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Abstract. Portfolio optimization is a crucial aspect of finance, requiring advanced analytical 

tools and modeling techniques. This paper proposes a new method for portfolio optimization 

that combines Long Short-Term Memory (LSTM) forecasting with Covariance Shrinkage 

and Mean-Variance Optimization (MVO) to construct diversified portfolios that maximize 

risk-adjusted returns. The study utilizes an LSTM-based model to predict stock prices, 

evaluating its performance using the RMSE metric. The calculated RMSE of 0.0849 indicates 

accurate and robust predictions. The portfolio constructed shows different weights each day 

for different assets based on the minimum variance and maximum Sharpe ratio portfolios. As 

of January 3rd, 2023, the assets with the largest proportion in the Maximum Sharpe Ratio 

portfolio and in the Minimum Volatility portfolio, are respectively BA, accounting for 

27.64% of the portfolio and PG, accounting for 32.66% of the portfolio. This paper compares 

the performance of the proposed method and benchmark methods by applying 30 daily 

portfolio weights to real returns. The portfolio constructed by the proposed method has higher 

cumulative return with a higher Sharpe ratio and lower maximum drawdown, indicating a 

better ability to diversify risks and create returns. The proposed method offers a new 

perspective on portfolio optimization, which can potentially benefit investors and asset 

managers. 
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1. Introduction 

Portfolio optimization is a crucial task in finance, aiming to construct a portfolio of assets that 

maximizes returns while minimizing risk. With the ever-growing complexity of financial markets and 

the abundance of investment options, constructing an optimal portfolio has become a challenging task 

that requires sophisticated modeling techniques and advanced analytical tools. 

The importance of portfolio construction cannot be overstated, as it has a direct impact on the 

financial performance of investors and asset managers. In recent years, there have been numerous 

notable events in the financial industry that underscored the importance of diversification and risk 

management in portfolio construction [1]. For example, the GameStop short squeeze in early 2021 

and the pandemic-induced market crash highlighted the vulnerability of concentrated portfolios and 

the importance of risk diversification. 
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There is a vast body of research on portfolio optimization, and various methods have been 

developed over the years. One of the popular aspects of these approaches is that forecasting methods 

are linked to portfolio construction. Many studies have shown that incorporating forecasting methods 

in portfolio optimization can improve portfolio performance. 

For instance, Sahamkhadam, Stephan, and Östermark analyzed the effectiveness of portfolio 

optimization approaches incorporating a model combining ARMA, Garch EVT and copula [2]. Their 

findings demonstrated that the portfolio which relies on the proposed model, surpasses the benchmark 

portfolio that is grounded in historical returns. In addition, Chen, Zhang, Mehlawat, Jia proposed a 

portfolio optimization method based on improved extreme Gradient Boosting (XGBoost) and found 

that the approach outperformed traditional methods in terms of portfolio returns and risks [3]. 

LSTM is a popular forecasting method that has gained increasingly attention these years because 

of its capacity to identify long-term relationships within time-series data [4]. However, existing 

research combining LSTM with portfolio construction is limited and not enough to draw definitive 

conclusions. Hence, this paper proposes a portfolio optimization method that combines LSTM 

forecasting with MVO and covariance shrinkage to construct a diversified portfolio that maximizes 

risk-adjusted returns. 

The proposed method in this paper combines Long Short-Term Memory (LSTM) forecasting and 

Covariance Shrinkage method with Mean-Variance Optimization (MVO) to construct portfolios. The 

forecasting process uses historical stock prices to generate predictions, which are then combined with 

covariance matrices generated using the Covariance Shrinkage method. These predictions and 

matrices are then used in the MVO model to optimize portfolio weights. Monte Carlo Simulation 

(MCS) is employed to generate the optimal weights for each day in test interval. To evaluate the 

performance of the portfolios generated, a back test is conducted using real returns and compared 

against the S&P 500 index and the returns under equal-weight allocation (EQ). The results show that 

the portfolio generated by the proposed LSTM + Covariance Shrinkage + MVO method achieved a 

much higher cumulative return of 14.2%, with a higher Sharpe ratio and lower maximum drawdown, 

indicating a better ability to diversify risks and create returns. 

In summary, this paper highlights the importance of portfolio construction, and proposes a novel 

approach that combines LSTM forecasting and Covariance Shrinkage method with MVO and 

covariance shrinkage. The proposed approach provides a new perspective on portfolio optimization 

and offers potential benefits for investors and asset managers. 

