
Optimizing Operations Management and Business Analytics
Strategies under Uncertainty: Dynamic Programming

Ran Yi 1,a,*

1Rutgers University-New Brunswick, Rutgers Business School, New Brunswick, New Jersey, 08901,

U.S.A.

a. ry195@scarletmail.rutgers.edu

*corresponding author

Abstract: Dynamic programming is a method used in mathematics, management science,

computer science, economics, and bioinformatics to solve complex problems by

decomposing the original problem into relatively simple sub-problems. Dynamic

programming is often applicable to problems with overlapping subproblems and optimal

substructure properties. This paper employs a comprehensive research approach of literature

review, as well as empirical analysis and case studies to investigate the topic and demonstrate

the practicality and effectiveness of dynamic programming in solving complex decision-

making problems. However, the curse of dimensionality poses challenges when dealing with

high-dimensional decision spaces, requiring approximate dynamic programming methods,

including reinforcement learning algorithms. Therefore, when dealing with more complex

dynamic programming problems, it is also essential to use program construction tools such

as Python to help design a program that can optimize the problem. Therefore, in the learning

of dynamic programming, in addition to the correct understanding of basic concepts and

methods, specific problems must be analyzed and dealt with in detail, models should be built

with rich imagination, and solutions should be solved with creative skills.

Keywords: operations research, dynamic programming, business analysis, multi-stage

decision making, markov property

1. Introduction

Operational research is a multidisciplinary research field. It solves complex decision-making

problems in various fields by designing corresponding mathematical formulas for problems and using

the concept of formulas to build virtual models to optimize and analyze the development and optimal

solutions of problems. This paper delves into the principles of dynamic programming and explores

its application in the field of operations research, particularly in the areas of inventory control and

logistics. Dynamic programming was proposed by American mathematician R.E. Bellman in the

1950s. Its basic principle is the optimization principle proposed by Bellman in the book "Dynamic

Programming" [1], that is, the optimal decision-making process of multiple stages. As mentioned in

the article "A review of approximate dynamic programming applications within military operations

research" [2], Dynamic Programming is based on two fundamental principles: optimal substructure

and overlapping subproblems [3]. Given a problem and splits the problem into sub-problems until the

sub-problems can be solved directly. After getting the sub-question answer, store the answer in

Proceedings of the 2nd International Conference on Financial Technology and Business Analysis
DOI: 10.54254/2754-1169/49/20230507

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

150

mailto:ry195@scarletmail.rutgers.edu

memory to reduce double counting. It is a method to obtain the solution of the original problem based

on the reverse deduction of the answers to the sub-problems. Generally, these sub-problems are very

similar and can be recursively derived through functional relations.

Dynamic programming is committed to solving each sub-problem once and reducing repeated

calculations. For example, the Fibonacci sequence can be considered an entry-level classic dynamic

programming problem. By solving these subproblems iteratively and combining their solutions,

dynamic programming enables the determination of an optimal sequence of decisions, commonly

referred to as a decision chain. Dynamic programming utilizes the Markov property to represent

decision problems as Markov decision processes, enabling the computation of optimal policies. It

leverages self-similarity and sub-problem overlap to avoid redundant computations and improve

computational efficiency. However, dynamic programming faces challenges with high-dimensional

decision spaces, known as the curse of dimensionality. To overcome this, approximate dynamic

programming methods like reinforcement learning algorithms approximate the optimal value function

or policy. Dynamic programming finds applications in operations research, solving problems such as

dynamic inventory control and the shortest path problem in logistics. While dynamic programming

offers powerful modeling capabilities, its computational complexity increases with problem size and

dimensionality. Algorithmic design and efficient solution approaches are crucial to address these

limitations. The emergence of data-driven approximate dynamic programming, particularly

reinforcement learning, presents new opportunities to tackle these challenges and unleash the full

potential of dynamic programming as a general-purpose modeling tool.

