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Abstract: Portfolio construction can help investors achieve a balance between risks and 

returns, and rationally allocate funds to maximize returns. This paper combines four deep 

learning models LSTM, GRU, CRNN, TCN with investment portfolio strategies Mean-

Variance, Mean-CVaR, selects stock data from different industries in the US stock market to 

construct portfolios, and these strategies are tested in both bull and bear market environment. 

Comparative analysis of cumulative returns reveals that in the bull market, the cumulative 

return of TCN+MV and GRU+MV is the highest. In the bear market, the cumulative returns 

of portfolios using the four deep learning algorithms combined with MV are similar and 

overall outperform those combined with MC. Furthermore, based on the deep learning 

algorithm and MV model, this paper selects multiple factors for scoring, and uses factor 

scores as constraints to the process of portfolio optimization, and the cumulative return has 

been significantly improved. The method in this paper can provide a theoretical reference for 

investors to construct investment portfolios and weigh risks and benefits according to 

individual needs.  
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1. Introduction 

In the decades following Markowitz's introduction of the Mean-Variance model (MV), portfolio 

theory has been extensively researched and utilized [1]. The concept of investment portfolio is not 

simply to allocate funds to different assets, but to maximize the expected return under a given risk 

level through ingenious trade-offs and optimization. The importance of investment portfolio lies in 

its ability to help investors achieve effective allocation of funds and diversification of risks and 

improve the overall performance of the investment portfolio. 

However, some traditional portfolio methods have certain limitations, such as the assumption of 

asset returns, simplification of investors' risk attitudes, and the handling of correlations between assets. 

As time has passed, novel portfolio approaches have surfaced. Certain techniques take into account 

the nonlinear association between assets and the features of non-normal distribution. Examples of 

such techniques include the Value at Risk (VaR) model, Conditional Value at Risk (CVaR) model, 

and Omega model [2-4]. These models provide more choice and flexibility in taking into account 

investors' different attitudes and preferences for risk [5]. 

In some portfolio-based studies, many scholars focus on selected stocks. Selecting high-quality 

stocks for investment portfolios is an important factor in improving portfolio performance [6]. Some 
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studies have screened high-quality stocks through multi-factor performance, that is, comprehensive 

consideration of stock fundamentals, market value, and technical indicators. Based on this, 

investment portfolios can effectively increase the rate of return [7-8]. Some studies combine classic 

portfolio strategies, such as pair trading, by selecting stocks with different trends in the same industry, 

setting buying and shorting criteria to select stocks to build a portfolio [9-10]. The advantage of this 

method is that it can use the relative value relationship between stocks to achieve portfolio 

optimization in different market environments. There are also some studies that combine machine 

learning algorithms with investment portfolios, first use machine learning algorithms to predict future 

stock prices and build investment portfolios based on the predicted prices. By analyzing and learning 

from a vast amount of historical data, these algorithms can improve the accuracy of predicting future 

market trends. Incorporating these predictions into portfolio optimization can lead to more effective 

investment decision-making [11-12]. At the same time, the reinforcement learning method also shows 

potential in the construction of portfolio strategies. Through interactive learning with the environment, 

the agent can make corresponding trading decisions according to market changes [13]. 

The research in this paper is to combine the deep learning algorithm (LSTM, GRU, CRNN, TCN) 

with portfolio construction methods (Mean-Variance, Mean-CVaR) to build the portfolio strategies, 

then select stocks from different industries in the US stock market, and evaluate the effectiveness of 

the strategies based on cumulative returns. The innovation of this paper mainly lies in two aspects. 

One is that CRNN and TCN are rarely used in existing research. This paper combines the prediction 

advantages of deep learning with portfolio models to provide a variety of ideas for portfolio 

construction; secondly, existing literature mostly uses Mean-Variance in portfolio construction. This 

paper also introduces Mean-CVaR model and optimizes the MV model through factor score 

constraints. 

