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Abstract: In the rapidly evolving digital marketing landscape, the utilization of consumer data 

is essential for efficient targeting and personalization of marketing practices. However, the 

growing concerns regarding user privacy and stringent data protection regulations have 

created challenges in accessing and using consumer data for marketing purposes. This paper 

introduces a novel approach that leverages Differential Privacy and Conditional Tabular 

Generative Adversarial Networks (CTGAN) to address these privacy concerns while 

maintaining the efficacy of data-driven digital marketing strategies. Our approach 

amalgamates the strengths of Differential Privacy and CTGAN, applying differential privacy 

to the original dataset to ensure that extracted data cannot be tied back to individuals. We 

then train a CTGAN on an open marketing dataset to learn and generate synthetic data of 

close resemblance. Through extensive empirical analysis, we evaluate the fidelity, utility, and 

trade-offs of our approach, demonstrating its effectiveness in synthesizing non-Gaussian and 

multi-modal distributions, and its applicability in real-world classification problems. The 

research also highlights the complexity of hyperparameter tuning and the importance of a 

balanced approach in model training. Our findings contribute valuable insights to both the 

theoretical understanding of generative models and practical guidance for digital marketing 

practitioners 

Keywords: Digital Marketing, Privacy, Consumer Data, Differential Privacy, Generative 

Adversarial Network 

1. Introduction 

The marketplace today has undergone drastic reforms with the digital market emerging as a critical 

aspect of the U.S. economy. In the 2022 U.S. Census Bureau report, e-commerce accounts for an 

average of 14.65 percent of total U.S. retail sales and (adjusted for trading-day differences and moving 

holidays) are estimated to reach 15.1 percent by the first quarter of 2023 (adjusted for seasonal 

variation, but not for price changes).[1] Such trends are well reflected in the business landscape, 

where multinational technological corporations such as Google, Facebook, Amazon, Alibaba, and 

Uber are becoming key competitors.[2] As a result, the prevalence of the digital market has motivated 

companies to highlight a more interactive and personalized customer experience through multi-

channel digital marketing, in which consumer data plays an essential role. However, digital marketing 
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using big data has introduced a dilemmatic status quo. On one hand, data-based marketing campaigns 

largely enhance the consumer experience with tailored offerings and reduced informational 

asymmetries. On the other hand, consumers are growing alert against efforts made at the firm level 

to collect and leverage personally identifiable data, and such privacy concerns in turn diminish the 

utility of digital marketing. 

In response, regulatory measures such as the European Union’s General Data Protection 

Regulation (GDPR)[3] and California Consumer Privacy Act (CCPA)[4] mandates strict restriction 

against the collection of consumer information and subsequent algorithm analysis. These regulations 

nonetheless operate at the cost of diminished profit and marketing inefficiency, requiring 10-20 

percent greater investment for companies to obtain the same level of return.[5] Moreover, certain 

privacy-unconcerned consumers are turning toward third-party intermediaries in the private market, 

where they may exchange personal information for value in return.[5] In general, there remains room 

for refinement in the study of privacy concerns and relevant solutions. 

The purpose of this study is to propose an alternative measure of privacy preservation that 

preserves the fundamental utility of data-based digital marketing while in compliance with 

government and corporate privacy regulations. Primarily, we adopt the conditional tabular generative 

adversarial network (CTGAN) to synthesize high-quality consumer data for algorithmic analysis. The 

application of differential privacy in the training procedure of CTGAN acts as a privacy buffer 

between the training dataset and the operator, ensuring that even an untrustworthy operator cannot 

gain access to consumers’ identifiable information. In this manner, the proposed methodology seeks 

to achieve the dual objective of profit maximization and privacy protection in data-based marketing. 

This study presents several interdisciplinary contributions to the existing field of economics and 

machine learning. First, it improves on the existing commercial use of GAN learning using CTGAN 

as a suitable variant to generate real-world tabular data. Second, a comprehensive evaluation 

assessing the quality and trade-offs of different customization settings is conducted over synthesized 

datasets, with modified metrics made accessible for better understanding. Lastly, a customized 

random forest classifier integrated with numerous models is used to analyze the predictive accuracy 

of the synthesized datasets to avoid possible distortion of overfitting and class imbalance. 

This paper is structured as follows. Section 2 begins with a comprehensive review of existing 

literature in the study of privacy concerns and current measures of privacy preservation, as well as 

GAN application in relevant areas. Section 3 introduces the principal structure of GAN and 

differential privacy. In addition, we show that CTGAN is suitable and present the set of procedures 

to implement CTGAN on Python Jupyter Notebook, along with customizations that are made 

specifically for the chosen dataset. Section 4 discusses the evaluation metrics and compares results 

yielded from differentially private synthesized datasets. Finally, Section 5 discusses possible 

implications and the general conclusion on this topic. Section 6 acknowledges contributions. 

2. Literature Review 

2.1. Defining the concept of privacy in the digital market 

The semantic definition of privacy refers to the “state of being alone and not watched or disturbed by 

other people” in the Oxford Dictionary[6], except this concept gains extended significance and 

entitlements in the contemporary digital market.  

