
Optimizing Operations Management and Business Analytics 
Strategies under Uncertainty: Dynamic Programming 

Ran Yi 1,a,* 

1Rutgers University-New Brunswick, Rutgers Business School, New Brunswick, New Jersey, 08901, 

U.S.A. 

a. ry195@scarletmail.rutgers.edu 

*corresponding author 

Abstract: Dynamic programming is a method used in mathematics, management science, 

computer science, economics, and bioinformatics to solve complex problems by 

decomposing the original problem into relatively simple sub-problems. Dynamic 

programming is often applicable to problems with overlapping subproblems and optimal 

substructure properties. This paper employs a comprehensive research approach of literature 

review, as well as empirical analysis and case studies to investigate the topic and demonstrate 

the practicality and effectiveness of dynamic programming in solving complex decision-

making problems. However, the curse of dimensionality poses challenges when dealing with 

high-dimensional decision spaces, requiring approximate dynamic programming methods, 

including reinforcement learning algorithms. Therefore, when dealing with more complex 

dynamic programming problems, it is also essential to use program construction tools such 

as Python to help design a program that can optimize the problem. Therefore, in the learning 

of dynamic programming, in addition to the correct understanding of basic concepts and 

methods, specific problems must be analyzed and dealt with in detail, models should be built 

with rich imagination, and solutions should be solved with creative skills. 

Keywords: operations research, dynamic programming, business analysis, multi-stage 

decision making, markov property 

1. Introduction 

Operational research is a multidisciplinary research field. It solves complex decision-making 

problems in various fields by designing corresponding mathematical formulas for problems and using 

the concept of formulas to build virtual models to optimize and analyze the development and optimal 

solutions of problems. This paper delves into the principles of dynamic programming and explores 

its application in the field of operations research, particularly in the areas of inventory control and 

logistics. Dynamic programming was proposed by American mathematician R.E. Bellman in the 

1950s. Its basic principle is the optimization principle proposed by Bellman in the book "Dynamic 

Programming" [1], that is, the optimal decision-making process of multiple stages. As mentioned in 

the article "A review of approximate dynamic programming applications within military operations 

research" [2], Dynamic Programming is based on two fundamental principles: optimal substructure 

and overlapping subproblems [3]. Given a problem and splits the problem into sub-problems until the 

sub-problems can be solved directly. After getting the sub-question answer, store the answer in 
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memory to reduce double counting. It is a method to obtain the solution of the original problem based 

on the reverse deduction of the answers to the sub-problems. Generally, these sub-problems are very 

similar and can be recursively derived through functional relations.  

Dynamic programming is committed to solving each sub-problem once and reducing repeated 

calculations. For example, the Fibonacci sequence can be considered an entry-level classic dynamic 

programming problem. By solving these subproblems iteratively and combining their solutions, 

dynamic programming enables the determination of an optimal sequence of decisions, commonly 

referred to as a decision chain. Dynamic programming utilizes the Markov property to represent 

decision problems as Markov decision processes, enabling the computation of optimal policies. It 

leverages self-similarity and sub-problem overlap to avoid redundant computations and improve 

computational efficiency. However, dynamic programming faces challenges with high-dimensional 

decision spaces, known as the curse of dimensionality. To overcome this, approximate dynamic 

programming methods like reinforcement learning algorithms approximate the optimal value function 

or policy. Dynamic programming finds applications in operations research, solving problems such as 

dynamic inventory control and the shortest path problem in logistics. While dynamic programming 

offers powerful modeling capabilities, its computational complexity increases with problem size and 

dimensionality. Algorithmic design and efficient solution approaches are crucial to address these 

limitations. The emergence of data-driven approximate dynamic programming, particularly 

reinforcement learning, presents new opportunities to tackle these challenges and unleash the full 

potential of dynamic programming as a general-purpose modeling tool. 