2. Data 

The data utilized in this paper was sourced from Yahoo Finance [5]. Ten stocks were selected based 

on their market capitalization and diversification across different sectors. The tickers of these stocks 

are 'TSLA', 'DIS', 'GS', 'PFE', 'BA', 'AAPL', 'PG', 'PLD', 'SHEL', 'UNP'. The data covers a time range 

from January 1st, 2018, to February 15th, 2023, and consists of 1289 pieces of daily closing stock 

prices for each stock. The data is then divided into train set and test set. The train set are composed 

of 1189 pieces of data from January 1st, 2018, to September 22nd, 2022. The train set contains the 

remaining 100 pieces of data is subdivided into test set for input and test set for result validation. The 

test set for input contains 70 pieces of data from September 23rd, 2022, to December 31st, 2022. The 

test set for result validation contains 30 pieces of data from January 1st, 2022, to February 15th, 2023. 

Their relationship are illustrated in Table 1. 
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On the basis of preserving the original stock prices data to evaluate the performance of stock price 

estimation, they are further transformed into daily simple returns to verify the performance of 

portfolio optimization. The transformation is based on the formula: 

𝑅𝑡 =
𝑃𝑡 − 𝑃𝑡

𝑃𝑡−1
 (1) 

where 𝑃𝑡 denotes the closing price at time t. To provide an overview of the dataset, this paper 

conducts a descriptive statistical analysis on the daily returns of the ten assets. The evaluation 

encompassed metrics like mean, standard deviation, minimum, and maximum. The results are 

illustrated in Table 2. 

Table 2: Descriptive statistics of daily returns for the ten assets. 

 AAPL 
AMZ

N 
BA DIS GS PFE PG PLD SHEL UNP 

Mean(%) 0.125 0.066 0.031 0.020 0.058 0.047 0.054 0.081 0.039 0.056 

std 0.021 0.023 0.032 0.021 0.021 0.017 0.014 0.019 0.023 0.018 

Max(%) 
11.98

1 

13.53

6 

24.31

9 

14.41

2 

17.58

0 

10.85

5 

12.00

9 

11.81

0 

19.68

0 

13.00

4 

Min(%) 

-

12.86

5 

-

14.05

0 

-

23.84

8 

-

13.16

3 

-

12.70

5 

-7.735 -8.737 

-

17.27

1 

-

17.17

2 

-

13.03

4 

 

In addition, cumulative returns of ten stocks are calculated and plotted in Fig. 1 according to the 

formular: 

𝑅𝑡(𝑘) =  (𝑅𝑡 + 1) ∗ (𝑅𝑡−1 + 1) ∗ … ∗ (𝑅𝑡−𝑘+1 + 1) − 1 (2) 

Where the 𝑅𝑡(𝑘) represents the k-period simple return from time 𝑡 − 𝑘 to 𝑡. 

Table 1: Data split. 

 Train set The test set for input 
Test set for result 

validation 

Amount 1189 70 30 

Data 
Jan 1st, 2018, to Sep 

22nd, 2022 

Sep 23rd, 2022, to Dec 

31st, 2023 

Jan 1st, 2023, to Feb 

15th, 2023 
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Figure 1: Cumulative returns of ten stocks from January 1st, 2018, to February 15th, 2023. 

3. Methodology 

3.1. Overall Framework 

Basic framework of this project mainly consists of three parts, respectively estimation, optimization, 

validation & evaluation process, as is shown in Fig. 2. 

 

Figure 2: Flowchart of overall framework. 

Estimation Side: The portfolio construction is based on estimation results, and thus, it is crucial to 

pay close attention to this process. The forecasting method adopted in this paper is based on Long 

Short-Term Memory (LSTM). Based on historical stock closing price {𝑥0, 𝑥1, … … , 𝑥𝑡}, this paper 

selects 100 pieces of stock closing price {𝑥𝑡−69, 𝑥𝑡−68, … … , 𝑥𝑡} as training data to be input into LSTM 

to obtain 𝑥
^

𝑡+1, the predictive value of 𝑥𝑡+1. The prediction results and covariance matrix Σ generated 

by Covariance Shrinkage method using {𝑥𝑡−69, 𝑥𝑡−68, … … , 𝑥𝑡 , 𝑥
^

𝑡+1} are then provided for portfolio 

optimization in the next step. 

Optimization Side: Drawing on the predicted values and covariance matrices, this paper constructs 

a Mean-Variance Optimization model (MVO). The optimal portfolio weights 𝑤𝑡+1 can be obtained 

using Monte Carlo Simulation (MCS). Subsequently, this paper calculates portfolio returns and 

evaluate its real performance in day t+1, which is precisely what this paper aims to accomplish in the 

following step. 

