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Abstract.  This paper compares three forecasting approaches-autoregressive integrated
moving average (ARIMA), multivariate linear regression (MLR), and long short-term
memory networks (LSTM)-for daily stock prices of Starbucks (SBUX) and Luckin Coffee
(LKNCY). Trading calendars are aligned across tickers, missing observations are forward-
filled, and technical indicators are engineered (log returns and lags, SMA/EMA, RSI, and
volume change). A chronological split (80% train, 20% test) prevents look-ahead bias.
Performance is evaluated using RMSE, MAE, and MAPE; Diebold-Mariano (DM) tests
assess pairwise differences in forecast errors. On LKNCY, MLR attains the lowest error
(RMSE 0.891; MAPE 2.74%), outperforming a baseline ARIMA (RMSE 7.155) and a
univariate LSTM trained on prices with min-max scaling (RMSE 6.849). Results on SBUX
show the same ranking. Diebold-Mariano tests show no statistically significant difference
between LSTM and ARIMA forecast errors (SBUX: p=0.52; LKNCY: p=0.70). Diagnostics
further indicate that, during downtrends, the price-target LSTM drifts toward the lower
bound of the training range, a pattern consistent with sensitivity to scaling and distributional
shift. To mitigate this issue, a robustness variant is introduced that predicts next-period log-
returns using z-score standardization with a multi-layer LSTM. Taken together, the results
emphasize the short-horizon strength of simple linear baselines and the central role of target
choice, scaling, and evaluation protocol in financial time-series forecasting.
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1.  Introduction

Stock price prediction occupies a central place in financial economics and quantitative investing
because near-term forecasts inform portfolio allocation, risk control, and corporate planning [1-3].
Daily equity series, however, are among the most challenging time series to model, as they are
noisy, display volatility clustering, and experience structural breaks, resulting in model performance
that can vary substantially across market regimes [2-3]. Within this context, applied work commonly
confronts a choice among three modeling paradigms that encode different assumptions about
dynamics and signal exploitation: ARIMA, multiple linear regression (MLR), and long short-term
memory (LSTM) networks [4-7].
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ARIMA captures persistence via differencing and low-order autoregressive/moving-average
terms, offering a parsimonious and interpretable baseline when dependencies are short-lived and
approximate stationarity holds [1,3]. MLR relates next-period price or return to observable
covariates-lags of returns, moving-average signals, relative strength, and volume dynamics-yielding
a transparent, factor-style specification that is amenable to auditing and stress testing [2,4].

LSTM, a gated recurrent architecture, addresses vanishing/exploding gradients and is capable of
learning nonlinear interactions and long-range dependencies from sequences; empirical applications
and surveys report strong performance when data volume is adequate, targets and scaling are chosen
well, and horizons are sufficiently long to leverage its capacity [5-7]. Because these families rest on
different statistical and algorithmic premises, direct comparison under a single pipeline is necessary
for conclusions that generalize beyond a single asset or study.

In much of the applied literature, however, reported results are difficult to compare because
preprocessing and evaluation protocols differ-for example, trading calendars are not aligned, gaps
are handled inconsistently, targets alternate between prices and returns, and splits mix chronological
and random partitions. Such heterogeneity blurs cross-model takeaways. Moreover, claims about
superior accuracy should be corroborated by tests of predictive-accuracy differences, such as the
Diebold-Mariano test [8]. Evidence from large-scale forecasting evaluations further shows that well-
tuned statistical baselines and simple combinations can be highly competitive on short horizons with
limited features [9]. For reproducibility and independent verification, widely used tooling, e.g., the
forecast package for ARIMA in R, facilitates transparent model specification and replication [1,10].

This study conducts an apples-to-apples comparison of ARIMA, MLR, and LSTM on two
contrasting equities: Starbucks (SBUX), a mature multinational with a long trading history, and
Luckin Coffee (LKNCY), a younger, more volatile issuer. Trading calendars are aligned across
tickers, occasional gaps are forward-filled, and feature engineering is standardized (log-returns and
lags, SMA/EMA, RSI, and volume-change proxies).