2. Application Scenarios of Dynamic Programming 

The first is the optimal solution problem. The main purpose of the optimal solution problem is to find 

the largest subarray, the longest increasing subarray, the longest increasing subsequence, or the 

longest common substring, subsequence, etc.; there are also the famous knapsack problem and the 

most reasonable use of coupons. The second is the feasibility analysis of the problem. This includes 

finding whether a path with a sum of x can be realized or finding a feasible path that meets certain 

conditions, such as constraints, or the probability of occurrence of a certain event. Such problems can 

be summarized as feasibility problems and solved using dynamic programming. Finally, in addition 

to finding the maximum value and feasibility, finding the total number of solutions is also a relatively 

common type of dynamic programming problem. This type of problem will give a data structure and 

limiting conditions, so as to calculate all possible paths of a plan, then this kind of problem belongs 

to the problem of finding the total number of plans. 

3. Multi-Stage Decision-Making in Dynamic Programming 

3.1. The Process of Decision-Making 

The decision of the current stage will often affect the decision of the next stage, and the decisions of 

each stage constitute a decision, a sequence called a strategy. There are several decisions to choose 

from in each stage, so there are many strategies to choose from. How to choose an optimal strategy 

among these strategies is a multi-stage decision-making problem. Generally, it starts from the initial 

state and reaches the end state by selecting intermediate-stage decisions. These decisions form a 

sequence of decisions and at the same time determine a course of action (usually an optimal course 

of action) to complete the entire process. Each decision stage produces a set of states, and finally, the 

optimal solution is obtained through a set of decision sequences. Problems using dynamic 

programming must satisfy the optimization principle and have no after-effects. According to the book 

“Introduction to Probability Models - Operations Research: Volume Two” [4], Many applications of 
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dynamic programming reduce to finding the shortest (or largest) path that joins two points in a given 

network.  

In any decision analytics problem, the final goal should be to find the best way to make some set 

of decisions. If there’s more than one decision, the problem should be divided into stages, represented 

by k. Divide the given problem-solving process into several interconnected stages appropriately to 

solve the problem. The number of stages may be different if the process is different. A stage variable 

is continuous if the process can make a decision at any time and an infinite number of decisions are 

allowed between two different times. When solving such multi-stage problems, it is first necessary to 

divide the problem into several stages according to the time or space characteristics of the problem. 

When dividing the stages, note that the divided stages must be ordered or sortable, otherwise, the 

problem cannot be solved. Then the various objective situations in which the problem develops at 

each stage are expressed in different states. In this process, the choice of state must satisfy the non-

consequence effect. Write the state transition equations after determining the decision. Since there is 

a natural connection between decision-making and state transition, the state transition is to derive the 

state of this stage based on the state and decision-making of the previous stage. After obtaining the 

state transition equation, this recursive equation requires a recursive termination condition or 

boundary condition. In each stage k, the state, represented by xk, consists of all the information about 

the decisions at earlier stages that can have any bearing on the decision at this stage and later ones.  

The state represents the natural state or objective condition faced at each stage, which does not depend 

on people's subjective will, and is also called an uncontrollable factor. Within each stage k, each state 

xk has a value. For a state xk in stage k, its value is written Vk (xk). This value is the best profit (or 

lowest cost) that you can obtain from stage t to the end, given that you are in state xk at stage k. After 

the state of a stage is given, a choice (behavior) that evolves from this state to a certain state in the 

next stage is called decision-making. Since the state satisfies no aftereffect, only the current state is 

considered when choosing a decision at each stage without considering the history of the process. As 

shown in Figure 1, given the value of the state variable x(k) in the k stage, if the decision variable in 

this stage is determined, the state variable x(k+1) in the k+1 stage is also completely determined, that 

is The value of x(k+1) changes with the value of x(k) and the decision u(k) of the k-th stage, then this 

relationship can be regarded as (x(k), u(k)) and x The corresponding relationship determined by (k+1) 

is represented by x(k+1)=Tk(x(k),u(k)). 

 

Figure 1: Multi-stage decision process [5]. 

This is the law of state transition from stage k to stage k+1, called the state transition equation. 