Validation and Evaluation: In this part, this paper conducts a back test on the final portfolio to 

evaluate the real returns under the weights generated by the model and real daily returns. The real 

returns are compared with S&P 500 and the returns under Equal-weights allocation (EQ) over the 

same time frame to determine the model’s performance. 

3.2. Long Short-Term Memory 

Long Short-Term Memory (LSTM) is a kind of recurrent neural network (RNN) engineered to tackle 

the vanishing gradient issue, a prevalent challenge in RNNs that complicates the learning of long-
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term dependencies [6]. The primary advancement of LSTM lies in the implementation of memory 

cells and gates, enabling the network to selectively retain or discard information over time [7]. The 

equations of LSTM can be defined as follows: 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

𝐶
~

𝑡 = tanh (𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶
~

𝑡 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝐶𝑡) 

(3) 

Where 𝑥𝑡  is input vector; 𝑖𝑡 , 𝑜𝑡 , 𝑓𝑡  are the input, output and forget gates, respectively; 𝐶
~

𝑡 

represents the candidate cell state; 𝐶𝑡 and ℎ𝑡 are the new cell and hidden states, respectively; 𝑊𝑓, 𝑊𝑖, 

Wc, 𝑊𝑖 are weight matrices; 𝑏𝑖, 𝑏𝐶, 𝑏𝑜, 𝑏𝑓are bias vectors; and 𝜎 is the sigmoid activation function. 

The structure of a single LSTM cell and repeating LSTM module are shown in Fig. 3 and Fig. 4. 

 

Figure 3: Structure of the LSTM cell. 

 

Figure 4: The repeating module in an LSTM. 

The four essential components of an LSTM cell work in concert to manage the flow of information. First, 

the forget gate determines which parts of the previous cell state should be preserved or discarded. Next, the 

input gate identifies new data to be integrated into the cell state. Concurrently, the candidate cell state generates 

potential information for inclusion. Lastly, the output gate selects the portions of the updated cell state to be 

released as the hidden state. 

In this paper, author use TensorFlow to construct a neural network with 2 LSTM layers and 2 fully 

connected layers. The LSTM layers allow the network to learn long-term dependencies in the time-series data, 

while the fully connected layers help to extract relevant features for the prediction task. 
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3.3. Mean-Variance Optimization 

Mean-Variance Optimization (MVO) is a widely used mathematical framework in finance for 

constructing optimal portfolios of assets. MVO aims to find the weights of assets in a portfolio that 

maximize its expected return while minimizing its variance or risk. 

The MVO framework, initially presented by economist Harry Markowitz in 1952, has evolved 

into a fundamental aspect of contemporary portfolio theory [8]. MVO's critical observation is that an 

asset's risk and return should be assessed in relation to its impact on the portfolio's overall risk and 

return [9]. The equations of MVO can be defined as follows: 

E(𝑅𝑝) = ∑  

𝑖

𝑤𝑖E(𝑅𝑖) 

𝜎𝑝
2 = ∑  

𝑖

∑  

𝑗

𝑤𝑖𝑤𝑗𝜎𝑖𝜎𝑗𝜌𝑖𝑗 

(4) 

Where 𝑅𝑝  represents the portfolio return;  𝑅𝑖  denotes the return of asset 𝑖 ; 𝑤𝑖  signifies the 

proportion of each constituent asset 𝑖 in the assembled portfolio; 𝜎𝑖 and 𝜎𝑗  are the standard deviations 

of the periodic returns of assets 𝑖 and 𝑗, respectively; 𝜌𝑖𝑗 is the correlation coefficient measure the 

relationship between the returns on assets 𝑖 and 𝑗. 

The efficient frontier in MVO symbolizes the collection of portfolios delivering the highest 

expected return at a given level of risk or the lowest risk for a specified expected return. Portfolios 

situated beneath the efficient frontier are deemed inferior, as they fail to yield sufficient returns 

relative to their associated risk. To identify the efficient frontier, the following equation is minimized: 

min f = 𝑤𝑇Σ𝑤 − 𝑞 × 𝑅𝑇𝑤 (5) 

Where 𝑤 is vector representing the proportion of each asset in the portfolio; Σ is a measurement 

for co-variance among the select asset; 𝑞 is a parameter which means risk tolerance of investors; 𝑅 is 

a vector of expected returns. 

MVO provides a formal and quantitative way for investors to diversify their portfolios and 

optimize their risk-return tradeoff. By balancing the expected return and variance of a portfolio, MVO 

helps investors construct portfolios that meet their individual investment objectives and risk tolerance. 