2. Application Scenarios of Dynamic Programming

The first is the optimal solution problem. The main purpose of the optimal solution problem is to find

the largest subarray, the longest increasing subarray, the longest increasing subsequence, or the

longest common substring, subsequence, etc.; there are also the famous knapsack problem and the

most reasonable use of coupons. The second is the feasibility analysis of the problem. This includes

finding whether a path with a sum of x can be realized or finding a feasible path that meets certain

conditions, such as constraints, or the probability of occurrence of a certain event. Such problems can

be summarized as feasibility problems and solved using dynamic programming. Finally, in addition

to finding the maximum value and feasibility, finding the total number of solutions is also a relatively

common type of dynamic programming problem. This type of problem will give a data structure and

limiting conditions, so as to calculate all possible paths of a plan, then this kind of problem belongs

to the problem of finding the total number of plans.

3. Multi-Stage Decision-Making in Dynamic Programming

3.1. The Process of Decision-Making

The decision of the current stage will often affect the decision of the next stage, and the decisions of

each stage constitute a decision, a sequence called a strategy. There are several decisions to choose

from in each stage, so there are many strategies to choose from. How to choose an optimal strategy

among these strategies is a multi-stage decision-making problem. Generally, it starts from the initial

state and reaches the end state by selecting intermediate-stage decisions. These decisions form a

sequence of decisions and at the same time determine a course of action (usually an optimal course

of action) to complete the entire process. Each decision stage produces a set of states, and finally, the

optimal solution is obtained through a set of decision sequences. Problems using dynamic

programming must satisfy the optimization principle and have no after-effects. According to the book

“Introduction to Probability Models - Operations Research: Volume Two” [4], Many applications of

Proceedings of the 2nd International Conference on Financial Technology and Business Analysis
DOI: 10.54254/2754-1169/49/20230507

151

dynamic programming reduce to finding the shortest (or largest) path that joins two points in a given

network.

In any decision analytics problem, the final goal should be to find the best way to make some set

of decisions. If there’s more than one decision, the problem should be divided into stages, represented

by k. Divide the given problem-solving process into several interconnected stages appropriately to

solve the problem. The number of stages may be different if the process is different. A stage variable

is continuous if the process can make a decision at any time and an infinite number of decisions are

allowed between two different times. When solving such multi-stage problems, it is first necessary to

divide the problem into several stages according to the time or space characteristics of the problem.

When dividing the stages, note that the divided stages must be ordered or sortable, otherwise, the

problem cannot be solved. Then the various objective situations in which the problem develops at

each stage are expressed in different states. In this process, the choice of state must satisfy the non-

consequence effect. Write the state transition equations after determining the decision. Since there is

a natural connection between decision-making and state transition, the state transition is to derive the

state of this stage based on the state and decision-making of the previous stage. After obtaining the

state transition equation, this recursive equation requires a recursive termination condition or

boundary condition. In each stage k, the state, represented by xk, consists of all the information about

the decisions at earlier stages that can have any bearing on the decision at this stage and later ones.

The state represents the natural state or objective condition faced at each stage, which does not depend

on people's subjective will, and is also called an uncontrollable factor. Within each stage k, each state

xk has a value. For a state xk in stage k, its value is written Vk (xk). This value is the best profit (or

lowest cost) that you can obtain from stage t to the end, given that you are in state xk at stage k. After

the state of a stage is given, a choice (behavior) that evolves from this state to a certain state in the

next stage is called decision-making. Since the state satisfies no aftereffect, only the current state is

considered when choosing a decision at each stage without considering the history of the process. As

shown in Figure 1, given the value of the state variable x(k) in the k stage, if the decision variable in

this stage is determined, the state variable x(k+1) in the k+1 stage is also completely determined, that

is The value of x(k+1) changes with the value of x(k) and the decision u(k) of the k-th stage, then this

relationship can be regarded as (x(k), u(k)) and x The corresponding relationship determined by (k+1)

is represented by x(k+1)=Tk(x(k),u(k)).