Stone and Stone presented a summarizing framework of prior definitions, concluding a necessary 

overlapping of three elements in an accurate definition of privacy[7]. The first attribute pertains to 

“information control”. Goffman encapsulates privacy as the regulation of “identity information” 

under different social situations.[8][9] In more recent studies, this is specified as the selective 

disclosure of information and its subsequent dissemination. The importance of information control, 

Proceedings of the 2nd International Conference on Financial Technology and Business Analysis
DOI: 10.54254/2754-1169/59/20231105

171



therefore, rests in the capacity to limit others from extracting knowledge on the said individual, 

preventing the acquisition of past, present, and, possibly, deduced future intentions.[8][9][10] In a 

similar vein, various works associates privacy with controlling the desirable amount of interaction 

one has with other people. Laufer and Wolfe argue that the amount of social interaction one receives 

is dependent on the role and respective socio-physical environment he/she partakes.[11] In particular, 

this perspective has strong implications in the socio-physical environment of digital marketing as 

companies adopt calculative algorithms and multi-channel communications to interact with their 

customers; the former assigning specific roles based on collected personal data and the latter sending 

tailored advertisements via various channels of media platform. Lastly, one may also generalize 

information and interaction control as determinants of an individual’s degree of autonomy and 

freedom in the digital market. Initially, Goffman’s seminal work in 1955 highlights that an individual 

is manipulated when others possess information about he/she.[8] Privacy as autonomy and freedom 

in the digital market is therefore guaranteed when the individual can manage information and 

interaction disclosure to prevent external manipulation. Customers nowadays may not be entirely 

private as their online behaviors are constantly tracked by companies and their data are collected to 

generate targeted advertisements. 

In essence, the comprehensive definition of privacy describes a consumer’s rightful boundaries 

that safeguard the outflow of their information and social interaction to ensure an individual’s 

freedom in the digitalized environment. The breaching of such boundaries is shown to raise 

considerable concerns. 

In terms of machine learning, consumer privacy is guaranteed when their information is in a state 

of “differentially privacy”. In particular, the concept of differential privacy is a promise that external 

attempts to extract personally related information from a population of data cannot be achieved and 

that individual consumers are protected from being personally identified.[12] 

2.2. Privacy concerns and negative reactions 

An early poll conducted by Equifax in 1992 reveals that 79% of American customers hold privacy 

concerns, while 55% believe that "protection of information about consumers will get worse by the 

year 2000” (Equifax).[13] Recent literature shows evidence that such distrust has been exacerbated 

over time. In their 2013 study, Pingitore et al found that a majority of surveyed subjects deem access 

to personal data through online cookies and social media as inappropriate, with 81% of customers 

believing that they do not have control over companies' usage of their personal data.[14] In terms of 

organizational responsibility, Brodherson et al reported that only 33% of Americans trust that 

companies are using their information responsibly, whereas 25% hold a neutral response by 

unawareness.[5] 

In the study of consumer psychology, privacy concerns are shown to be founded upon different 

impetuses. Notably, Smith et al provided a framework on the multidimensional nature of privacy 

concerns in 1996[15], and the taxonomy was further adapted to the domain of information privacy in 

the digital environment by Malhotra et al.[16] This literature review primarily focuses on Malhotra’s 

modified construct of IUIPC.  

One of the three dimensions that IUIPC integrates from Smith et al’s traditional CFIP framework 

involves privacy concerns that arise from the excessive collection of personal data. In particular, 

Phelps et al found that 85.6% percent of respondents want to limit the amount of personal data 

collected by marketers.[17] A study by Cespedes and Smith reports an idiosyncratic level of “privacy 

threshold” that would raise considerable concern if trespassed, even if individuals may be willing to 

exchange personal data for benefits.[18] 

Another dimension of privacy concerns relates to consumer control. In the same study by Phelps 

et al, 84 percent of respondents expressed the desire to have more control over personal data to avoid 
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commercial advertisement.[17] Research by Nowak and Phelps shows that consumers are less 

worried about data collection when they are explicitly given the option to opt-out.[19] Conversely, 

an individual’s inability to manifestly control how their personal data is collected, leveraged, and 

subsequently disseminated at the firm level generates privacy concerns. Culnan, for instance, 

discovered that consumers who negatively view unauthorized secondary use of information are more 

likely to perceive their privacy as being invaded.[20] Unfortunately, a study by Enonymous.com 

reports that only 3.5 percent of 30,000 investigated websites never shared personal information with 

a third party, with roughly 22,000 websites that do not provide privacy policies at all.[21] Such 

massive redistribution of identifiable databases would likely give rise to more privacy concerns as 

technology renders data more accessible and easier to exchange. 

Thirdly, an individual’s understanding of organizational practices of personal data constitutes a 

crucial dimension in consumer privacy concerns. According to an analysis by Hoffman et al, 63 

percent of consumers refuse to provide personal information because they do not trust cyber markets, 

whereas 69 percent of respondents who opt for mistrust do not provide information due to their lack 

of knowledge regarding its usage.[22] Consistent with these findings, Phelps et al also report evidence 

that consumers seek more information and greater transparency regarding the organizational leverage 

of personal data.[17] 

As a result, privacy concern in the digital environment is highly heterogeneous and context specific. 

The specificity of the situation in which consumers’ concerns toward their information are raised, 

therefore, leads to a variety of negative reactions. In the specific context of online advertising, for 

instance, Goldfarb and Tucker found that the combination of contextual (targeting) ads with obtrusive 

ads draws reduced purchase intent compared to when two types of ads are displayed 

independently.[23] White et al found, aside from reduced purchase intent, consumer reaction to 

personal marketing communication can manifest in communication avoidance, information 

falsification, and derogatory word-of-mouth.[24] Norberg and Horne also demonstrate that 

consumers with privacy concerns are more likely to submit falsified information.[25] Overall, these 

negative reactions uniformly lead to the reduced efficacy of digital marketing and data utility. 

2.3. Privacy Preservation Measures 

Regulations to ensure consumer privacy in the collection and analysis of personally identifiable data 

include government enactments or corporation policies. The former is represented by existing 

legislations, such as the EU’s General Data Protection Regulation (GDPR),[26] California Customer 

Private Act (CCPA),[4] Health Insurance Portability and Accountability Act,[27] and other privacy 

proposals; The latter includes Google’s recent removal of website cookies and Apple’s built-in 

features of minimizing database accessibility to third-party service providers.[5] These regulations 

present several downfalls. For one, prohibiting the collection and marketing operation of consumer 

data at a granular level negatively affects the efficacy of marketing campaigns. According to an 

investigation conducted under the implementation of GDPR by Goldfarb and Tucker, banner ads 

experienced a 65 percent reduction in effectiveness on display in European countries under GDPR, 

whereas this pattern is not discovered among ads released in non-European countries.[28] A study by 

Brodherson estimates that the phasing out of website cookies will likely cause marketers 10 to 20 

percent more spending to generate the same returns.[5] For another, regulatory measures do not 

pertain to all consumers. According to Westin, the consumer population can be subdivided into 

privacy fundamentalist, privacy unconcerned, and privacy pragmatist.[29] As such, while privacy 

fundamentalists may advocate the regulation of data-driven marketing, privacy unconcerned and 

privacy pragmatists may hold opposite attitudes toward such practice. 