A strictly chronological split (80% train, 20% test) helps avoid look-ahead bias, and performance
is summarized by RMSE, MAE, and MAPE. DM tests are applied to paired one-step errors to assess
whether the differences between models are statistically meaningful [1,8,10]. Given that target
definition and scaling strongly affect sequence models, a price-target LSTM (with min–max scaling)
is complemented by a return-target robustness extension employing z-score standardization and
regularization, consistent with best practices reported in the sequence-learning literature [5-7].

By placing these three paradigms under an identical data pipeline and evaluation protocol, the
paper aims to provide generalizable guidance on when transparent linear baselines suffice and when
flexible deep sequence models are likely to add value. The focus is on principled model choice-
aligning methods with horizon, data richness, and regime stability—rather than on isolated headline
numbers, thereby offering evidence that can inform both academic research and practical decision-
making in financial time-series forecasting [1-3,8-10].

2.  Literature review 

Autoregressive Integrated Moving Average (ARIMA) models combine differencing (I) with
autoregressive (AR) and moving average (MA) terms and continue to serve as a canonical baseline
when dependencies are short-lived and approximate stationarity is plausible [1,3]. In equity
applications, near-unit-root characteristics can lead ARIMA models to exhibit random-walk-like
projections during trending regimes, while conditional heteroskedasticity and nonlinearity may
compromise multi-step accuracy. Remedies such as ARIMAX and rolling re-estimation can alleviate
these issues at the cost of additional specification work [1-3].
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Multiple linear regression (MLR) provides a transparent specification that links next-period price
or return to engineered predictors—including lags, moving-average signals, relative-strength
measures, and volume dynamics-offering interpretability and straightforward diagnostics [2,4].

Good practice includes modeling returns to reduce nonstationarity, checking multicollinearity,
and enforcing information-set timing to avoid look-ahead bias. Dynamic regression provides a
principled extension when exogenous drivers are included [2,4]. LSTM addresses
vanishing/exploding gradients in recurrent nets and can capture nonlinear interactions and long
memory. Finance applications and surveys report favorable results when data volume and horizons
are sufficient and when design choices (target = returns vs. prices; scaling; window; capacity;
regularization) are appropriate [5-7].

Fair comparison requires consistent calendar alignment and gap handling, chronological train-test
protocols, target and scaling choices (returns with z-scores vs. prices with min–max), and evaluation
with both point metrics and statistical tests, such as DM [1,5,8].

3.  Methodology

3.1.  Data and preprocessing

The analysis uses two equities—Starbucks (SBUX) and Luckin Coffee (LKNCY)—at daily
frequency with close and volume. Columns are auto-detected (date, price, volume), dates are parsed
into a unified format, and nonpositive or nonnumeric prices are removed. To ensure a common
timeline, the union of trading days across the two tickers is constructed, each series is left-joined to
that calendar, and occasional gaps are forward-filled so that comparisons are not confounded by
asynchronous holidays. After feature construction (Section 3.2), leading observations rendered
undefined by indicator windows are discarded. A strictly chronological split allocates 80% of each
series to training and 20% to testing (no shuffling) to avoid look-ahead bias. In the sample, this
yields approximately 6,478/1,620 trading days for SBUX (train/test) and 1,060/266 for LKNCY.

Daily historical prices and volumes for Starbucks (SBUX) and Luckin Coffee (LKNCY) were
taken from the Kaggle dataset Top 10 Fast Food Giants: Stock Price Dataset (2024) curated by
Nguyen Tien Nhan [11]. The collection aggregates per-ticker CSV files originally compiled from
Yahoo Finance and released under the CC0 Public Domain license. Each file contains the standard
fields—Date, Open, High, Low, Close, Adjusted Close, Volume—from which Adjusted Close is
used as the price series to account for splits and dividends. The specific files utilized are SBUX.csv
and LKNCY.csv as provided in [11]; access dates are recorded in the reference entry.