Figure 1: Multi-stage decision process [5].

This is the law of state transition from stage k to stage k+1, called the state transition equation.

This process makes dynamic programming possible to compute the value of every state by working

backwards from the last stage.

Proceedings of the 2nd International Conference on Financial Technology and Business Analysis
DOI: 10.54254/2754-1169/49/20230507

152

3.2. Markov Property

No after-effect is also called Markov property. The article "Markov Decision Processes" [6] simply

describes Markovianness as "In the general theory a system is given which can be controlled by

sequential decisions. The state transitions are random and we assume that the system state process is

Markovian which means that previous states have no influence on future states". In the real world,

many processes can be reduced to Markov processes, such as Brownian motion - the random motion

of tiny particles or particles in a fluid. When we buy low-value items, it is usually a Markov process.

For example, when looking at the dazzling milk in front of the supermarket shelves, when considering

which brand of milk to choose, there are usually two factors that have the greatest impact on people:

which brand did you buy last time and what brand are you currently using? And now which milk

brand in the supermarket has the most promotion? To sum up: the Markov process is that the future

state has nothing to do with other historical states, but only with the current state.

3.3. Self-Similarity

If the optimal solution to a problem includes the optimal solution to the same problem on a smaller

scale, then dynamic programming can be used to solve it. The self-similarity of dynamic

programming is the basis for stage division, and each stage or subsequent sub-process has a similarity

with the whole, which is essentially the basis for the divisibility of dynamic programming problems

and the solution of detachable sub-processes.

3.4. Overlap of Sub-Problems

Dynamic programming improves the original search algorithm with exponential time complexity into

an algorithm with polynomial time complexity. The key is to solve the redundancy, which is the

fundamental purpose of the dynamic programming algorithm [7]. That is, the sub-problems are not

independent, and a sub-problem may be used multiple times in the next stage of decision-making.

(This property is not a necessary condition for the application of dynamic programming, but without

this property, the dynamic programming algorithm has no advantage over other algorithms). Dynamic

programming is essentially a technique of exchanging space for time. During its implementation, it

has to store various states in the generation process, so its space complexity is greater than other

algorithms. For a deterministic decision process, the state of the next segment in the problem is fully

determined by the state and decision of the current segment. The stochastic decision-making process,

the difference between it and the deterministic decision-making process is that the state of the next

stage cannot be completely determined by the state and decision of the current stage, but the state of

the next stage is determined according to a certain probability distribution. This probability

distribution is fully determined by the state and policy of the current segment.

4. Applications of Dynamic Programming in Operations Research

Dynamic programming finds numerous applications in Operations Research across various domains.

One such area is Inventory Management, where dynamic programming techniques assist in

identifying optimal inventory replenishment policies by considering factors such as demand

variability, holding costs, and ordering costs [8]. Resource Allocation is another field where dynamic

programming plays a crucial role in optimizing the allocation of limited resources, such as personnel,

equipment, or funds, to maximize system performance or minimize costs [9]. In Project Scheduling,

dynamic programming enables efficient scheduling of complex projects by taking into account

dependencies, resource constraints, and time-related objectives. Routing and Network Optimization

benefit from dynamic programming algorithms that can determine optimal routes in transportation

Proceedings of the 2nd International Conference on Financial Technology and Business Analysis
DOI: 10.54254/2754-1169/49/20230507

153

networks, minimizing costs or travel time [10]. Lastly, in Production Planning, dynamic

programming techniques optimize production planning decisions, including batch scheduling,

machine assignment, and job sequencing, to enhance productivity and minimize costs.

5. Advantages and Limitations of Dynamic Programming

Dynamic programming has several advantages that make it a valuable approach to problem-solving.