On the other hand, traditional techniques of anonymization also have inherent flaws that largely 

limit efficacy in privacy preservation. The procedure of k-anonymity, for instance, is highly 

Proceedings of the 2nd International Conference on Financial Technology and Business Analysis
DOI: 10.54254/2754-1169/59/20231105

173



dependent on large quantities of diverse quasi-identifiers. In the absence of database diversity, k-

anonymity is inherently vulnerable to homogeneity and contextual (background knowledge) attacks, 

causing leakage of sensitive attributes.[30] Furthermore, de-anonymization techniques can 

effectively re-identify cloaked datasets even when only partial data are presented and background 

knowledge is insufficient. An evaluation of the effectiveness of de-anonymization attacks against 

high-dimensional micro-data released online by Narayanan and Shmatikov found that an adversary 

with little contextual knowledge can successfully identify records of known users from limited 

databases, even uncovering sensitive information such as political and sexual preferences.[31] 

Other studies suggest that the emerging private market is not a panacea to privacy concerns. A 

study by Awad and Krishnan reveals a paradox in terms of infomediary models; customers value 

these profitable outcomes while also maintaining feelings of vulnerability in the exchange of personal 

data.[32] Moreover, the inherent mechanism of third-party intermediaries does not suffice the 

expected role of an institution in the social contract. The Power-Responsibility Equilibrium theory 

presented by Murphy et al indicates that the “more powerful partner in a relationship has the societal 

obligation to promote an environment of felt equality”.[33] Customers therefore do not have the 

responsibility to act on an initiative to protect their privacy. On the contrary, it is the duty of 

corporations to ensure privacy is guarded. 

2.4. Differential Privacy and CTGAN in Privacy Preservation 

In recent years, the Generative Adversarial Network has developed as a promising solution to 

reducing privacy concerns. In particular, the model’s underpinning architecture can synthesize high-

quality samples that are consistent with real-world conditions, which can be used to replace real 

consumer data in the process of analytic algorithms. The traditional DCGAN designed by Goodfellow 

et al, for instance, can be trained to synthesize high-quality pictures using batch norm in both its 

discriminative model and generative model.[34] Further developments of table-GAN by Park et al[35] 

and CTGAN by Xu et al[36] are variations used to generate tabular datasets consisting of both discrete 

and numerical values. Other data synthesis variants of GAN, such as medGAN[37] and 

medBGAN,[38] have been applied to fields of medicine to generate statistically identical patient 

electronic health records (EHRs) while preserving the sensitive information from being revealed. 

On the other hand, differential privacy emerges as another influential technique in the preservation 

of privacy data. Introduced by Cynthia Dwork[12] and Frank McSherry, et al. in 2006, the process of 

differential privacy ensures that the presence or absence of an individual's data in a dataset does not 

significantly affect the outcome of computation by adding calibrated noise to the output of 

calculations to mask the contribution of single individual and preserve the overall accuracy of the 

analysis. This noise addition is guided by parameters known as "epsilon and delta." 

As a result, a number of literatures have explored the combination of the two aforementioned 

privacy-preserving techniques. Previous approaches conclude a two-layer algorithm, with which 

differential privacy is employed on the discriminative model to generate synthetic datasets that are 

below a designated epsilon. DPGAN by Xie et al[39] and dp-GAN by Zhang, Ji, and Wang[40] 

examine the performance of this algorithm in image datasets and electronic health record data (EHR). 

Torkzadehmahani, Kairouz, and Paten introduced the CGAN as a variant of GAN but applied the 

same framework.[41] Their analysis conducted on MNIST concludes promising preliminary results 

in the extension of the DP+GAN framework. Further variation with DP-CTGAN was evaluated by 

Fang, Dhami, and Kersting,[42] with evaluation on numerous sets of medical tabular data. 

Despite varying extensions to the DPGAN framework, existing work in this field has primarily 

focused on the privacy performance of visual and medical datasets, namely, MNIST and EHR. 

Studies on the effect of combined differential privacy and GAN variants in the field of digital 
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marketing, therefore, remain under-explored. This motivates further analysis using datasets relevant 

to commercial marketing. 

3. Methodology 

3.1. Selected Dataset 

The chosen dataset describes a collection of consumer data incorporated into an online marketing 

campaign, consisting of 39 attributes (columns) and 2205 instances (rows). Data values are arranged 

in two-dimensional attributes and instances, featuring both continuous and discrete values. Each row 

represents an array of different categorical information on one individual/user and reasonably 

resembles real-world data in the digital market. Evaluations based on this dataset therefore provide 

an empirical analysis of the success of differentially private CTGAN in the preservation of consumer 

privacy, specifically in the context of electronic marketing. 

The metadata of this dataset can be summarized into five fields of measure: Accepted Campaign, 

Expenditure on Product purchasing, Number of Purchases, Shopping Behavior, and Other Identifiable 

Information. The column “Response” is designated as the class label (target of prediction) for this 

dataset. A statistical model in the prediction problem will endeavor to predict the probability of 

"Response" based on all other inputs. 

Table 1: Dataset iFood Dictionary. 

