
the scope of pure delta hedging and were not addressed here. However, the framework we developed
could be expanded to include multiple instruments – effectively, that would likely shift the cost–risk
frontier downward (achieving lower risk for a given cost) by enlarging the hedger’s toolkit.

In summary, discrete delta hedging in an incomplete market comes with an inherent inefficiency
– it cannot eliminate risk, and whatever risk remains can only be curtailed at a proportional cost.
Understanding this cost–risk frontier is crucial for realistic expectations of hedging performance and
for making informed decisions about hedging strategies. Our results underscore the importance of
calibrating hedging frequency and trades to a firm’s risk tolerance and cost constraints, an insight
that is valuable for both option market-makers and end-users employing dynamic hedging for risk
management.
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