Firstly, it guarantees the attainment of optimal solutions by leveraging optimal substructure. This

means that it can identify the globally best solutions for problems. Secondly, dynamic programming

enables efficient computation by reusing previously computed results through memoization. This

technique significantly reduces computational effort, especially for problems with overlapping

subproblems. Thirdly, dynamic programming exhibits versatility, as it can be applied to a wide range

of problems across different domains, making it a flexible tool within operations research.

Despite its advantages, dynamic programming does have limitations that should be considered.

One limitation is the curse of dimensionality, first introduced by Bellman [1], where the

computational complexity of dynamic programming algorithms increases exponentially with the size

of the problem. As shown in Figure 2, the problem of data sparsity is caused by high dimensionality:

Suppose there is a feature whose value range d is evenly distributed between 0 and 2, and its value is

unique for any point. In the one-dimensional picture displayed in Figure 2a, all points are in the same

dimension and are relatively closely related to each other. Figure 2b shows that these points in the

two-dimensional space are re-divided due to the addition of a new dimension, and the points that were

originally determined to belong to the same zone space may not belong to the same space at this time.

The green point that was in a 1D unit-sized container is now no longer inside that 2D square. Figure

2c illustrates objects in a 3D feature space. When the dimension is close to a certain level, to obtain

the same number of training samples, it is necessary to obtain a value range close to 100% in almost

every dimension or to increase the total sample size, but the sample size is always limited. Due to the

curse of dimensionality, the points become sparser by adding more dimensions.

Figure 2: The curse of dimensionality (a) 11 objects in one unit bin (b) 6 objects in one unit bin (c) 4

objects in one unit bin (see online version for colours) [11].

This restricts the scalability of dynamic programming for solving large-scale problems efficiently.

Another limitation is that dynamic programming is most effective for problems with discrete decision

spaces, and its application to continuous or mixed-integer problems is limited. Finally, dynamic

programming may require substantial memory resources to maintain a dynamic programming table

or memoization array. Consequently, the memory requirements can impose restrictions on the size of

problems that can be effectively solved using dynamic programming techniques. When the system

model is Markovian and the objective function is separable and nested monotonic, based on the

Proceedings of the 2nd International Conference on Financial Technology and Business Analysis
DOI: 10.54254/2754-1169/49/20230507

154

optimality principle proposed by Bellman, dynamic programming can be used to decompose the

multi-stage global optimal decision-making problem into a series of local optimization problems on

segments. Compared with other solutions, especially in the presence of disturbances or in stochastic

situations, dynamic programming can always effectively provide an optimal feedback control strategy

under the current information set. However, no breakthrough has been made in overcoming the

Achilles' heel of dynamic programming, which Bellman calls the "curse of dimensionality".

Therefore, it is urgent to seek an effective algorithm to overcome the curse of dimensionality for the

application of dynamic programming in high-dimensional problems. In addition, the optimal strategy

obtained by solving an inseparable optimization problem does not satisfy the principle of optimality

or does not have time consistency, which involves the rationality of the inseparable optimization

problem model itself, so how to find a set of separable optimization problems to approximate A given

inseparable optimization problem also has its obvious importance for the development of dynamic

programming.

6. Conclusion

Dynamic programming is a very powerful modeling tool. Basically, if a multi-stage decision problem

cannot be written as a dynamic programming model, it is likely that the optimal solution to the

problem is also difficult to find. For example, in the field of operations management, the so-called

dynamic inventory control problem is a very classic dynamic programming problem. In the field of

logistics and transportation, the shortest path problem, one of the core problems, is also a classic

dynamic programming problem. In fact, any Markov decision process problem with a finite state

space can be written as a shortest path problem. The price of powerful modeling capabilities is that it

is often easy for people to write all kinds of dazzling dynamic programming recursions, but it may

take a long time to find an "efficient" algorithm to solve them. This is because dynamic programming

is a mathematical programming modeling idea, especially when the dimension of the decision space