Columns Description 

AcceptedCmp1 1 if customer accepted the offer in the 1st campaign, 0 otherwise 

AcceptedCmp2 1 if customer accepted the offer in the 2nd campaign, 0 otherwise 

AcceptedCmp3 1 if customer accepted the offer in the 3rd campaign, 0 otherwise 

AcceptedCmp4 1 if customer accepted the offer in the 4th campaign, 0 otherwise 

AcceptedCmp5 1 if customer accepted the offer in the 5th campaign, 0 otherwise 

Response (class label) 1 if customer accepted the offer in the last campaign, 0 otherwise 

Complain 1 if customer complained about the offer in the last 2 years, 0 

otherwise 

Customer_Days date of customer’s enrollment with the company 

Education customer’s level of education 

Marital customer’s marital status 

Kidhome number of small children in customer’s household 

Teenhome number of teenagers in customer’s household 

Income customer’s yearly household income 

MntFishProducts amount spent on fish products in the last 2 years 

MntMeatProducts amount spent on meat products in the last 2 years 

MntFruits amount spent on fruits in the last 2 years 

MntSweetProducts amount spent on sweet products in the last 2 years 

MntWines amount spent on wines in the last 2 years 

MntGoldProds amount spent on gold products in the last 2 years 

NumDealsPurchases number of purchases made with discount 

NumCatalogPurhases number of purchases made using catalog 

NumStorePurchases number of purchases made directly in stores 

NumWebPurchases number of purchases made through company’s website 

NumWebVisitsMonth number of visits to company’s web site in the last month 

Recency number of days since the last purchase 

AcceptedCmpOverall number of customer’s accepted campaign from the company (1-4) 
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Table 1 shows the dictionary for the 39 attributes in a meta-table. We introduce a more detailed 

evaluation of the tabular traits that impair the learning process of the original GAN will be introduced 

in section 3.3. 

3.2. Generative Adversarial Network 

In this study, the underpinning framework of Generate Adversarial Network (GAN) is adopted as the 

architectural foundation for synthetic data modeling. Traditionally, the model of GAN is established 

on two neural networks competing in a min-max game, which features the Generative model (G) 

generating synthetic data from sampled distribution of real data and the Discriminative model (D) 

subsequently distinguishing synthetic data from real input to optimize the generation of G. In 

mathematical terms, the generator G and discriminator D optimize the following objective value 

function: 

 min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)
[log 𝐷(𝑥)] + 𝔼𝑧~𝑝𝑧(𝑧)

[log(1 − 𝐷(𝐺(𝑧)))] (1) 

where p-data is denoted as the sampled distribution from real data instances and pz(z) as the prior 

distribution placed on the randomly generated noise vector z. The denotation of x~pdata(x) and 

z~pz(z) represents the expected value of the total inputs into discriminator D and generator G 

respectively. We then refer function G(·) to the probability output for generator G and function D(·) 

to the probability output for discriminator D, with an output value span of [0,1]. When the 

discriminator D classifies input data as authentic, as in D(x), a higher probability (close to 1) is 

produced, whereas when the discriminator D classifies input data as synthetic, as in D(G(z)), a lower 

probability is produced. In broad terms, the min-max loss function can be seen as the sum of the 

discriminator D’s average value prediction under input real data and the discriminator D’s average 

value prediction under input synthetic data. The GAN model thus operates in a manner that the 

generator G attempts to minimize the value function V(D, G), while the discriminator D attempts to 

maximize it. 

The mini-batch stochastic gradient descent is commonly adopted for its advantage in 

computational speedup. For per iteration, we input a mini-batch randomly sampled from real data and 

a mini-batch randomly sampled from its generated counterparts into the discriminative model. After 

multi-layer processing, discriminator D classifies input as either real or synthetic. Suppose that 

discriminator D misclassifies the correct authenticity of data input, it is penalized with a discriminator 

loss. After one round of training iteration, the discriminator D is updated via gradient adjustment. 

The training iteration for the generator G is largely based on the classification of the discriminator 

D. Suppose the discriminator D correctly identified synthetic data, the generator G is penalized with 

a corresponding generator loss. By the end of the training iteration, generator G is updated via gradient 

adjustment. As such, training iterations of the generator and the discriminator are conducted 

simultaneously, with the generator G highly dependent on the classification results yielded by 

discriminator D. This cycle is repeated until both generator G and discriminator D achieve loss 

convergence, and the min-max loss function is optimized. 

3.3. Challenges in the synthesis of tabular data using the original GAN model 

This section presents several limitations of the original GAN algorithm in the generation of high-

quality tabular data. Data statistics from Dataset iFood are used as figurative illustrations. 
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3.3.1. Non-Gaussian Distribution 

The distribution of tabular data differs significantly from visual data that is traditionally adopted in 

the training of the GAN algorithm. Pixel values in image datasets typically adhere to Gaussian 

distribution, which can be normalized to the range [-1,1] using min-max transformation in the output 

layer of GAN’S multilayer perceptron. However, continuous values of tabular data are non-Gaussian. 

For example, Fig. 1 (a) and (b) show visualizations of non-Gaussian distribution from the continuous 

column “NumDealsPurchases” in tabular dataset 1. The visualization displays an evident right 

skewness, which is statically reflected by mode > median > mean (957 > 2 > 1.886107). Applying 

min-max transformation to non-gaussian numeric distribution would yield the vanishing gradient 

problem, which impairs the efficacy and quality in the learning process of the GAN model. 

  

Figure 1(a): Distribution of 

“NumDealsPurchases”. 

Figure 1(b): Kernel Density Estimation of 

“NumDealsPurchases”. 

3.3.2. Multi-modal distribution  

Srivastava et al show that the original GAN modeling encounters difficulties when training a set of 

data with the multi-modal distribution. In particular, the multi-modal dataset presents a higher 

probability of mode collapse in GAN training, where modes of the training set are only partially 

captured for the generation of synthetic data. Such forms of underrepresentation largely affect the 

distribution resemblance of synthetic data in comparison to that of real data. 