3.2.  Feature engineering

From the price      log-returns     , and their lags      are computed.
Standard technical indicators are added: simple moving averages     , exponential
moving averages      ,relative strength index      ,and a volume-change proxy  

  . To reduce scale effects, price-like indicators (SMA/EMA/RSI) are expressed as
ratios to    . All non-finite values are removed to prevent numerical artifacts in model fitting.

3.3.  Model specifications

ARIMA (univariate). The price series is modeled using auto.arima with seasonal = FALSE, stepwise
= TRUE, and approximation = FALSE. Model orders are selected by information criteria, and test-

Pt rt = ln(Pt/Pt−1) rt−1 , rt−2

SMA5,   SMA20

EMA12  RSI14

Δ ln(1 + Vt)

Pt
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set forecasts are generated in a single multi-step pass.
Multiple Linear Regression (MLR). The baseline specification predicts the next-period price from

contemporaneous features:

(1)

This provides a strong, interpretable short-horizon baseline because      carries substantial
information for    . For robustness, a return-target variant (predicting    ) is also outlined for
diagnostic comparisons.

LSTM (deep sequence model). The primary LSTM is implemented in R Torch as a univariate
model: inputs are sliding windows of length lookback on the scaled price; the network comprises a
single LSTM layer (hidden = 64) followed by a dense output; optimization uses Adam with a
learning rate    ; training is conducted for 40 epochs. Test-time prediction is closed-loop, i.e., the
model’s previous prediction is fed back to roll the window without injecting future ground truth.
Because price-scale drift can bias min–max normalization in downtrends, a robustness extension is
introduced that targets next-period log-returns under z-score standardization and can employ a
multi-layer LSTM with dropout; results from this variant are reported for completeness.

3.4.  Evaluation metrics and statistical testing

RMSE, MAE, and MAPE are reported on the test set:

(2)

where y_t denotes the ground-truth test value at time t, ŷ_t the model prediction, and N the
number of test observations. To assess whether differences in forecast accuracy are statistically
meaningful, the Diebold–Mariano (DM) test is applied to paired one-step-ahead errors with
quadratic loss (power = 2). All models are evaluated under the same chronological train/test split
and test window to ensure like-for-like comparison. DM tests use one-step-ahead errors (h = 1) with
squared-error loss and HAC variance (Newey–West) with truncation lag q chosen as ⌊T^(1/3)⌋
(robustness: q∈{1,3,5} yields the same significance calls).

3.5.  Implementation and reproducibility

All experiments are implemented in R using the tidyverse, lubridate, TTR, forecast, and torch/luz
packages. Random seed is fixed at 2025. Transformations that require fitted parameters (e.g.,
scaling) are computed only on the training set and then applied to the test set to avoid information
leakage. A lightweight hyperparameter scan for the univariate LSTM explores  

 , hidden    , epochs=20, and learning rate =   , to gauge
sensitivity to window length and capacity. The pipeline mirrors the empirical section so that results
are fully auditable and reproducible.

CSV files from [11] are parsed, nonpositive/nonnumeric prices are removed, and trading
calendars are unified across tickers. Occasional gaps are forward-filled to avoid artificial lead–lag
effects. Feature construction relies only on information available at time t: log returns  

Pt+1 = β0 + β1Pt + β2rt−1 + β3rt−2 + β4SMA5 + β5SMA20 + β6EMA12 + β7RSI14 + β8Δ
ln(1 + Vt) + εt

Pt

Pt+1 rt+1

10−3

RMSE = √ 1
N ∑N

t=1(ŷt − yt)
2, MAE = 1

N ∑N
t=1 ŷt − yt , MAPE = 1

N ∑N
t=1

ŷt−yt

yt∣ ∣ ∣ ∣lookback ∈ {15,20,30} units ∈ {32,64} 10−3
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 and their lags,   ,    ,    , and a volume-change proxy  
 . Indicator ratios to     reduce scale sensitivity; non-finite observations are dropped.