2. Data 

In order to better diversify risks and respond to market changes, this paper selects six stocks from 

different industries such as technology industry, financial industry, medical industry, energy industry, 

and catering industry in the U.S. stock market: 'AAPL', 'GS', 'JNJ', 'KO', 'XOM', 'MCD'. The stock 

data comes from Yahoo Finance and is imported through yfinance in python. To validate the strategies’ 

effectiveness, this research examines stock transactions in two distinct market environments: bull 

market (2011/01/01—2013/06/30) and bear market (2020/01/01—2022/06/30). The training set 

comprises the first 80% of the data, while the test set consists of the remaining 20% of the data. This 

research employs four deep learning algorithms to predict the adjusted close of each stock on the last 

20% of trading days. Subsequently, Mean-Variance and Mean-CVaR methods are utilized to 

construct portfolios. The performance of these strategies is then compared across different real market 

environments. 

The Table 1 below shows that stocks exhibit higher standard deviation during the bear market, 

indicating that the stock price has higher volatility and may face higher risks.  Skewness analysis 

reveals a leftward skew in the distribution of stock prices during the bear market, indicating a higher 

proportion of lower values compared to a normal distribution. 
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Table 1: The summary of data. 

2011/01/01——2013-06-30 

stock mean std min max skewness kurtosis 

AAPL 14.18 3.25 9.57 21.4 0.44 -1.09 

GS 104.11 19.66 71.71 141.68 0.18 -1.26 

JNJ 49.92 6.32 40.63 67.03 1.17 0.54 

KO 25.42 2.54 21.09 31.21 0.3 -0.89 

XOM 53.44 4.09 42.49 60.58 -0.39 -0.65 

MCD 66.21 6.88 51.39 78.52 -0.46 -0.63 

2020/01/01——2022/06/30 

stock mean std min max skewness kurtosis 

AAPL 124.77 31.82 54.92 180.43 -0.39 -0.77 

GS 279.5 78.37 125.11 404.78 -0.16 -1.43 

JNJ 150 14.59 101.98 179.75 -0.2 -0.69 

KO 50.43 6.13 33.97 63.82 0.14 -0.6 

XOM 52.5 16.9 26.34 101.09 0.71 -0.18 

MCD 212.8 26.63 127.29 260.88 -0.45 -0.35 

3. Models 

3.1. Four Deep Learning Algorithms 

3.1.1. LSTM 

Long Short-Term Memory is a specialized type of Recurrent Neural Network (RNN) that incorporates 

three distinct gates: forget gate (selectively discards unnecessary historical information), input gate 

(selectively adds certain historical information to the memory cell), and output gate(selectively passes 

certain historical information from the memory cell to the output). These gates allow LSTM to choose 

which historical stock price information to retain or discard over time and update new information. 

In stock price prediction, LSTM can predict future stock price trends by learning long-term 

dependencies and important features of historical stock price data. 

 Forget Gate: ft = σ(Wf ⋅ [ht−1, xt] + bf) (1) 

 Input Gate: it = σ(Wi ⋅ [ht−1, xt] + bi) (2) 

 Cell State Update: Ct̃ = tanh(WC ⋅ [ht−1, xt] + bC) (3) 

 New Cell State: Ct = ft ⊙ Ct−1 + it ⊙ Ct̃ (4) 

 Output Gate: ot = σ(Wo ⋅ [ht−1, xt] + bo) (5) 

 Hidden state: ht = ot ⊙ tanh(Ct) (6) 

 Output: yt = Activation(Wy ⋅ ht + by) (7) 

In the equations, the Sigmoid function σ is applied to a linear combination of the previous hidden 

state (ht−1) and the current input (xt), with corresponding weight and bias terms (𝑊 and 𝑏). The 

resulting output is then element-wise multiplied (represented by the symbol ⊙) by the output of the 

hyperbolic tangent function (tanh) applied to another linear combination of the same inputs, with 
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different weight and bias terms. The notation [ht−1, xt] indicates that the previous hidden state and 

current input are concatenated together and treated as a single input. 

3.1.2. GRU 

Gated Recurrent Unit is a type of neural network that is designed to improve upon traditional recurrent 

neural networks. It achieves this by introducing two gating mechanisms - the reset gate (selectively 

forgets outdated and irrelevant stock price information) and the update gate (selectively merges stock 

price inputs into the current state) - which help the network selectively remember or forget 

information from previous time steps. In the context of stock price forecasting, GRU has shown 

promise in accurately predicting future trends by leveraging the long-term dependencies in historical 

stock price data. 