We use the Kernel Density Estimation to approximate multi-modal distribution in our continuous 

columns, specifically within dataset iFood. A Gaussian KDE is performed on the Python Jupyter 

Notebook using the default kernel width over all continuous columns. As a result, we discover that 

5/20 continuous columns feature multi-modal density. Fig. 2(a) and (b) show the multi-distribution 

of continuous column “Customer_Days”.  
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Figure 2(a): Distribution of “Customer_Days”. Figure 2(b): Kernel Density Estimation of 

“NumDealsPurchases”. 

3.3.3. Imbalance of Categorical Columns 

Imbalanced categorical data introduces severe mode collapse and underrepresentation in the GAN 

algorithm: The former impairs the process of deep learning, and the latter inadequately represents 

minor categories in the synthesized results. Specifically, this paper defines the imbalance of 

categorical features as present when the minor category accounts for less than 10% of total instances. 

Data count reveals that 9 out of 18 categories are associated with such imbalance. Table 2 shows the 

value counts concerning each column data in dataset 1 corresponding to the calculated percentage. 

Table 2: Dataset iFood Discrete Column Counts. 

Column Title Value Count Percentage/Total instance 

AcceptedCmp1 0    2063 

1     142 

0.0643 

AcceptedCmp2 0    2175 

1      30 

0.0136 

AcceptedCmp3 0    2042 

1     163 

0.0739 

AcceptedCmp4 0    2041 

1     164 

0.0744 

AcceptedCmp5 0    2044 

1     161 

0.0730 
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Column Title Value Count Percentage/Total instance 

Complain 0    2185 

1      20 

0.0091 

Response 0    1872 

1     333 

0.1510 

education_2n Cycle 0    2007 

1     198 

0.0898 

education_Basic 0    2151 

1      54 

0.0245 

education_Graduati

on 

1    1113 

0    1092 

0.4952 

education_Master 0    1841 

1     364 

0.1651 

education_PhD 0    1729 

1     476 

0.2159 

marital_Divorced 0    1975 

1     230 

0.1043 

marital_Married 0    1351 

1     854 

0.3873 

marital_Single 0    1728 

1     477 

0.2163 

marital_Together 0    1637 

1     568 

0.2576 

marital_Widow 0    2129 

1      76 

0.0345 

 

It deserves pointing out, for instance, that a majority of minor categories associated with 

categorical imbalance concern individuals who accepted the campaign or sufficed educational status. 

These individuals therefore provide valuable insights to the analysis of data, and their 

underrepresentation in training could significantly deviate the distribution of synthetic data from that 

of the real outcome. 

3.3.4. Sparsity of One-hot-encoded vectors 

To synthesize categorical data, the GAN model creates a probability distribution over all categories. 

This form of output can be distinguished from the distribution of real data transformed into one-hot 

encoded vectors, therefore enabling the discriminator to determine authenticity by simply comparing 

sparsity rather than evaluating realness. 

Table 2: (continued). 

Proceedings of the 2nd International Conference on Financial Technology and Business Analysis
DOI: 10.54254/2754-1169/59/20231105

179



3.4. Conditional Tabular Generative Adversarial Network 

This study introduces the conditional tabular generative adversarial network as a variant of GAN to 

address the aforementioned issues in the synthesis of consumer tabular data. With the underpinning 

architecture remaining the same, CTGAN applies a mode-specific normalization featuring a 

variational Gaussian mixture model (VGM) to properly represent continuous data associated with 

non-Gaussian and multi-modal distribution. Additionally, a conditional generator is designed to 

evenly resample minor categories in the imbalanced discrete columns. 

We import the CTGAN trainer from the Synthetic Data Vault library. The loaded source dataset 

is then trained under the following hyper-parameters for epochs 300, 500, 1000, 2000, and 5000 times 

to generate the respective quality of synthetic datasets. 

 

Figure 3: 300 epochs Synthesizer Parameters. 

Before the CTGAN trainer is initiated, we add conditional constraints in the synthesis of 

categorical data to exclude potential distortion. For discrete columns of marital status and education 

level, we set constraints that only one instance can be synthesized per row. This will prevent situations 

in which an individual in the synthetic data is generated in a way that is contradictory to reality, for 

instance, being simultaneously “marital_Divorced” and “marital_Married”. The established 

constraint parameters are as follows:  

 

Figure 4: Customizing Constraints. 
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3.5. Differential Privacy Stochastic Gradient Descent 

To ensure that the synthesized dataset is differentially private, we employ differential privacy 

stochastic gradient descent (DPSGD) from Tensorflow. A total of 1764 instances are screened from 

2204 instances to train with stochastic gradient descent. Parameters are defined as follows: 

 

Figure 5: DPSGD parameters on Jupyter Notebook. 

Gaussian noise is added for gradients per epoch to perturb the data updates, thus protecting the 

privacy of individuals. An inevitable decrease in utility performance, however, is followed. 

4. Empirical Results 

4.1. Analysis of Fidelity 

4.1.1. Kolmogorov-Smirnov statistic and Total Variation Distance analysis 

The Kolmogorov-Smirnov two-sample test is applied to evaluate the equality of numerical 

distributions between real and synthetic datasets with varying epochs for its sensitivity with binomial 

distribution and applicability with non-gaussian data (where a t-test would yield unreliable p-value). 

First, the metric computes the cumulative distribution functions (CDFs) of two corresponding 

univariate columns from two datasets. KS statistic is then obtained by quantifying the maximum 

difference between the real and synthetic column CDF (non-Gaussian). On the other hand, the Total 

Variation Distance is used to measure the difference between real and synthesized discrete columns. 

Similar to the KS statistic, the TVD score is obtained by calculating the difference between the 

probability frequency of two pairing discrete columns from real and synthetic datasets. Both metrics 

yield a difference score in the range of 0 and 1, where 0 denotes strong similarity between real and 

synthetic distributions, and thus better performance. 