This process makes dynamic programming possible to compute the value of every state by working 

backwards from the last stage. 
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3.2. Markov Property 

No after-effect is also called Markov property. The article "Markov Decision Processes" [6] simply 

describes Markovianness as "In the general theory a system is given which can be controlled by 

sequential decisions. The state transitions are random and we assume that the system state process is 

Markovian which means that previous states have no influence on future states". In the real world, 

many processes can be reduced to Markov processes, such as Brownian motion - the random motion 

of tiny particles or particles in a fluid. When we buy low-value items, it is usually a Markov process. 

For example, when looking at the dazzling milk in front of the supermarket shelves, when considering 

which brand of milk to choose, there are usually two factors that have the greatest impact on people: 

which brand did you buy last time and what brand are you currently using? And now which milk 

brand in the supermarket has the most promotion? To sum up: the Markov process is that the future 

state has nothing to do with other historical states, but only with the current state. 

3.3. Self-Similarity 

If the optimal solution to a problem includes the optimal solution to the same problem on a smaller 

scale, then dynamic programming can be used to solve it. The self-similarity of dynamic 

programming is the basis for stage division, and each stage or subsequent sub-process has a similarity 

with the whole, which is essentially the basis for the divisibility of dynamic programming problems 

and the solution of detachable sub-processes. 

3.4. Overlap of Sub-Problems 

Dynamic programming improves the original search algorithm with exponential time complexity into 

an algorithm with polynomial time complexity. The key is to solve the redundancy, which is the 

fundamental purpose of the dynamic programming algorithm [7]. That is, the sub-problems are not 

independent, and a sub-problem may be used multiple times in the next stage of decision-making. 

(This property is not a necessary condition for the application of dynamic programming, but without 

this property, the dynamic programming algorithm has no advantage over other algorithms). Dynamic 

programming is essentially a technique of exchanging space for time. During its implementation, it 

has to store various states in the generation process, so its space complexity is greater than other 

algorithms. For a deterministic decision process, the state of the next segment in the problem is fully 

determined by the state and decision of the current segment. The stochastic decision-making process, 

the difference between it and the deterministic decision-making process is that the state of the next 

stage cannot be completely determined by the state and decision of the current stage, but the state of 

the next stage is determined according to a certain probability distribution. This probability 

distribution is fully determined by the state and policy of the current segment. 

4. Applications of Dynamic Programming in Operations Research 

Dynamic programming finds numerous applications in Operations Research across various domains. 

One such area is Inventory Management, where dynamic programming techniques assist in 

identifying optimal inventory replenishment policies by considering factors such as demand 

variability, holding costs, and ordering costs [8]. Resource Allocation is another field where dynamic 

programming plays a crucial role in optimizing the allocation of limited resources, such as personnel, 

equipment, or funds, to maximize system performance or minimize costs [9]. In Project Scheduling, 

dynamic programming enables efficient scheduling of complex projects by taking into account 

dependencies, resource constraints, and time-related objectives. Routing and Network Optimization 

benefit from dynamic programming algorithms that can determine optimal routes in transportation 
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networks, minimizing costs or travel time [10]. Lastly, in Production Planning, dynamic 

programming techniques optimize production planning decisions, including batch scheduling, 

machine assignment, and job sequencing, to enhance productivity and minimize costs. 

5. Advantages and Limitations of Dynamic Programming 

Dynamic programming has several advantages that make it a valuable approach to problem-solving. 

Firstly, it guarantees the attainment of optimal solutions by leveraging optimal substructure. This 

means that it can identify the globally best solutions for problems. Secondly, dynamic programming 

enables efficient computation by reusing previously computed results through memoization. This 

technique significantly reduces computational effort, especially for problems with overlapping 

subproblems. Thirdly, dynamic programming exhibits versatility, as it can be applied to a wide range 

of problems across different domains, making it a flexible tool within operations research. 

Despite its advantages, dynamic programming does have limitations that should be considered. 

