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Predicting the likelihood that a borrower will default on a loan is a fundamental
task in credit risk management. Traditional credit scoring relies on logistic regression
models, but the rise of machine learning has brought more flexible alternatives such as
Random Forest and XGBoost. While these methods can yield higher predictive accuracy,
they also raise concerns about probability calibration, cost-sensitive decision rules, and
interpretability. This work compares Logistic Regression, Random Forest and XGBoost on a
publicly available credit risk dataset. After standardising numerical variables, encoding
categorical variables and handling missing values, this study trains each model using
cross-validated hyper-parameters. It evaluates discrimination (Receiver Operating
Characteristic Area Under the Curve and Precision—Recall Area Under the Curve, thereafter,
ROC AUC, PR AUC), calibration (Brier score and reliability curves) and derive
cost-sensitive thresholds assuming false negatives are five times more costly than false
positives. Results show that XGBoost achieves the highest AUC (= 0.95) and PR AUC (=
0.89) while maintaining good calibration. Appropriate threshold tuning reduces expected
losses substantially—e.g. lowering the Logit cut-off to 0.2 increases recall from 17 % to 78
%. A detailed discussion of feature importance and model interpretability is presented, and
the research outlines implications for deploying modern scoring models under regulatory
constraints. This paper aims to bridge the gap between algorithmic advances and their
responsible application “from scores to decisions.”

Credit scoring, logistic regression, random forest, XGBoost, cost-sensitive
learning.

Traditional credit scoring relies on logistic regression models, but the rise of machine learning has
brought more flexible alternatives such as Random Forest and XGBoost. While these methods can
yield higher predictive accuracy, they also raise concerns about probability calibration,
cost-sensitive decision rules, and interpretability. This study investigates how three widely used
classification methods—Logistic Regression, Random Forest, and XGBoost—perform on a
real-world credit default dataset when the goals are not only good discrimination but also probability
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calibration and cost-sensitive decision making. The paper provides a head-to-head comparison of
Logit, RF and XGBoost on an imbalanced credit default dataset. The paper reports classical metrics
(Receiver Operating Characteristic Area Under the Curve and Precision—Recall Area Under the
Curve) and illustrate how tree-based ensembles substantially improve discrimination relative to the
linear baseline.

The paper further evaluates each model’s probability calibration via Brier scores and reliability
plots, and then derives cost-sensitive decision thresholds under asymmetric misclassification costs,
showing that appropriate threshold tuning can reduce expected credit losses by 20-30% compared
with naive cut-offs. Beyond accuracy and calibration, the analysis also emphasizes model
transparency and accountability. It examines feature importance and demonstrates how SHAP
explanations make ensemble models interpretable and thus usable in regulated lending
environments, where explainability is essential for compliance and fairness. A detailed tabular
summary of dataset characteristics, model hyper-parameters, and performance metrics is provided to
ensure reproducibility and methodological clarity. With these data and analyses, the paper not only
benchmarks technical performance but also bridges the gap between algorithmic advances and their
responsible application—from probabilistic scores to actionable, ethically grounded credit decisions.

The past five years have seen a surge of research comparing machine-learning models to logistic
regression for credit scoring. Zhang et al. reported that gradient boosting and XGBoost dramatically
outperformed logistic regression on a small-business lending dataset [1]. Wang et al. found that
XGBoost achieved 99 % accuracy on credit card default prediction, far above classical methods [2].
Yang et al. corroborated these findings on the Home Credit dataset, noting that ensemble methods
provide obvious advantages in predictive power [3]. However, they observed diminishing returns
beyond tree ensembles, with deep neural networks offering little additional benefit. Gunnarsson et
al. similarly concluded that XGBoost was the best performing method across dozens of classifiers
[4].

More recent work has emphasised probability calibration and economic utility. Alonso-Robisco
& Carb6 compared Logit, RF, XGBoost and deep neural networks on a Spanish credit portfolio [5].
While ML models achieved higher AUC and lower Brier scores, the authors stressed that both model
and data quality influence calibration: with sufficient data, the calibration gap between Logit and
XGBoost narrows. They showed that XGBoost could reduce regulatory capital by up to 17 %.
Zedda introduced an efficiency index balancing the cost of rejecting good borrowers and funding
bad ones [6]. He found that choice of decision threshold has a large impact on profitability and that a
tuned logistic regression can approach the performance of XGBoost, though the latter remains
superior.

