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Abstract: Markowitz's portfolio theory serves as a pivotal framework in investment science, 

offering investors a scientifically robust approach to asset allocation. This paper conducts an 

empirical analysis of the theory within the context of the Chinese stock market, utilising 

Python for data manipulation and computation. A selection of five stocks was made based on 

pre-established criteria, and Python was employed to examine their correlation for portfolio 

construction viability. Subsequently, Python facilitated the identification of the portfolio with 

the maximum Sharpe ratio and the minimum variance, as well as the delineation of the 

efficient frontier. Results from the empirical study confirm the applicability and utility of 

Markowitz's portfolio theory for Chinese investors, thereby substantiating its significant 

relevance in China's financial market. Based on the findings, investors are advised to diversify 

their portfolios following the guidelines of the efficient frontier to optimize returns while 

managing risks. Moreover, considering the complexities of the Chinese stock market, 

harnessing computational tools like Python can grant an analytical edge, enabling more 

informed decision-making. It's also pivotal for investors to routinely review and adjust 

portfolio compositions in line with market dynamics, ensuring they stay aligned with the 

principles of the efficient frontier. 
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1. Introduction 

Markowitz's portfolio theory encompasses the mean-variance model as well as the concept of the 

efficient frontier. This theory quantifies a portfolio's expected return in terms of its mean, while its 

associated risk is captured by variance [1]. Investment strategies aim to identify the portfolio 

allocation that either maximises return for a specified level of risk or minimises risk for a given level 

of return [2]. 

Underlying Assumptions: The theory rests on several foundational assumptions: (1) Security 

markets operate efficiently; (2) Investors base portfolio choices solely on two metrics—expected 

value and variance of returns; and (3) Investment decisions are influenced by the probability 

distribution of returns, which is assumed to conform to a normal distribution [3]. Given a specific 

level of risk, the portfolio with the highest expected return is selected. Conversely, for a predefined 

return, the portfolio with the lowest associated risk is preferred. 

Proceedings of the 2nd International Conference on Financial Technology and Business Analysis
DOI: 10.54254/2754-1169/59/20231132

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

279



 

 

2. Mean-Variance Model 

In a single investment period, this research assumes an investment in a portfolio consisting of 𝑛 risky 

assets. Here, 𝑟𝑖 represents the expected rate of return on the 𝑖𝑡ℎ asset, 𝑄𝑖 denotes the probability of 

that return occurring, and 𝑊𝑖 is the weight of the 𝑖𝑡ℎ asset in the portfolio. The expected rate of 

return on the portfolio for one investment period is expressed as: 

 𝐸(𝑟𝑛) = ∑ 𝑊𝑖
𝑛
𝑖=1 𝑄𝑖𝑟𝑖 (1) 

Simultaneously, the variance of a portfolio containing 𝑛 assets, denoted 𝜎𝑛
2, is given by: 

 𝜎𝑛
2 == ∑ ∑ 𝑊𝑖𝑊𝑦

𝑛
𝑦=1

𝑛
𝑖=1 𝑝𝑖𝑦𝜎𝑖𝜎𝑦 = ∑ ∑ 𝑊𝑖𝑊𝑦

𝑛
𝑦=1

𝑛
𝑖=1 𝑐𝑜𝑣(𝑟𝑖, 𝑟𝑦) (2) 

Given the prohibition of short selling in the Chinese securities market, the constraint for the 

portfolio weights is: ∑  𝑛
𝑖=1 𝑊𝑖 ≤ 1, 𝑊𝑖 ≥ 0. 

In Equation (2), 𝑖  and 𝑦  represent distinct assets within the portfolio. The term 𝑐𝑜𝑣(𝑟𝑖, 𝑟𝑦)  

represents the covariance between asset 𝑖 and asset 𝑦, serving as a measure of the linkage between 

their returns. Additionally, 𝜎𝑖  and 𝜎𝑦 denote the standard deviations of assets 𝑖 and 𝑦 respectively. 

It is evident from Equation (2) that the portfolio's risk is a function of the asset weights, the correlation 

coefficients between the assets, and each asset's individual risk. Hence, one can mitigate the 

portfolio's risk by strategically selecting assets with lower correlation coefficients. 

3. Portfolio Efficient Frontier 

Every conceivable combination of assets within a portfolio constitutes the feasible set. This set 

manifests as a left-convex region, as depicted in Figure 1. The Minimum Variance Portfolio (MVP) 

point corresponds to the portfolio composition where the variance is at its lowest [4]. 

 

Figure 1: Efficient Frontier. 