A chronological 80/20 split is then applied per ticker, after which ARIMA, MLR, and LSTM are
estimated as specified in Section 3, and performance is evaluated by RMSE/MAE/MAPE with
Diebold–Mariano tests on paired one-step errors.

4.  Results

General patterns across both tickers.(1) Short horizons with limited features favor linear baselines.
When forecasting one step ahead using a compact set of technical features, MLR consistently yields
the strongest and most stable accuracy, reflecting the tight anchoring of     to      and the
incremental signal from simple indicators [2,7-8].(2) ARIMA underreacts in trending windows.
Differencing often makes ARIMA behave like a random-walk extrapolator, producing almost flat
multi-step forecasts during pronounced trends; it remains a valuable diagnostic and quick baseline
rather than a dominant forecaster [1-3].(3) Price-target LSTM is sensitive to scaling and distribution
shift. With min–max normalization fit on the training window, predictions can “floor” near the
historical range during test-period downtrends. LSTM’s advantages are more likely when the target
is returns, scaling is z-score, data are larger, and horizons are longer-conditions that better exploit
nonlinear memory [5-7,9].(4) Statistical significance matters. Diebold-Mariano tests on paired one-
step errors frequently show no significant difference between ARIMA and price-target LSTM,
highlighting that flexibility does not automatically deliver reliably better forecasts on daily horizons
[8].

5.  Discussion

Across both equities, the linear baseline (MLR) dominates ARIMA and the univariate, price-target
LSTM. This outcome is consistent with short-horizon equity dynamics in which      is strongly
anchored to     , and a small set of well-chosen technical covariates, add incremental signal. In
contrast, ARIMA tends to collapse toward a random-walk–like extrapolation when differencing is
required, producing nearly horizontal multi-step forecasts during pronounced trends. The price-
based LSTM underperforms largely because target definition and scaling interact unfavorably with
distributional shift: min–max normalization learned on the training window biases predictions
toward the historical range, causing a “flooring” effect when the test period drifts downward.

First, target choice matters. Modeling next-period log-returns rather than prices reduces level
effects and stabilizes training; a robustness design using a return-target LSTM with z-score scaling
addresses this issue. Second, fair comparisons require a unified protocol. Holding calendar
alignment, feature availability, splits, and evaluation constant ensures that differences reflect
modeling capacity rather than pipeline artifacts. Third, capacity and window length for LSTM
should be right-sized to the data. Evidence from the hyperparameter scan suggests that a modest
capacity (hidden ≈ 64, lookback ≈ 20) is preferable in this sample; larger windows may introduce
stale information and amplify smoothing.

Diebold–Mariano tests indicate no significant difference between ARIMA and LSTM errors, even
though point metrics vary. This underscores the distinction between numerical improvements and
statistically reliable gains. For practitioners, the decision criterion should combine accuracy,
stability, interpretability, and operational cost.

The study uses two equities and daily frequency; results may differ at intraday horizons or across
broader cross-sections. Exogenous drivers (macro announcements, earnings surprises, sentiment) are

rt = ln(Pt/Pt−1)  SMA5,  SMA20 EMA12  RSI14

Δ ln(1 + Vt) Pt

Pt+1  Pt

Pt+1

Pt
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not modeled explicitly in the baseline experiments. Hyperparameter tuning for LSTM is
intentionally lightweight to avoid overfitting the test set; deeper searches might improve neural
results but reduce interpretability and reproducibility if not appropriately nested.

For near-term forecasting on mature large caps and volatile growth names alike, a transparent
MLR with carefully engineered features can be a competitive —and often superior—choice.
ARIMA remains a quick-to-deploy baseline and a useful diagnostic tool for autocorrelation
structure, while LSTM becomes attractive when the target is returns, external covariates are
plentiful, and sample size allows for regularized training and walk-forward updating.

Use MLR when the horizon is short, interpretability is required, and only compact engineered
features are available; prefer return targets, check multicollinearity, and control look-ahead [2,4,7].

Use ARIMA/ARIMAX as a fast baseline and for autocorrelation diagnostics; expect
underreaction in strong trends unless exogenous signals are included and models are re-estimated
regularly [1-3].