 Reset Gate: 𝑟𝑡 = 𝜎(𝑊𝑟 ⋅ [ℎ𝑡−1, 𝑥𝑡]) (8) 

 Update Gate: 𝑧𝑡 = 𝜎(𝑊𝑧 ⋅ [ℎ𝑡−1, 𝑥𝑡]) (9) 

 New State: ℎ�̃� = tanh(𝑊ℎ ⋅ [𝑟𝑡 ⊙ ℎ𝑡−1, 𝑥𝑡]) (10) 

 Hidden state: ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ�̃� (11) 

 Output:   𝑦𝑡 = Activation(𝑊𝑦 ⋅ ℎ𝑡 + 𝑏𝑦) (12) 

where 𝜎 represents the Sigmoid function, The element-wise multiplication operation is represented 

by the symbol ⊙, the weight matrix (𝑊) is used to transform the input at each time step, then 
[ℎ𝑡−1, 𝑥𝑡] includes the previous hidden state (ht−1) and the current input (xt) 

3.1.3. CRNN 

The core idea of Convolutional Recurrent Neural Network model is to establish a seamless 

combination between CNN and RNN, so as to simultaneously use CNN to extract local spatial 

features and RNN to model sequence relationships. This combination enables the CRNN model to 

efficiently handle sequence data with temporal and spatial correlations. 

CNN part:  

 convolutional layer: ci = f(Wi ∗ x + bi) (13) 

 pooling layer(optional): pi = Pooling(ci) (14) 

RNN part:  

 RNN layer: ht = RNN(ht−1, pt) (15) 

 bidirectional RNN(optional): ht = BiRNN(ht−1, pt) (16) 

Fully connected layer and output: 

 fully connected layer: z = Wo ∗ hT + bo (17) 

 output layer: y = Activation(z) (18) 

This neural network architecture utilizes convolutional layers to generate output maps (ci) using 

activation functions (f) and corresponding weight and bias items (Wi and bi). These output maps are 

then processed by pooling layers to produce output features (pi). The output from the pooling layer 
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serves as the input for a recurrent neural network (RNN), such as LSTM or GRU, which employs a 

hidden state (ht) to capture temporal dependencies in the input data. The RNN layer's output is further 

processed by a fully connected layer with weights and biases (Wo and bo), along with an appropriate 

activation function (Activation). The final network output is denoted as y. 

3.1.4. TCN 

Temporal Convolutional Network draws inspiration from convolutional neural networks, and the use 

of convolutional layers can effectively capture the temporal relationship and local patterns in 

sequence data, so as to realize the modeling and prediction of sequence data. In stock price forecasting, 

the TCN model can capture long-term dependencies and local patterns in time series data to help 

analyze stock price trends and fluctuations. 

 hi = g(Wj ⋅ x[i: i + k − 1] + bj) (19) 

 h(0) = x (20) 

 h(l) = g(W(l) ⋅ h(l−1) + b(l)) + h(l−1) (21) 

 h(l) = g(W(l) ⋅ h(l−1) + b(l)) + h(l−1) + h(0) (22) 

This neural network architecture involves convolutional layers that produce output feature maps 

(hi) using convolutional kernels (Wj  represents the weight) applied to subsequences of the input 

sequence (x[i:i+k-1]). g is nonlinear activation function (such as ReLU), bj is a bias term, the index 

of the convolutional layer is denoted by l, and h(0) represents the input sequence, (h(l)) is used as the 

output to the next layer. 

3.2. Two Portfolio Models 

Mean-Variance (MV) and Mean-CVaR (MC) methods share a common objective of balancing risks 

and returns in investment decision-making, and construct investment portfolios with good risk-return 

characteristics. For an investment portfolio, its expected return is: 

 E(Rp) = ∑ wi
n
i=1 ⋅ μi (23) 

Subject to 

 ∑ wi
n
i=1 = 1 (24) 

 0 ≤ wi ≤ 1 for i = 1,2, … , n (25) 

where the weight assigned to each asset in the portfolio is denoted by wi, and the expected return of 

each asset is represented by μi 

Mean-Variance model, introduced by Harry Markowitz in the 1950s, aims to identify the optimal 

portfolio allocation by minimizing the portfolio's variance while maximizing the Sharpe ratio [1]. 