Photo credit: Original 

In Figure 1, the Dotted Line Partitions the Curve into Two Segments. Portfolios Situated on the 

Upper Segment of This Curve, and Thus above the Dotted Line, Meet the Criteria of Maximising 

Returns for a Given Risk Level or Minimising Risk for a Specific Return. This Upper Curve Is 

Referred to As the Efficient Frontier of the Asset Portfolio. 
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Sharpe Ratio [5]. This metric offers a risk-adjusted evaluation of a portfolio's performance. The 

Sharpe Ratio quantifies the excess expected return of a portfolio relative to its overall standard 

deviation. The formula for the Sharpe Ratio is: 

 𝑋𝑝 =
𝐸(𝑟𝑝−𝑅𝑓)

𝜎𝑝
 (3) 

Where 𝑋𝑝 represents the Sharpe Ratio, 𝜎𝑝  is the portfolio's standard deviation, and 𝑅𝑓  is the 

risk-free rate. The ratio illuminates the amount of additional return achievable for every unit of risk 

undertaken. Empirical research often leverages the Sharpe Ratio to determine the most optimal 

portfolio allocation on the efficient frontier. 

4. Literature Review 

The applicability and relevance of Markowitz's Portfolio Theory (MPT) have been empirically 

evaluated across various global markets. In the Malaysian context, Lee et al. (2016) [6] emphasized 

the synergies between the Capital Asset Pricing Model (CAPM) and MPT, elucidating their roles in 

the Kuala Lumpur Stock Exchange. Their findings accentuated CAPM's prowess in forecasting stock 

behaviour and underscored the importance of Markowitz diversification in risk mitigation. Parallelly, 

Širůček and Křen (2017) [7] explored MPT in the U.S. market, leveraging the Dow Jones Industrial 

Average index for portfolio construction. Their research provides substantial insights into optimized 

security selection, balancing risk, and return. 

A discernible trend in recent literature is the integration of advanced computational methodologies 

with traditional portfolio theories. Ma et al. (2020) [8] presented a pioneering approach, 

amalgamating deep learning with MPT to enhance stock return predictions. Their exploration 

revealed the promise of tools like Deep Neural Networks in reshaping the investment landscape. 

Notably, studies focused on the Chinese market have exhibited a growing interest in MPT's potential 

and limitations. Wu (2022) [9] employed a comprehensive analysis, incorporating Monte Carlo 

simulations, to critically evaluate MPT's practicality in the real stock market scenario. In a congruent 

vein, Zhang (2023) [10] harnessed the computational capabilities of Python to fortify the empirical 

application of Markowitz's theory in portfolio optimization. 

However, a nuanced observation reveals a gap. Despite the wide-ranging investigations into MPT 

across diverse markets, such as the work of Sri Artini and Sandhi (2020) [11] which spanned the 

Chinese, Indonesian, and Indian markets, and its confluence with advanced technologies highlighted 

by Jang and Seong (2023) [12], there remains a paucity of research concentrating on the empirical 

nuances of MPT within the Chinese stock market, especially when leveraging Python. 

Given this backdrop, the present study aspires to bridge this gap, utilizing Python's robust 

computational capacities to provide a granular analysis of Markowitz's portfolio theory's intricacies 

within China's dynamic stock market landscape. 

5. Empirical Analysis 

The empirical analysis undertaken in this research reflects the specific characteristics of China's 

securities market. This study operates under the following assumptions: (1) Stock prices fully capture 

all available information in the securities market [13]; (2) Transaction costs are disregarded; (3) 

Assets can be divided infinitely; (4) Portfolio decisions are guided by the expected return and variance 

[14]; (5) Investors exhibit a relentless pursuit for returns, meaning, all other factors held constant, 

they will gravitate towards portfolios with higher expected returns; (6) Short selling of stocks is 

prohibited. 
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For the purpose of this analysis, five stocks were selected from China's stock market: Guizhou 

Maotai, China Merchants Bank, Longyi, Haitian Flavouring, and Sany Heavy Industry. Data 

corresponding to these stocks were sourced from NetEase Finance, spanning from June 11, 2018, to 

February 1, 2022. This data facilitated the computation of the covariance and correlation coefficients 

of these stocks over the said period. Subsequent analyses sought to maximise the Sharpe ratio and 

minimise portfolio variance, leading to the identification of two optimal portfolios. The weightings 

of these portfolios were then determined. Calculations were performed to ascertain the return, 

variance, and Sharpe ratio of both portfolios—one optimised for maximum Sharpe ratio and the other 

for minimum variance. These portfolios' positions on the efficient frontier were duly marked, 

culminating in the graphical representation of the efficient frontier. 

Table 1: Correlation Coefficient. 

 
Guizhou 

Maotai  

China Merchants 

Bank 

Longi 

shares 

Haitian 

Taste 

Sany Heavy 

Industry 

Guizhou Maotai  1.000000 0.466756 0.207298 0.518991 0.397854 

China Merchants 

Bank 
0.466756 1.000000 0.163934 0.302402 0.444368 

Longi shares 0.207298 0.163934 1.000000 0.154415 0.227150 

Haitian Taste 0.518991 0.302402 0.154415 1.000000 0.321604 

Sany Heavy 

Industry 
0.397854 0.444368 0.227150 0.321604 1.000000 

Table 1 presents the correlation coefficients of the five selected stocks, while Table 2 details the 

annualised rate of return covariance of the chosen stocks. 