3.4. Covariance Shrinkage 

In the field of portfolio optimization, the estimation of the covariance matrix is a critical step as it 

measures the degree of association between asset returns. However, the traditional method of 

estimating covariance from historical data is limited by small sample size, noise, and non-stationarity 

of the underlying process [10]. Covariance shrinkage, also known as regularization or regularization 

estimators, is a popular technique that improves covariance matrix estimation by reducing noise and 

estimation bias. One of the most widely used covariance shrinkage methods is the Ledoit-Wolf 

shrinkage, which can be expressed as follows: 

Σ
^

𝐿𝑊 = 𝛿Σ
^

𝑜 + (1 − 𝛿)Σ
^

𝑆 
(6) 

Where Σ
^

𝐿𝑊 is constructed by a parameter δ that controls the degree of shrinkage of the original 

matrix; Σ
^

𝑜 is the target matrix proportional to the identity matrix; and Σ
^

𝑆 is the sample covariance 

matrix. The optimal value of 𝛿 is obtained through cross-validation, which balances the bias and 

variance of the estimation. 
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4. Result 

In the following section, the results of the LSTM models' stock prediction performance during the 

entire testing period are presented. Two different portfolios were then constructed using the MVO 

model combined with the LSTM-based estimation and the EQ strategy. The real return rates of these 

portfolios were applied to compare the overall performance of the LSTM+MVO and EQ models 

during the entire testing period’s Estimation Result 

4.1. Stock Prediction Evaluation 

In this section, the LSTM model is constructed utilizing the Keras library, incorporating two LSTM 

layers and a pair of fully connected layers. The model is then trained using the training set that 

contains 1189 pieces of data and the mean squared error loss function. This paper iteratively tunes 

the number of epochs from 1 to 30, to select the optimal parameter for the program. Ultimately, the 

model is employed to generate predictions for the test data. The outcomes are assessed using the Root 

Mean Square Error (RMSE) metric and graphed alongside the actual prices. RMSE is calculated as 

follows: 

RMSE = √∑  𝑇
𝑡=1 (𝑦

^

𝑡 − 𝑦𝑡)2

𝑇
. 

(7) 

Where 𝑦
^

𝑡 represents the predicted value of time 𝑡; 𝑦𝑡 represents the observed value of time 𝑡; 𝑇 

represents the total number of predictions that are made. This paper pick AAPL to demonstrate. The 

historical adjusted closing price data are acquired from yahoo finance, as is shown in Fig. 5. 

 

Figure 5: History adjusted closing price of AAPL. 

Number of epochs from 1 to 30 against the loss are plotted as is shown in Fig. 6. This paper 

discover that after 10 rounds of fitting, the loss is basically stable. So, this paper chooses 10 epochs 

for further prediction. 
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Figure 6: Loss under different number of epochs. 

After training, RMSE is employed to assess the performance of predictions generated by LSTM 

model. The RMSE of the result is 0.0849, which shows LSTM is able to prevent vanishing gradient 

problems. The predicted stock prices are plotted along with the real stock prices as is shown in Fig. 

7. LSTM proves to be quite accurate and robust since the prediction line and validation line overlap 

almost everywhere. 

 

Figure 7: Visualized prediction performance of LSTM model. 

4.2. Portfolio Performance Evaluation 

In this panel, this paper uses LSTM model to forecast the share price of each stock on next trading 

day based on a sliding window. The MVO model with Covariance Shrinkage is then adopted to 

construct a portfolio for the specific day, based on the historical adjusted closing price of each stock 

for the past 69 trading days and the forecast for the trading day after. The portfolio weights are 

updated daily as the magnitude of the forecasts and the range of historical data are changing daily and 

so are the expected returns and covariance matrices. 
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This paper picks portfolio constructed on December 31st. 2022 for the investment on January 3rd. 

2023 to demonstrate. Based on the LSTM, this paper forecast the adjusted closing price of each stock 

on 3 January 2023 and calculate the daily forecast return for each stock on that date, as shown in 

Table 3. 

 

Table 3: Forecast daily return for January 3rd. 2023 (%). 

 AAPL 
AMZ

N 
BA DIS GS PFE PG PLD SHEL UNP 

Valu

e 

3.740

5 
2.5723 

2.405

6 

0.827

1 

0.039

0 

0.006

6 

0.035

5 

1.703

3 

12.242

2 

0.246

3 

 

Then based on 69 daily historical returns of each stock from September 23rd. 2022 to December 

31st, 2022, and forecast daily return for January 3rd. 2023, covariance matrix Σ is estimated by 

Covariance Shrinkage method as is shown in Fig.8. 