LSTM should be employed in settings with larger samples, richer covariates, and/or longer
horizons; adopt return targets with z-score scaling, incorporate dropout/weight decay, and evaluate
via walk-forward protocols to mitigate regime shifts [5-7,9]. Complexity does not guarantee better
performance. Align model choice with data characteristics (sample size, regime stability, horizon)
and forecasting goals (accuracy vs. interpretability vs. operational cost), and report both point
metrics and DM tests to separate numerical gains from statistically reliable improvements [1,5,8-9].

6.  Conclusion

This study compared ARIMA, multiple linear regression (MLR), and LSTM within a single,
transparent pipeline for two contrasting equities: Starbucks (SBUX) and Luckin Coffee (LKNCY).
Trading calendars were aligned, gaps were forward-filled, features were standardized, and a
chronological split prevented look-ahead bias. Three general lessons emerge.

First, linear baselines dominate at short horizons with compact feature sets. With one-step targets
and a small, carefully engineered set of indicators, MLR provided the most accurate and stable
forecasts. This outcome is consistent with the near-unit-root nature of daily prices, which     is
strongly anchored to     , and a few technical indicators add incremental signal. In practice, a well-
specified regression is an appropriate default starting point before increasing model complexity.

Second, ARIMA remains a valuable yet cautious baseline. In trending regimes, differencing tends
to push ARIMA toward random-walk-like trajectories that underreact to persistent moves, so
leadership on multi-step test windows is uncommon. Even so, ARIMA is fast to fit, offers
diagnostics for autocorrelation and seasonality, and serves as a useful benchmark or scaffold when
exogenous drivers are available.

Third, LSTM’s gains are conditional on target definition and scaling. A price-target LSTM
trained with min-max scaling tended to drift toward the training range during downtrends, indicating
scale anchoring under distributional shift. LSTM becomes more promising when the target is
returns, scaling follows z-score standardization, regularization is present, the sample is larger, and
the horizon is longer-conditions that allow nonlinear memory to be exploited. Empirically, Diebold–
Mariano comparisons did not show a statistically significant accuracy gap between the price-target
LSTM and ARIMA, underscoring that additional flexibility does not automatically translate into
reliably better daily forecasts.MLR is recommended for short-horizon forecasting when
interpretability, stability, and rapid iteration are priorities; return targets, multicollinearity checks,
and strict information-set timing are advisable. ARIMA/ARIMAX is best used as a rapid baseline
and diagnostic tool, with rolling re-estimation and exogenous regressors to mitigate trend

Pt+1

Pt
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underreaction. LSTM is most appropriate when richer covariates (e.g., macro, earnings, sentiment),
longer horizons, and sufficient data are available; return targets with z-score scaling and regularized
training evaluated in walk-forward backtests are preferable.

The analysis covers two equities at daily frequency, a fixed single-step horizon, and a compact set
of technical features. Macro, news, and sentiment were not modeled explicitly, and the neural
hyperparameter search was intentionally lightweight to avoid test-set overfitting. These choices
support reproducibility but may understate the upside of deep sequence models in data-rich
settings.Promising directions include: (i) expanding to broader cross-sections and multiple market
regimes; (ii) studying multi-horizon and intraday forecasts; (iii) integrating exogenous information
(macro releases, earnings surprises, order flow, and sentiment/news embeddings) via dynamic
regression and multi-channel LSTMs; (iv) adopting walk-forward retraining with nested
hyperparameter tuning and change-point detection; (v) moving from point forecasts to probabilistic
ones (quantiles and intervals) and evaluating economic utility under transaction costs and risk
constraints; and (vi) testing hybrid/ensemble strategies such as linear-neural stacking and simple
combinations.

Overall, the evidence supports a discipline-first approach to equity forecasting: begin with strong
linear baselines, document the pipeline rigorously, and escalate complexity only when the data
environment and forecasting objective justify it. This pathway converts empirical accuracy into
reliable, decision-useful forecasts for financial time series.
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