Table 2: Annualised Rate of Return Covariance. 

 
Guizhou 

Maotai  

China Merchants 

Bank 

Longi 

shares 

Haitian 

Taste 

Sany Heavy 

Industry 

Guizhou Maotai  0.112822 0.046906 0.053652 0.067956 0.053621 

China Merchants 

Bank 
0.046906 0.089091 0.031110 0.035213 0.053182 

Longi shares 0.053652 0.031110 0.271947 0.048350 0.062656 

Haitian Taste 0.067956 0.035213 0.048350 0.156561 0.049921 

Sany Heavy 

Industry 
0.053621 0.053182 0.062656 0.049921 0.159019 

As observed in Figure 2, the annualised returns of all five stocks exceed 0, signifying a reduced 

likelihood of negative returns. Furthermore, the correlation coefficients and covariances depicted in 

Table 1 and Table 2 suggest moderate relationships among the stocks. These characteristics make 

them suitable candidates for portfolio construction. 
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Table 3: Summary Statistics. 

 Count Mean Std. err Min P25 P50 P75 Max 

GZMT 886.0 0.001003 0.021159 -0.105361 -0.010342 0.000406 0.013360 0.090792 

ZSYH 886.0 0.000611 0.018803 -0.068975 -0.009799 -0.000561 0.011486 0.095211 

LJGF 881.0 NaN NaN -inf -0.015678 0.000784 0.018516 inf 

HTWY 886.0 0.000270 0.024925 -0.240623 -0.012359 0.000422 0.012076 0.095330 

SYZG 886.0 0.001009 0.025120 -0.105153 -0.013620 0.000840 0.013656 0.095237 

Table 3 presents the descriptive statistics for individual stocks, detailing the daily log returns. The 

'Mean' column signifies the average daily log return for each stock. Specifically, the daily log return 

for Guizhou Maotai stands at 0.001003, for China Merchants Bank at 0.00611, for Haitian Taste at 

0.000270, and for Sany Heavy Industry at 0.001009. 

The column labeled 'Std. err' delineates the standard deviation of the logarithmic returns for each 

stock. For instance, the standard deviation for Guizhou Maotai's daily log return is 0.021159, for 

China Merchants Bank's is 0.018803, for Haitian Taste's is 0.024925, and for Sany Heavy Industry's, 

it's 0.025120. 

Lastly, the 'Min' and 'Max' columns indicate the lowest and highest daily logarithmic returns 

respectively for each stock. To elucidate, Guizhou Maotai has a range from -0.105361 to 0.090792, 

Haitian Taste's range spans from -0.240623 to 0.095330, and Sany Heavy Industry's varies from -

0.105153 to 0.095237. 

Longi shares was suspended from trading on April 9, 2019, and resumed on April 17, 2019, due 

to the implementation of share allotment. As a result, in the calculation of daily logarithmic returns 

for Longi shares—specifically for mean, standard deviation, and the minimum and maximum 

values—the Python computation resulted in NaN and inf values. This was due to a division by zero 

error. With the provided data, annual logarithmic returns for the stocks, excluding Longi shares, are 

as follows: Guizhou Maotai at 25.28%, China Merchants Bank at 15.40%, Haitian Taste at 6.79%, 

and Sany Heavy Industry at 25.79%. 

Table 3, the individual stock descriptive volume statistics, provides insights into the quartiles of 

the daily log returns of the respective stocks. Additionally, Figure 1 illustrates the value of daily log 

returns corresponding to each quartile for these stocks. 

This research then employs a Monte Carlo simulation to derive random weights for 20,000 

portfolios, capturing the expected returns, standard deviations, and Sharpe ratios associated with each 

weight combination. 

The highest Sharpe ratio for these portfolios was identified under specific constraints on the stock 

weights, ensuring the sum of weights equated to 1. Utilising Python's minimize function, the research 

sought to minimise the negative value of the Sharpe ratio. Initially, weights for all five stocks were 

set at 0.2. The optimal outcome produced stock weights of [0.49397271, 0.13896104, 0.00895254, 

0.00895254, 0.00895254, 0.00895254, 0.00895254, 0.00895254, 0.00895254, 0.00895254, 

0.0095254, 0.00895254, 0.02272108, 0.33539263], correlating to an expected portfolio return of 

0.2435, a standard deviation of 0.2897, and a Sharpe ratio of 0.8404. 