 

Figure 8: Covariance matrix. 

To perform mean-variance optimization, this paper conduct Monte Carlo Simulation for 100,000 

times. The 69 historical daily returns of each stock from September 23rd. 2022 to December 31st, 

2022, and forecast daily return for January 3rd. 2023 are used to generate expected return in MVO. 

The covariance matrix used in MVO is covariance matrix Σ estimated by Covariance Shrinkage 

method. The results are shown in the scatter plot in Fig. 9. 
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Figure 9: Efficient frontier plot with single stock return and volatility. 

The efficient frontier is indicated by the upper part of the blue edge. The black markers in the 

graph indicate where the portfolio would be if it consisted of only one stock. The sub-optimal 

portfolio lies below the efficient frontier and provides a relatively low return for a given level of risk. 

The two target portfolios, respective the minimum volatility portfolio and the maximum sharp ration 

portfolio are calculated and demonstrated in Fig. 10. 

 

Figure 10: Efficient Frontier Plot with minimum volatility and the maximum sharp ration portfolios. 

The weight of each stock under the two portfolios for the investment on January 3rd. 2023 are 

shown in Table 4. 

 

Table 4: Weight of each stock in the two optimal portfolios for January 3rd. 2023 (continue). 

 Max Sharpe Ratio Min Volatility 

AAPL 0.45 4.09 

AMZN 1.27 0.17 
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Table 4: (continued). 

BA 27.64 4.30 

DIS 2.06 2.02 

GS 0.10 0.76 

PFE 26.24 27.89 

PG 27.41 32.66 

PLD 3.59 4.53 

SHEL 7.43 9.41 

UNP 3.79 14.16 

 

This paper construct 30 distinct daily portfolios from January 3rd, 2023, to February 15th, 2023, 

in the same way as shown above. By applying these portfolio weights to real returns generated by 

adjust closing price in the test set, the daily returns of these portfolios and the cumulative return within 

30 trading day can be calculated, since these portfolios are constructed under the same strategy. This 

paper takes portfolio that achieves maximum sharp ratio to demonstrate. To evaluate the performance 

of the portfolio’s construction strategy, S&P 500 index and the real return under equal weight (EQ) 

portfolio are brought in. The result is shown in Table 5 below: 

Table 5: Performance under different portfolios from Jan 3 to Feb 15, 2023. 

 S&P500 EQ LSTM+Covariance Shrinkage+MVO 

Cumulative Return 7.7% 12.3% 14.2% 

Volatility 16.3% 16.9% 16.7% 

Sharp Ration 3.91 5.85 6.77 

Max Drawdown -2.5% -2.1% -1.5% 

 

The benchmark S&P 500 shows a 7.7% cumulative return, which means the general market is in 

a good condition. The equal weighted portfolio provides a 12.3% cumulative return during this period. 

And our portfolio weight generated by LSTM + Covariance Shrinkage + MVO has a better 

performance. At the same level of volatility, it can achieve much higher returns, 14.2% cumulative 

return to be specific, with a higher sharp ratio and lower max drawdown. LSTM + Covariance 

Shrinkage + MVO method can generate a portfolio with a higher capability to diversify risks and 

create returns. 

5. Conclusion 

In conclusion, this paper has presented a new approach to portfolio optimization that combines LSTM 

forecasting with Covariance Shrinkage and MVO to maximize risk-adjusted returns. By incorporating 

historical stock prices, the LSTM model generates predictions that are combined with covariance 

matrices generated using the Covariance Shrinkage method. These predictions and matrices are then 

used to determine optimal portfolio weights in the MVO model. To assess the effectiveness of this 

approach, a back test was conducted using real returns and compared against the S&P 500 index and 

the returns under equal-weight allocation (EQ). The results demonstrate that the proposed method 

outperforms traditional methods, achieving a much higher cumulative return with a higher Sharpe 

ratio and lower maximum drawdown. The proposed method outperformed existing portfolio 

optimization methods and provided valuable insights into portfolio construction. The study 
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demonstrated the importance of diversification and risk management in portfolio optimization and 

showed how advanced modeling techniques can improve portfolio performance. 

The proposed method still has limitations with LSTM's vanishing gradients and the omission of 

macroeconomic factors. Future research could explore alternative models and incorporate 

macroeconomic indicators for improved accuracy. Additionally, incorporating constraints like 

transaction costs and leverage could enhance the model's sophistication. 
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