This approach considers both the expected returns (mean) and the level of risk (variance) associated 

with each asset in the portfolio. The portfolio variance σp
2  and Sharpe Ratio is: 

 σp
2 = ∑ ∑ Wi

n
j=1

n
i=1 ⋅ Wj ⋅ σi ⋅ σj ⋅ ρij (26) 

Proceedings of the 2nd International Conference on Financial Technology and Business Analysis
DOI: 10.54254/2754-1169/48/20230454

268



 Sharpe Ratio =
E(Rp)−Rf

σp
 (27) 

where ρij is the covariance of i and j, and Rf is risk free rate. 

Mean-CVaR model focuses on the loss exceeding the confidence level and controls the conditional 

value at risk within a certain level [3]. 

 CVaRp =
1

1−α
∫ VaRp(q)

α

0
 dq (28) 

where CVaR𝑝  represents the CVaR of the portfolio, 𝛼  is the confidence level, and VaR𝑝(𝑞) 

represents the VaR of the portfolio at the quantile 𝑞. 

4. Results 

4.1. Prediction Evaluation 

This study evaluates the performance of different models in predicting stock adjusted close by using 

two commonly metrics - mean squared error (MSE) and mean absolute error (MAE). This part is able 

to identify which models perform the best in predicting stock adjusted close and provide valuable 

insights for future research and investment decision-making. 

 MSE =
1

n
∑ (yt − yt̂)2n

t=1  (29) 

 MAE =
1

n
∑ |yt − yt̂|n

t=1  (30) 

The data in Table 2 indicates that CRNN and TCN have lower MSE and MAE compared to LSTM 

and GRU. Furthermore, the error gap between the models is larger in the bull market forecast, while 

it is smaller in the bear market forecast. Overall, TCN outperforms other models in stock price 

prediction, while LSTM exhibits larger prediction errors. 

Table 2: The Performance of different models. 

  LSTM GRU CRNN TCN 
  2013/02/14——2013-06-30 

MSE 
mean 1.11*10-3 1.04*10-3 6.65*10-4 4.03*10-4 

std 5.04*10-4 4.05*10-4 2.54*10-4 2.02*10-4 

MAE 
mean 2.46*10-2 2.41*10-2 1.90*10-2 1.47*10-2 

std 6.35*10-3 5.43*10-3 4.19*10-3 4.31*10-3 
  2022/02/14——2022/06/30 

MSE 
mean 9.42*10-4 8.83*10-4 4.82*10-4 3.59*10-4 

std 2.69*10-4 2.44*10-4 1.34*10-4 2.83*10-4 

MAE 
mean 2.23*10-2 2.16*10-2 1.53*10-2 1.39*10-2 

std 3.57*10-3 3.58*10-3 2.05*10-3 5.25*10-3 
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4.2. Portfolio Construction 

The data predicted by different deep learning models is used to construct the investment portfolio, 

and the weight distribution of each asset is obtained. After that, the effect of the portfolio is evaluated 

in the real market environment within the transaction date. This part implements the buy-and-hold 

strategy, that is, after determining the weight of each stock, hold it until the end of the maturity date, 

without considering transaction costs, leverage, and short selling.  

4.2.1. Bull Market 

The cumulative return of the S&P 500 during the specified time period is 1.057. The first sub-graph 

demonstrates that the cumulative returns of the four deep learning algorithms combined with mean-

variance (MV) strategies surpass that of the S&P 500, indicating their ability to outperform the market. 

Among these strategies, GRU+MV and TCN+MV exhibit higher cumulative returns of 1.1525 and 

1.1517, respectively, surpassing the other two strategies. In the second sub-graph, the cumulative 

return of GRU+MC is comparable to that of the S&P 500, while the TCN+MC strategy performs the 

best, exhibiting a higher cumulative return of 1.091 compared to the S&P 500. Overall, the sub-graphs 

illustrate that given a consistent prediction result, the MV strategies demonstrates superior 

performance compared to the MC strategies (See Figure 1). 

 

Figure 1: Portfolio performance during bull market. 