Following a similar methodology, the weights of the minimum variance portfolio for the five 

stocks were [0.11017539, 0.26214347, 0.2252433, 0.29467509, 0.10776275]. This portfolio yielded 

an expected return of 0.1503, a standard deviation of 0.2504, and a Sharpe ratio of 0.6002. 

For the purposes of this analysis, the portfolio with weights yielding the maximum Sharpe ratio is 

denoted as Portfolio I, while the portfolio with weights resulting in the minimum variance is termed 

Portfolio II. The specifics of these two portfolios are collated in Table 4. 
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Table 4: Two Optimal Portfolios. 

Portfolio Weighting 
Expected Rate of 

Return 

Standard 

Deviation 

(Statistics) 

Sharpe Ratio 

Portfolio I 

[0.49397271,0.13896104, 

0.00895254,0.02272108, 

0.33539263] 

0.2435 0.2897 0.8404 

Portfolio II 

[0.11017539,0.26214347, 

0.2252433,0.29467509, 

0.10776275] 

0.1503 0.2504 0.6002 

Beginning the discussion by contemplating the typical mindset of an investor in the Chinese 

securities market, this research assumes that investors display payoff-intolerance. This means that, 

for a given level of risk, investors generally desire higher returns. When the Sharpe ratio is maximised, 

the stock weights correspond to Portfolio I. Under this scenario, an investor would likely opt for 

Portfolio I as their investment strategy. This portfolio offers an expected return of 0.2435, a standard 

deviation of 0.2897, and a Sharpe ratio of 0.8404. 

 

Figure 2: Feasible Set. 

Photo credit: Original 

Within the feasible set, Portfolio I and Portfolio II are distinctly marked. The position of Portfolio 

I is indicated by a red dot, while Portfolio II is denoted by a black dot. Refer to Figure 2 for visual 

clarification. 
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Figure 3: Feasible Set with Efficient Frontier. 

Photo credit: Original 

Naturally, it's a simplification to assume every investor prioritises rewards. Such conclusions arise 

purely from the assumptions adopted in this empirical analysis. A risk-averse investor might favour 

the weights of Portfolio II. Yet there are also investors who don't fit neatly into categories of reward-

seeking or risk-aversion. These investors would balance their personal risk tolerance with their 

investment preferences, selecting an appropriate strategy based on the efficient frontier depicted in 

Figure 3. 

6. Conclusion 

In the empirical analysis, the data from individual stocks was processed to obtain correlation 

coefficients and annualized return covariances. This was done to ascertain their suitability for 

investment portfolio construction. Subsequently, the Markowitz portfolio theory was employed to 

identify two optimal portfolios and to outline the set of effective portfolios. The findings indicate that 

an investor, aiming to achieve the maximum return for a given risk, could opt for the portfolio with 

the highest Sharpe ratio. This portfolio comprises stocks weighted as follows: Guizhou Maotai at 

0.49397271, China Merchants Bank at 0.13896104, Longi shares at 0.00895254, Haitian Taste at 

0.02272108, and Sany Heavy Industry at 0.33539263. This allocation results in an expected return of 

0.2435 with an associated risk of 0.2897. Alternatively, for investors prioritising a given return with 

minimal risk, the portfolio with the lowest variance is recommended. This consists of Guizhou Maotai 

weighted at 0.11017539, China Merchants Bank at 0.26214347, Longi shares at 0.2252433, Haitian 

Taste at 0.29467509, and Sany Heavy Industry at 0.10776275. Investors desiring varied risk-return 

combinations can adjust their investments according to the efficient frontier. 

The findings illustrate that Markowitz's portfolio theory can effectively diminish the weightings 

of stocks exhibiting low returns and heightened risks among the selected equities. This facilitates 

investors in channelling their capital towards a limited selection of securities that present superior 

returns and risk profiles. Notably, the effective portfolio outperforms the typical portfolio, given its 

capacity to either yield higher returns at a similar risk or secure equivalent returns at reduced risk 

compared to the standard securities portfolio. 
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In the context of the contemporary Chinese securities market, investors typically rely on technical 

and fundamental analyses of individual stocks. Yet, when an investment decision is centred around a 

single stock, it essentially constitutes a portfolio. The unsystematic risk linked to an individual stock 

is a significant concern. Crafting an effective investment portfolio serves to mitigate the non-

systematic risk inherent in the collection. Employing an effective portfolio to sidestep certain risks 

while guaranteeing returns aligns with the aspirations of many investors. Moreover, the efficient 

frontier, as derived through Markowitz's portfolio theory, provides a clear roadmap for investors. By 

comprehending their risk preferences and integrating them with the efficient portfolios crafted via the 

efficient frontier, investors can strive to either maximise their returns or curtail their risks. This 

approach can significantly aid investors, especially those unsure about astute investment strategies. 

Given these considerations, applying Markowitz's portfolio theory to China's securities market 

appears to be a plausible strategy. 
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