One limitation is the curse of dimensionality, first introduced by Bellman [1], where the 

computational complexity of dynamic programming algorithms increases exponentially with the size 

of the problem. As shown in Figure 2, the problem of data sparsity is caused by high dimensionality: 

Suppose there is a feature whose value range d is evenly distributed between 0 and 2, and its value is 

unique for any point. In the one-dimensional picture displayed in Figure 2a, all points are in the same 

dimension and are relatively closely related to each other. Figure 2b shows that these points in the 

two-dimensional space are re-divided due to the addition of a new dimension, and the points that were 

originally determined to belong to the same zone space may not belong to the same space at this time. 

The green point that was in a 1D unit-sized container is now no longer inside that 2D square. Figure 

2c illustrates objects in a 3D feature space. When the dimension is close to a certain level, to obtain 

the same number of training samples, it is necessary to obtain a value range close to 100% in almost 

every dimension or to increase the total sample size, but the sample size is always limited. Due to the 

curse of dimensionality, the points become sparser by adding more dimensions. 

 

Figure 2: The curse of dimensionality (a) 11 objects in one unit bin (b) 6 objects in one unit bin (c) 4 

objects in one unit bin (see online version for colours) [11]. 

This restricts the scalability of dynamic programming for solving large-scale problems efficiently. 

Another limitation is that dynamic programming is most effective for problems with discrete decision 

spaces, and its application to continuous or mixed-integer problems is limited. Finally, dynamic 

programming may require substantial memory resources to maintain a dynamic programming table 

or memoization array. Consequently, the memory requirements can impose restrictions on the size of 

problems that can be effectively solved using dynamic programming techniques. When the system 

model is Markovian and the objective function is separable and nested monotonic, based on the 
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optimality principle proposed by Bellman, dynamic programming can be used to decompose the 

multi-stage global optimal decision-making problem into a series of local optimization problems on 

segments. Compared with other solutions, especially in the presence of disturbances or in stochastic 

situations, dynamic programming can always effectively provide an optimal feedback control strategy 

under the current information set. However, no breakthrough has been made in overcoming the 

Achilles' heel of dynamic programming, which Bellman calls the "curse of dimensionality". 

Therefore, it is urgent to seek an effective algorithm to overcome the curse of dimensionality for the 

application of dynamic programming in high-dimensional problems. In addition, the optimal strategy 

obtained by solving an inseparable optimization problem does not satisfy the principle of optimality 

or does not have time consistency, which involves the rationality of the inseparable optimization 

problem model itself, so how to find a set of separable optimization problems to approximate A given 

inseparable optimization problem also has its obvious importance for the development of dynamic 

programming. 

6. Conclusion 

Dynamic programming is a very powerful modeling tool. Basically, if a multi-stage decision problem 

cannot be written as a dynamic programming model, it is likely that the optimal solution to the 

problem is also difficult to find. For example, in the field of operations management, the so-called 

dynamic inventory control problem is a very classic dynamic programming problem. In the field of 

logistics and transportation, the shortest path problem, one of the core problems, is also a classic 

dynamic programming problem. In fact, any Markov decision process problem with a finite state 

space can be written as a shortest path problem. The price of powerful modeling capabilities is that it 

is often easy for people to write all kinds of dazzling dynamic programming recursions, but it may 

take a long time to find an "efficient" algorithm to solve them. This is because dynamic programming 

is a mathematical programming modeling idea, especially when the dimension of the decision space 

is large, the dynamic programming algorithm will suffer from the famous curse of dimensionality, 

that is, the algorithm solution time increases exponentially with the problem scale. Therefore, in order 

to really solve complex dynamic programming problems, people can only approximate the solution, 

which is also called approximate dynamic programming. In recent years, with the upsurge of machine 

learning, data-driven approximate dynamic programming has gradually become familiar again, 

especially one type of approximate algorithm, the so-called reinforcement learning algorithm. In 

conclusion, dynamic programming has existed as a research field for more than half a century. At 

present, it has received another wave of attention, and its research difficulty lies in the design and 

solution of algorithms for high-dimensional problems as a general-purpose modeling tool. 
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