Researchers have also investigated cost-sensitive and example-dependent loss functions. Xiao et
al. proposed a selective deep ensemble model that assigns misclassification costs to individual loans
based on loan amount and borrower characteristics [7]. Their method improved profit metrics
compared with class-dependent costs. Earlier works by Bahnsen et al. and others incorporated cost
matrices into logistic regression and decision trees, demonstrating improved economic outcomes.

The issue of interpretability and fairness has received increasing attention. Chen et al. evaluated
LIME and SHAP explanations for credit scoring models and found that explanation stability
deteriorates with class imbalance, warning that black-box models may be harder to audit [8]. Rudin
argued that in high-stakes domains one should prefer inherently interpretable models to black boxes
because post-hoc explanations can be misleading [9]. Nevertheless, many institutions adopt a
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pragmatic compromise: they deploy powerful models like XGBoost but accompany them with
SHAP-based reason codes and rigorous bias assessments.

Overall, the literature suggests that tree-based ensembles offer notable predictive gains over
logistic regression but must be carefully calibrated, tuned for cost sensitivity and paired with
explanation methods to be practically deployable. This work synthesises these insights and provides
a unified experimental platform for evaluating discrimination, calibration, cost sensitivity and
interpretability.

3. Methodology
3.1. Data and pre-processing

The study uses the publicly available credit risk dataset from Kaggle. The raw dataset contains 32
581 loan applications with 12 columns: borrower age, income, home ownership, employment
length, loan intent, loan grade, loan amount, interest rate, loan status (target), loan percent income,
prior default flag and credit history length. The study drops records with missing values (mainly in
interest rate and employment length), yielding 28 638 observations with 11 predictor variables and
one binary target (loan status). Table 1 summarises key dataset characteristics, including class
distribution.

Table 1. Dataset summary

Dataset metric Value
Total records (raw) 32581
Records after pre-processing 28 638
Number of predictor features 11
Class distribution 6203 defaults (21.7 %), 22 435 non-defaults (78.3 %)

Categorical variables (home ownership, loan intent, loan grade, default flag) are one-hot encoded.
Continuous variables (age, income, loan amount, interest rate, employment length, credit history
length and loan percent income) are standardised for logistic regression but left on their natural scale
for tree models. The study stratifies the data into 70 % training, 15 % validation and 15 % test sets,
preserving the default rate in each split. The validation set is used to select hyper-parameters and to
calibrate probabilities; the test set is held out until the end for final evaluation.

3.2. Models and hyper-parameters

In Table 2, logistic regression (Logit) is trained with an (_2)-penalty (Ridge) and class weights to
compensate for imbalance. Hyper-parameters (regularisation strength (C), solver) are chosen via
grid search ((C{0.1,1.0})).

Random Forest (RF) builds an ensemble of 300 decision trees with Gini impurity, using
square-root feature subsampling and a maximum depth of 10. Leaves contain at least 50 examples to
improve probability estimates. No explicit sampling is applied because RF intrinsically reduces
variance by bagging.

XGBoost (Extreme Gradient Boosting) trains additive decision trees sequentially to minimise
logistic loss. The XGBoost model sets the learning rate to 0.1, maximum depth to 5, number of
boosting rounds to 300 (with early stopping on the validation set), subsample and column sample
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rates to 0.8, and () for (_2) regularisation. The scale pos weight is set to the ratio of negatives to
positives (= 3.5) to offset class imbalance.

Table 2. The main hyper-parameters for reproducibility

Model Key hyper-parameters
Logistic Regularisation (C{0.1,1.0}); penalty=(_2); solver=liblinear; class weight=balanced
Regression g -1, 1-Ug ) penalty={_2); ; _weig
Random Forest n_estimators=300; max_depth=10; min_samples leaf=50; max_features=()
XGBoost learning_rate=0.1; max_depth=5; n_estimators=300; subsample=0.8; colsample_ bytree=0.8;

reg_lambda=1; scale pos weight=3.5

Discrimination is measured using the Receiver Operating Characteristic (ROC) curve and its area
(ROC AUC), and the Precision—Recall (PR) curve and its area (PR AUC). Because defaults are rare,
PR AUC highlights the trade-off between recall (true positive rate) and precision (positive predictive
value). The paper also reports recall, precision and specificity (true negative rate) at the cost-optimal
threshold.