To offer a more intuitive understanding of the performance of CTGAN and the process of 

evaluation, we calculate the overall quality using complement scores of KS statistics and TVD by 

following simple mathematical procedures 1- KS statistic and 1− δ(R, S). The modified metrics infer 

opposite effects compared to that of the original, and scores approaching 1 reflect higher similarity. 

Lastly, the similarity of overall column shapes is calculated by averaging KS and TVD 

complements across all attributes. 

Table 3: Column Shapes iFood. 

Epochs = 300 Epochs = 500 Epochs = 1000 Epochs = 2000 Epochs = 5000 

 
KS 

statistic/TVD 
p-value 

Mean KS 

statistic/TVD 

p-

value 

Mean KS 

statistic/TVD 

p-

value 

Mean KS 

statistic/TVD 

p-

value 

Mean KS 

statistic/TVD 

p-

value 

AcceptedCmp1 0.00408 / 0.05624 / 0.05714 / 0.02721 / 0.08435 / 

AcceptedCmp2 0.04082 / 0.04671 / 0.03628 / 0.04399 / 0.03129 / 

AcceptedCmp3 0.01723 / 0.06077 / 0.07256 / 0.00862 / 0.05578 / 

AcceptedCmp4 0.01043 / 0.08753 / 0.00680 / 0.02812 / 0.04444 / 

AcceptedCmp5 0.03628 / 0.01633 / 0.06168 / 0.03039 / 0.06984 / 

Response 0.00499 / 0.03129 / 0.06712 / 0.12381 / 0.13651 / 
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Epochs = 300 Epochs = 500 Epochs = 1000 Epochs = 2000 Epochs = 5000 

Complain 0.03129 / 0.03991 / 0.03900 / 0.03537 / 0.02766 / 

education 2n Cycle 0.32562 / 0.46304 / 0.31791 / 0.22086 / 0.10476 / 

education Basic 0.02721 / 0.02585 / 0.01361 / 0.02177 / 0.02041 / 

education 

Graduation 
0.10249 / 0.21587 / 0.12200 / 0.12562 / 0.04717 / 

education Master 0.10930 / 0.11474 / 0.06576 / 0.02766 / 0.03628 / 

education PhD 0.14104 / 0.15828 / 0.14376 / 0.08934 / 0.04172 / 

marital Divorced 0.44354 / 0.45896 / 0.20590 / 0.13424 / 0.08345 / 

marital Married 0.20680 / 0.17098 / 0.19592 / 0.05533 / 0.04263 / 

marital Single 0.07710 / 0.15057 / 0.08435 / 0.01995 / 0.00181 / 

marital Together 0.15782 / 0.13107 / 0.07438 / 0.08571 / 0.03991 / 

marital Widow 0.00181 / 0.00635 / 0.01995 / 0.01315 / 0.00272 / 

Age 0.07211 
0.0000

2 
0.14467 

0.000

00 
0.13832 

0.000

00 
0.16009 

0.000

00 
0.12698 

0.000

00 

Customer Days 0.14739 
0.0000

0 
0.18730 

0.000

00 
0.18095 

0.000

00 
0.21859 

0.000

00 
0.04172 

0.043

04 

Kidhome 0.07347 
0.0000

1 
0.04490 

0.023

47 
0.01497 

0.965

94 
0.06848 

0.000

06 
0.07120 

0.000

03 

Teenhome 0.07075 
0.0000

3 
0.20907 

0.000

00 
0.11429 

0.000

00 
0.12245 

0.000

00 
0.00091 

0.999

99 

Income 0.34785 
0.0000

0 
0.17460 

0.000

00 
0.13379 

0.000

00 
0.07075 

0.000

03 
0.09660 

0.000

00 

MntFishProducts 0.15601 
0.0000

0 
0.29342 

0.000

00 
0.19909 

0.000

00 
0.11293 

0.000

00 
0.22857 

0.000

00 

MntMeatProducts 0.12472 
0.0000

0 
0.13333 

0.000

00 
0.14150 

0.000

00 
0.11474 

0.000

00 
0.14649 

0.000

00 

MntFruits 0.14739 
0.0000

0 
0.17823 

0.000

00 
0.14966 

0.000

00 
0.05397 

0.003

24 
0.07664 

0.000

00 

MntRegularProduct

s 
0.38639 

0.0000

0 
0.15329 

0.000

00 
0.13832 

0.000

00 
0.17324 

0.000

00 
0.06168 

0.000

45 

MntSweetProducts 0.22902 
0.0000

0 
0.14739 

0.000

00 
0.06395 

0.000

24 
0.12245 

0.000

00 
0.06168 

0.000

45 

MntWines 0.16463 
0.0000

0 
0.24580 

0.000

00 
0.14240 

0.000

00 
0.10249 

0.000

00 
0.13469 

0.000

00 

MntGoldProds 0.15102 
0.0000

0 
0.14376 

0.000

00 
0.04535 

0.021

44 
0.11791 

0.000

00 
0.10023 

0.000

00 

MntTotal 0.16190 
0.0000

0 
0.24263 

0.000

00 
0.13424 

0.000

00 
0.09025 

0.000

00 
0.10748 

0.000

00 

NumDeals 
Purchases 

0.04535 
0.0214

4 
0.09433 

0.000
00 

0.08753 
0.000

00 
0.07029 

0.000
04 

0.01995 
0.772

41 

NumCatalog 

Purhases 
0.07800 

0.0000

0 
0.13152 

0.000

00 
0.04717 

0.014

81 
0.07937 

0.000

00 
0.08662 

0.000

00 

NumStore 

Purchases 
0.06349 

0.0002

7 
0.14467 

0.000

00 
0.05125 

0.006

10 
0.05533 

0.002

34 
0.04626 

0.017

85 

NumWebPurchases 0.04762 
0.0134

7 
0.08571 

0.000

00 
0.08163 

0.000

00 
0.04308 

0.033

37 
0.05850 

0.001

05 

NumWebVisits 
Month 

0.08435 
0.0000

0 
0.07574 

0.000
00 

0.07937 
0.000

00 
0.11383 

0.000
00 

0.07755 
0.000

00 

Recency 0.32426 
0.0000

0 
0.15420 

0.000

00 
0.07800 

0.000

00 
0.08254 

0.000

00 
0.07937 

0.000

00 

AcceptedCmpOver

all 
0.06213 

0.0004

0 
0.11519 

0.000

00 
0.12562 

0.000

00 
0.08345 

0.000

00 
0.09388 

0.000

00 

Overall Column 

Shapes 
0.88010 / 0.86320 / 0.90430 / 0.91930 / 0.93360 / 

 