is large, the dynamic programming algorithm will suffer from the famous curse of dimensionality,

that is, the algorithm solution time increases exponentially with the problem scale. Therefore, in order

to really solve complex dynamic programming problems, people can only approximate the solution,

which is also called approximate dynamic programming. In recent years, with the upsurge of machine

learning, data-driven approximate dynamic programming has gradually become familiar again,

especially one type of approximate algorithm, the so-called reinforcement learning algorithm. In

conclusion, dynamic programming has existed as a research field for more than half a century. At

present, it has received another wave of attention, and its research difficulty lies in the design and

solution of algorithms for high-dimensional problems as a general-purpose modeling tool.

References

[1] Bellman, R.E. (1957) Dynamic Programming. Princeton University Press, Princeton.

[2] Rempel, M., and J. Cai. “A Review of Approximate Dynamic Programming Applications within Military Operations

Research.” Operations Research Perspectives, vol. 8, 2021, p. 100204, https://doi.org/10.1016/j.orp.2021.100204.

[3] de Souza, E. A., Nagano, M. S., & Rolim, G. A. (2022). Dynamic programming algorithms and their applications in

Machine Scheduling: A Review. Expert Systems with Applications, 190, 116180.

https://doi.org/10.1016/j.eswa.2021.116180

[4] Winston, Wayne L. Introduction to Probability Models, Operations Research: Volume Two. Thomson Learning,

2004.

[5] Faísca, Nuno P., et al. “A Multi-Parametric Programming Approach for Constrained Dynamic Programming

Problems.” Optimization Letters, vol. 2, no. 2, 2007, pp. 267–280, https://doi.org/10.1007/s11590-007-0056-3.

[6] Bäuerle, Nicole, and Ulrich Rieder. “Markov Decision Processes.” Jahresbericht Der Deutschen Mathematiker-

Vereinigung, vol. 112, no. 4, 2010, pp. 217–243, https://doi.org/10.1365/s13291-010-0007-2.

Proceedings of the 2nd International Conference on Financial Technology and Business Analysis
DOI: 10.54254/2754-1169/49/20230507

155

[7] Ferrentino, E., & Chiacchio, P. (2018). A topological approach to globally-optimal redundancy resolution with

Dynamic Programming. ROMANS 22 – Robot Design, Dynamics and Control, 77–85. https://doi.org/10.1007/978-

3-319-78963-7_11

[8] Silver, E. A. (1981). Operations research in inventory management: A review and Critique. Operations Research,

29(4), 628–645. https://doi.org/10.1287/opre.29.4.628

[9] Mohammad Hossein Bateni, Yiwei Chen, Dragos Florin Ciocan, Vahab Mirrokni (2021) Fair Resource Allocation

in a Volatile Marketplace. Operations Research 70(1):288-308.

[10] Şeref, O., Ahuja, R. K., & Orlin, J. B. (2009). Incremental network optimization: Theory and Algorithms. Operations

Research, 57(3), 586–594. https://doi.org/10.1287/opre.1080.0607

[11] Rajput, D. S., Singh, P. K., & Bhattacharya, M. (2012). Iqram: A high dimensional data clustering technique.

International Journal of Knowledge Engineering and Data Mining, 2(2/3), 117.

https://doi.org/10.1504/ijkedm.2012.051237

Proceedings of the 2nd International Conference on Financial Technology and Business Analysis
DOI: 10.54254/2754-1169/49/20230507

156

https://pubsonline.informs.org/action/doSearch?text1=Bateni%2C+MohammadHossein&field1=Contrib
https://pubsonline.informs.org/action/doSearch?text1=Chen%2C+Yiwei&field1=Contrib
https://pubsonline.informs.org/action/doSearch?text1=Ciocan%2C+Dragos+Florin&field1=Contrib
https://pubsonline.informs.org/action/doSearch?text1=Mirrokni%2C+Vahab&field1=Contrib