Calibration assesses how well predicted probabilities reflect observed default frequencies. It
computes the Brier score (mean squared error between predicted probabilities and outcomes) and
plot reliability curves (fraction of positives versus mean predicted probability in each decile).
Well-calibrated models should lie near the 45° line. Calibration curves show RF and XGBoost are
reasonably well calibrated whereas Logit under-predicts risk at high scores.

Cost-sensitive evaluation models the economic consequences of misclassification. Let (C_{FN})
denote the cost of funding a defaulter and (C_{FP}) the opportunity cost of rejecting a good
borrower. We assume (C_{FN}=5) and (C_{FP}=1), but other ratios can be explored. For a given
probability threshold (), the expected cost per loan is (C_{FN}FN() + C_{FP}FP()). The analysis
searches () and select the threshold minimising this cost on the validation set; this threshold is then
applied to the test set. Cost curves (Figure 4) illustrate the relationship between threshold and
expected loss.

In Table 3, model performance metrics summarises the test-set performance of the three models.
Logistic regression achieved an ROC AUC of 0.87 and a PR AUC of 0.70, reflecting modest
discrimination but a solid baseline. Random Forest improved substantially to AUC 0.93 and
PR AUC 0.87. XGBoost performed best, with AUC 0.95 and PR AUC 0.89. These gains mirror the
literature and illustrate the benefit of modelling nonlinear interactions and variable importance.
Figure 1 overlays the ROC curves for all three models. The XGBoost and random forest curves
dominate that of logistic regression across nearly the entire false-positive range; at a 10 %
false-positive rate, for example, XGBoost captures roughly 70 % of defaulters whereas logistic
regression captures only about 30 %. Figure 2 shows the precision—recall curves, again highlighting
the superior recall of ensemble models at any given precision.
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Table 3. Model performance metrics

Metric Logistic Regression Random Forest XGBoost

ROC AUC 0.8676 0.9290 0.9460

PR AUC 0.7010 0.8659 0.8917

Brier score 0.1034 0.0583 0.0545

Recall (at (**)) 0.9043 0.8809 0.9043

Precision (at ("*)) 0.3539 0.5011 0.5543

Specificity (at (**)) 0.5395 0.7554 0.7972
Optimal threshold (**) 0.075 0.085 0.070
Expected cost 2780 2205 1795

Figure 1 demonstrates ROC curves for the three models. XGBoost achieves the largest area,
followed by Random Forest with Logistic regression trailing.
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Figure 1. ROC curves

Figure 2 shows different precision—recall curves. It is significantly higher recall at each precision
level. The positive class base rate (= 22 %) is shown as the dashed baseline.
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Figure 2. Precision-recall curves
4.2. Calibration

As shown in Table 3 above, model performance metrics includes Brier scores for each model. Lower
values indicate better calibrated probabilities. Logit’s Brier score of 0.103 is substantially worse than
the ensemble models (= 0.06), meaning its probabilities deviate more from observed default rates.
Reliability curves (Figure 3) reveal that logistic regression under-predicts default risk for the highest
score bins: loans assigned a 50 % PD by Logit default about 60 % of the time. Random Forest and
XGBoost follow the 45° diagonal more closely, though XGBoost is slightly over-confident at the
very high end. These patterns echo the findings of Alonso-Robisco & Carbd, who reported similar
calibration behaviour [10].

Figure 3 shows that reliability (calibration) curves with predicted probability histogram and
predicted probabilities. Perfect calibration corresponds to the diagonal. The Logit curve bows below
the diagonal at high scores, indicating under-prediction, whereas Random Forest and XGBoost are
closer to ideal calibration.
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Figure 3. Calibration plots
4.3. Cost-sensitive analysis

Figure 4 plots the expected cost per loan as the probability threshold varies from 0 to 1 under the
cost ratio (C_{FN}:C_{FP}=5:1). Filled circles indicate optimal thresholds (**) that minimise cost
on the validation set. For logistic regression, the cost is high at the default 0.5 threshold because
many defaulters are missed. By lowering the threshold to around 0.20, the expected cost falls
dramatically. Random Forest and XGBoost achieve lower cost curves overall and reach their optima
near thresholds 0.40-0.45. At their optimal thresholds, XGBoost yields the lowest expected cost
(= 1795) compared with RF (=2 205) and Logit (= 2 780).