Table 3 reports the KS statistic and TVD score for columns of dataset iFood. A p-value is 

calculated for the KS statistic of numerical columns but displayed as “/” for categorical columns. An 

alpha-value of 0.05 is accepted, and a p-value > 0.05 concludes no statistical difference in the pair of 

numerical distributions. 

Table 3: (continued). 
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The overall column shapes are improved from 0.8801 under 300 epochs to 0.9336 under 5000 

epochs, reflecting a positive relationship between epoch quantity and column shape similarity. An 

exception is found at 500 epochs, where the model underperformed compared to the results under 

300 epochs. 

While the overall score has increased over augmented epochs, the CTGAN model does not 

guarantee the constant improvement of individual column similarity. To illustrate, the column shape 

similarity for the numerical column “Age” yields KS statistics of 0.07211, 0.14467, 0.13832, 0.16009, 

and 0.12698 across epochs 300, 500, 1000, 2000, and 5000. In this case, the highest similarity 

occurred in the synthetic data trained under 300 epochs, whereas higher epochs yielded less similarity. 

Only three columns yielded a KS statistic that concludes no statistical difference between real and 

synthetic datasets. It deserves adding, however, that KS statistic calculates p-values by strict 

sensitivity, and numerical distributions with p-values < 0.05 do not infer failure of CTGAN modeling. 

The KS statistic and Total Variation Distance remain the primary tools for assessing distributional 

similarity. 

4.1.2. Pairwise correlation analysis 

The Pearson Correlation coefficient is used to evaluate the pairwise similarity of real and synthetic 

attributes. We segment the Pearson correlation by five levels ranging from 0 to 1: [0-0.2] denoting 

weak correlation, [0.2-0.4] denoting moderate-weak correlation, [0.4-0.6] denoting moderate 

correlation, [0.6-0.8] denoting moderate-strong correlation, and [0.8-1.0] denoting strong correlation. 

Heat maps are used to compare pairwise correlation in varying levels of synthetic data, where light 

green and blue represent high and low correlation scores respectively (note that only half the total 

columns are displayed per axis due to limited space). 

  

Figure 6(a): 300 epochs Pairwise Trend 

Correlation Heat Maps.  

Figure 6(b): 500 epochs Pairwise Trend 

Correlation Heat Maps. 

  

Figure 6(c): 1000 epochs Pairwise Trend 

Correlation Heat Maps. 

Figure 6(d): 2000 epochs Pairwise Trend 

Correlation Heat Maps. 
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Figure 6(e): 5000 epochs Pairwise Trend Correlation Heat Maps. 

Table 4: Column Pair Trends iFood. 

Epochs CorrelationAccur 

real data 1 

300 0.8389 

500 0.8280 

1000 0.8813 

2000 0.8981 

5000 0.9183 

 

Table 4 includes the accuracy score of the pairwise correlation similarity between real and 

synthetic datasets. We observe that CTGAN synthesized datasets largely preserve connections 

between attributes within the source dataset, with all epochs yielding a correlation similarity score of 

[0.8-1.0]. The positive relationship between epochs quantity and correlation accuracy is maintained 

as in the report of column shapes, with epochs = 500 as an exception. 

Fig 6(a-e) displays pairwise trend correlation heat maps corresponding to varying epochs of 

CTGAN synthesized attributes. 

4.2. Analysis of Utility 

A random forest classifier is chosen to evaluate and compare the utility of synthetic datasets. First, 

an imported Synthetic Minority Oversampling Technique (SMOTE) is used to treat severe class 

imbalance in the dataset by synthesizing new instances of minority data, after which the results are 

refined over a Recursive Feature Elimination (RFE) model. A cross-validation technique is then 

performed over this set of data, segmenting the data into subsets for training and testing. Lastly, data 

is imported into a random forest classifier to output a prediction accuracy score and F1 score, yielding 

insights into the performance of CTGAN-synthesized datasets. 

There are several advantages to this set of modeling. To begin with, CTGAN training retains the 

patterns of class imbalance in the synthetic datasets as it represents the statistical properties of the 

source dataset. The application of SMOTE thus takes on an important role of alleviating distortion 

due to minority data in the evaluator by generating synthetic instances. On the basis of this dataset, 

the RFE model is used to select important features for the prediction of the target class, removing 

weakly correlated variables that would complicate the algorithmic training and lower prediction 

accuracy. Cross-validation is adopted for every training model to exclude selection bias and 

overfitting by separating the dataset into training set and testing set, otherwise yielded results cannot 

be generalized over real-world data. Finally, the random forest classifier is used to predict the 
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categorical output of the target class based on a mix of numerical and discrete inputs, yielding an 

accuracy score and f1 score that implies dataset performance. 

Table 5: Results of Random Forest Classifier iFood (n=100). 