4.2.2. Bear Market 

The cumulative return of S&P 500 over the time period is 0.848. As can be seen from the first sub-

graph, the cumulative returns of the four deep learning algorithms combined with MV strategies 

surpass 1 and significantly outperform the S&P 500. This indicates that these four strategies exhibit 

market-beating performance and yield higher returns. Numerically, the cumulative returns of the four 

strategies are relatively close, all around 1.1. In the second sub-graph, the cumulative returns of the 

four deep learning algorithms combined with MC strategies exceed that of the S&P 500. Among them, 

the CRNN+MC strategy achieves the highest cumulative return of 1.06. In general, while all the 

investment strategies produce better cumulative returns than the benchmark index, the strategies 

based on the MV model achieved the highest returns (See Figure 2). 
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Figure 2: Portfolio performance during bear market. 

4.3. Factor Scores 

Based on the results, the use of MV in portfolio construction yields better results than MC when 

prediction outcomes are fixed. This paper extends the combination of four deep learning algorithms 

with the MV model and introduces score constraints for portfolio optimization. The selected factors 

include size factor (market capitalization), value factors (PE, PS), volatility factor (stock price 

volatility), momentum factors (RSI, daily trading volume), and profitability factor (daily returns) [14]. 

Based on the data collected during the training period, factors that have the highest positive impact 

on stock returns are assigned a score of 6, while the scores decrease sequentially in descending order. 

The lowest score assigned is 1. The final score for each stock is calculated as the average score, 

representing its overall performance. 

Let vector s represent the scores of all stocks, and vector w represent the weights assigned to the 

stocks. The constraint T is introduced to ensure that the portfolio score exceeds the target constraint. 

The following condition is incorporated into the optimization of the MV model: 

 wT ⋅ s ≥ 𝑇 (31) 

Different T values will bring different investment returns. In a bull market, lower T score 

constraints result in higher cumulative returns. When the minimum T is set at 2.5, the cumulative 

return of the portfolio for the four strategies is 1.1525, higher than that of the S&P 500, 1.0572. In 

the bear market, all five T value constraints lead to cumulative returns for the investment portfolio 

that exceed the S&P 500's performance. The higher the constraint on the T value, the greater the 

cumulative return. Specifically, with a minimum T of 4.5, the portfolio achieves a cumulative return 

close to 1.13. 

In conclusion, incorporating factor score constraints into the deep learning algorithm + MV 

framework allows for the identification of stocks with higher potential returns, leading to optimized 

investment portfolios and superior overall returns (See Table 3 and Figure 3). 
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Table 3: Optimization with integrated factor scores. 

 LSTM+MV GRU+MV CRNN+MV TCN+MV 
 2013/02/14——2013-06-30 

min T=2.5 1.1525 1.1525 1.1525 1.1525 

min T=3 1.1187 1.1293 1.1081 1.1246 

min T=3.5 1.098 1.097 1.0881 1.0918 

min T=4 1.0639 1.0639 1.0637 1.0563 

min T=4.5 1.0306 1.0306 1.0302 1.0208 
 2022/02/14——2022/06/30 

min T=2.5 1.0492 1.0492 1.0492 1.0492 

min T=3 1.0722 1.0728 1.0727 1.0733 

min T=3.5 1.0989 1.0992 1.0998 1.097 

min T=4 1.1182 1.1182 1.1182 1.114 

min T=4.5 1.1267 1.1267 1.1267 1.1257 

 

Figure 3: Cumulative returns under factor scores constraints. 

5. Conclusion 

This article focuses on portfolio construction, combining deep learning algorithms with classic 

portfolio strategies to construct different portfolio strategies. To assess the effectiveness of the 

strategy, this paper utilizes market data from both bullish and bearish market conditions, and 

compares the cumulative return of the portfolio with S&P 500 in a real market environment, and finds 

that the cumulative returns the strategies combined with the MV are better than those combined with 

MC. On this basis, this paper selects multiple factors for scoring, and adds factor scores as constraints 

to the process of portfolio optimization. The results show that the cumulative return has been steadily 

improved in both bull and bear markets.  

This article only considers the investment strategy of buy-and-hold and does not consider the 

strategy of dynamic weight adjustment as the market changes. At the same time, this article does not 

consider factors such as transaction costs. These issues are directions for further research. 
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