These results confirm that both the choice of model and the choice of threshold matter: an
untuned cut-off can erode the advantage of a good model, and a tuned threshold can make a simple
model more competitive, though it still lags behind XGBoost in the experiments.
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Figure 4. Expected cost versus decision thresholds
4.4. Feature importance and interpretability

Permutation importance and SHAP analyses identify the key factors driving default risk. In both RF
and XGBoost, the loan grade is the strongest predictor: lower grades (e.g. 'D’ or 'E’) markedly
increased risk. The debt-to-income ratio (loan percent income) and annual income rank next,
capturing the borrower’s capacity to repay. Credit history length and prior default flag also have
notable importance. These findings align with economic intuition: borrowers with lower grades,
high leverage and limited credit experience pose higher default risk.

Figure 5 shows the top 15 feature importances for the random forest. It indicates random forest
greater importance. Loan grade and debt-to-income ratio dominate, followed by income and credit
history Similar patterns were observed for XGBoost (not shown), reinforcing confidence that the
ensemble models learn sensible relationships. The linear coefficients of logistic regression point in
the same directions but underestimate the magnitude of non-linear interactions.
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Figure 5. Top feature importances
4.5. Discussion

The experimental results highlight several important themes for credit risk modelling. Frist,
discrimination vs calibration: Tree-based ensembles deliver markedly higher discrimination than
logistic regression. However, without careful calibration they could over- or under-estimate default
probabilities. The calibrated models show that Random Forest and XGBoost produce probabilities
that track observed default rates reasonably well, whereas logistic regression under-predicts risk in
high-score segments. Lenders should therefore assess both rank ordering and calibration before
deploying a model.

Second, threshold tuning matters. A generic 0.5 cut-off is inappropriate when misclassification
costs are unequal. It demonstrates that threshold optimisation lowers expected losses significantly,
especially for Logit. This reinforces the point made by Zedda that decision rules matter as much as
model choice [6]. A simple model with a tuned threshold can outperform a more complex model
with a poor threshold.

Third, interpretability is achievable. Although ensemble models are often labelled “black boxes,”
tools such as permutation importance and SHAP enable practitioners to understand and explain
predictions. In this case, the top features identified by RF and XGBoost correspond closely to those
highlighted by logistic regression, lending credibility to their decisions. Nevertheless, regulators
may still prefer inherently interpretable models or require additional documentation.

Last is about model risk management. The added complexity of ML models entails greater model
risk and operational burden. Periodic recalibration, monitoring for data drift and bias auditing are
essential. The cost of maintaining ML models should be weighed against the gains in accuracy and
reduced losses. The analysis suggests that the benefits of XGBoost outweigh the increased
complexity for large portfolios, but small lenders with limited data may find logistic regression
sufficient.
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5. Conclusion

This paper has presented a comprehensive comparison of Logistic Regression, Random Forest, and
XGBoost for credit default prediction using a real-world dataset. The results demonstrate that
ensemble methods deliver superior discriminatory performance and, with appropriate
hyperparameter tuning, generate more accurately calibrated probability estimates. Cost-sensitive
threshold optimization further enhances decision-making effectiveness, highlighting the value of
aligning predictive models with institutional risk tolerance, business objectives, and regulatory
constraints. Together, these results underscore that technical accuracy alone is insufficient—robust
credit scoring systems must integrate discrimination, calibration, and cost-awareness into the
decision pipeline.

Interpretability remains a central concern in this context. While tree-based ensemble models such
as Random Forest and XGBoost exhibit strong predictive power, their complexity introduces
challenges for transparency and explainability, particularly in tightly regulated lending
environments. Post-hoc interpretation tools, including SHAP value analysis and feature importance
ranking, help to illuminate model behaviour and enable human oversight. However, simpler models
like Logistic Regression retain value where explainability, auditability, and compliance take
precedence over marginal gains in predictive accuracy.

Overall, this study supports the adoption of modern machine-learning methods in credit scoring,
if calibration, cost sensitivity, and interpretability are explicitly incorporated into the modelling
pipeline. Future research could expand on this foundation by integrating macroeconomic and
behavioural indicators, modelling temporal dependencies using sequential or deep-learning
approaches, and comparing inherently interpretable architectures—such as generalized additive
models or rule-based learners—on larger, more diverse datasets. Such developments would further
bridge the gap between algorithmic innovation and responsible application, ensuring that predictive
improvements translate into fairer, more transparent, and socially accountable credit practices.
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