Epochs PredictionAccur F1 diff 

real data 0.8808 0.8719 0 

300 0.8317 0.8399 0.0409 

500 0.8364 0.8107 0.0444 

1000 0.8551 0.8387 0.0257 

2000 0.8198 0.8122 0.0610 

5000 0.8197 0.8098 0.0611 

 

Table 5 reports the predictive accuracy and F1 score of real and synthetic datasets calculated using 

the customized random forest classifier. As all accuracy scores exceed a benchmark of 0.80 for 

accuracy and F1, the synthetic datasets are proved to be satisfactorily informative when applied to 

real-world classification problems. We observe, however, that higher epochs do not necessarily yield 

high accuracy in the predictive ability or F1. Specifically, the prediction score of synthetic datasets 

reached the maximum output at epochs 1000, and higher epochs above this threshold display 

diminishing returns. This can be attributed to possible oversampling using the SMOTE augmentation, 

which similarly generates data as CTGAN (except the technique is used to generate minor category 

instances rather than the full-scale tabular data). 

4.3. Trade-offs 

In this dataset, the CTGAN models are trained without the aid of parallel platform CUDA and the use 

of a GPU, which would otherwise drastically accelerate the process of training. This subsection 

analyzes the change in CTGAN productivity as the number of epochs increases. Previous results are 

plotted as dependent variables and training time is plotted as the independent variable. 

 

Figure 7: Training Time vs. Fidelity Score. 

Fig. 7 displays a plotted graph on the relationship between training time and data fidelity for 

synthetic datasets of varying epochs. Graphing the execution time as input and data quality as output, 
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we observe marginal diminishing productivity between CTGAN training time and performance as 

the number of epochs increases. 

 

Figure 8: Training Time vs. Prediction Accuracy Score. 

Fig. 8 displays a plotted graph on the relationship between training time and prediction accuracy 

for synthetic datasets of varying epochs, with execution time as input and predictive accuracy scores 

as output. The maximum predictive accuracy is obtained at epochs 1000, whereas the maximum F1 

score is obtained at epochs 300. Both metrics experience negative returns after epoch 1000, and the 

difference in scores between epochs 2000 and epochs 5000 is shown to be relatively insignificant. 

We predict that epochs 5000 onward are unlikely to yield any statistically significant 

improvement/reduction in prediction accuracy and f1 score for this set of data. 

4.4. Analysis of Privacy 

The analysis of privacy uses the epsilon (𝜖) benchmark at a Delta (𝛿) value of 10^-5. An epsilon is 

the privacy budget upper bound that reflects the degree of change in the modeling results from 

including or excluding an individual value. This intuitively suggests that a lower epsilon score, 

denoting small changes as additional data value is included, reflects strong privacy protection as an 

adversary is less likely to obtain useful information regarding the dataset. 

For the synthesized dataset, we obtained an epsilon value of 8.5 and an average prediction accuracy 

of 82.77% after inputting the differentially private synthetic dataset into a logistic regression model. 

This leaves us with a reasonable privacy guarantee at the tier 2 level. 

5. Conclusion 

In this study, we have explored the application of the Differentially Private Conditional Tabular 

Generative Adversarial Network (DP-CTGAN) in synthesizing tabular consumer data, with a 

particular focus on digital marketing. The empirical results have provided a nuanced understanding 

of the fidelity, utility, and trade-offs of the CTGAN model, revealing both its strengths and areas for 

improvement. In particular, the fidelity analysis, which employed the Kolmogorov-Smirnov statistic 

and Total Variation Distance, revealed that CTGAN could effectively model non-Gaussian and multi-

modal distributions. This is significant as it addresses a fundamental challenge in the synthesis of 

tabular data, particularly in the context of digital marketing. 
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The positive relationship between the number of epochs and the similarity of column shapes was 

an important observation. However, the exceptions and diminishing returns observed in certain cases 

highlight the complexity of the model's behavior. This suggests that practitioners must approach 

hyperparameter tuning with caution, considering the specific characteristics of the dataset at hand. 

The intricate understanding of how the number of epochs influences the model's performance is a 

valuable contribution to the field. 

The utility analysis using a random forest classifier further validated the credibility of the 

synthesized datasets. The observation that higher epochs do not necessarily yield higher accuracy in 

predictive ability or F1 score is a critical insight. It emphasizes the need for a balancing approach, 

considering both the quality of the synthetic data and the computational efficiency. 

The trade-off analysis between training time and performance revealed marginal diminishing 

productivity. This finding is particularly relevant for practitioners aiming to balance computational 

resources and model performance. It underscores the importance of selecting an optimal number of 

epochs, a consideration that may vary depending on the specific application and dataset. 

The study's introduction of Differentially Private CTGAN as a novel approach to synthesizing 

consumer tabular data is a significant contribution. By addressing specific challenges such as non-

Gaussian distribution, multi-modal distribution, and imbalanced categorical columns, the research 

offers a solution with broad applicability. This could extend beyond electronic marketing to domains 

such as healthcare, finance, or social sciences. 

The comprehensive evaluation framework introduced in this research is another key contribution. 

By including fidelity, utility, and trade-off analyses, the framework offers a nuanced understanding 

of the CTGAN model's performance. This can serve as a guideline for evaluating other generative 

models, enhancing the rigor and robustness of future research in this area. 

The ethical considerations surrounding synthetic data generation are complex and warrant further 

examination. The potential biases, privacy concerns, and consent issues related to synthetic data 

generation require careful consideration. Future research could delve into these aspects, developing 

guidelines and best practices to ensure that synthetic data generation aligns with societal values and 

norms. 

Several avenues for future research emerge from this study. Investigating advanced optimization 

techniques to further enhance the performance of CTGAN, such as Federated Learning could be a 

valuable direction. Exploring the application of CTGAN in various domains and integrating it with 

other machine-learning models could broaden the impact of this technology. Additionally, the 

development of user-friendly tools and platforms to facilitate the application of CTGAN by non-

expert users could democratize access to this powerful technology. 

In conclusion, this paper has provided a significant step forward in understanding the potential and 

limitations of differentially private CTGAN for synthesizing consumer tabular data. The insights 

gained not only contribute to the theoretical understanding of generative models but also offer 

practical guidance for researchers and practitioners working with synthetic data. The findings would 

allow us to further exploration and innovation in the rapidly evolving field of data synthesis and 

privacy preservation. 
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