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Abstract: Markowitz's portfolio theory serves as a pivotal framework in investment science,
offering investors a scientifically robust approach to asset allocation. This paper conducts an
empirical analysis of the theory within the context of the Chinese stock market, utilising
Python for data manipulation and computation. A selection of five stocks was made based on
pre-established criteria, and Python was employed to examine their correlation for portfolio
construction viability. Subsequently, Python facilitated the identification of the portfolio with
the maximum Sharpe ratio and the minimum variance, as well as the delineation of the
efficient frontier. Results from the empirical study confirm the applicability and utility of
Markowitz's portfolio theory for Chinese investors, thereby substantiating its significant
relevance in China's financial market. Based on the findings, investors are advised to diversify
their portfolios following the guidelines of the efficient frontier to optimize returns while
managing risks. Moreover, considering the complexities of the Chinese stock market,
harnessing computational tools like Python can grant an analytical edge, enabling more
informed decision-making. It's also pivotal for investors to routinely review and adjust
portfolio compositions in line with market dynamics, ensuring they stay aligned with the

principles of the efficient frontier.
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Introduction

Markowitz's portfolio theory encompasses the mean-variance model as well as the concept of the
efficient frontier. This theory quantifies a portfolio's expected return in terms of its mean, while its
associated risk is captured by variance [1]. Investment strategies aim to identify the portfolio
allocation that either maximises return for a specified level of risk or minimises risk for a given level

of return [2].
Underlying Assumptions: The theory rests on several foundational assumptions: (1) Security

markets operate efficiently; (2) Investors base portfolio choices solely on two metrics—expected
value and variance of returns; and (3) Investment decisions are influenced by the probability
distribution of returns, which is assumed to conform to a normal distribution [3]. Given a specific
level of risk, the portfolio with the highest expected return is selected. Conversely, for a predefined

return, the portfolio with the lowest associated risk is preferred.
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2. Mean-Variance Model

In a single investment period, this research assumes an investment in a portfolio consisting of n risky
assets. Here, 7; represents the expected rate of return on the it" asset, Q; denotes the probability of
that return occurring, and W; is the weight of the i*" asset in the portfolio. The expected rate of
return on the portfolio for one investment period is expressed as:

E(ry) = Xisi W Qimy (1)
Simultaneously, the variance of a portfolio containing n assets, denoted o2, is given by:
Op == Nivq Xy=1 WiW, piy0,0, = Yoy X5 -1 WiW,, cov(ry, 1) (2)

Given the prohibition of short selling in the Chinese securities market, the constraint for the
portfolio weights is: Yj=; W; < 1,W; > 0.

In Equation (2), i and y represent distinct assets within the portfolio. The term cov(r;,1,)
represents the covariance between asset I and asset y, serving as a measure of the linkage between
their returns. Additionally, o; and o, denote the standard deviations of assets i and y respectively.
It is evident from Equation (2) that the portfolio's risk is a function of the asset weights, the correlation
coefficients between the assets, and each asset's individual risk. Hence, one can mitigate the
portfolio's risk by strategically selecting assets with lower correlation coefficients.

3. Portfolio Efficient Frontier

Every conceivable combination of assets within a portfolio constitutes the feasible set. This set
manifests as a left-convex region, as depicted in Figure 1. The Minimum Variance Portfolio (MVP)
point corresponds to the portfolio composition where the variance is at its lowest [4].

efficient frontier

0 C

Figure 1: Efficient Frontier.
Photo credit: Original
In Figure 1, the Dotted Line Partitions the Curve into Two Segments. Portfolios Situated on the
Upper Segment of This Curve, and Thus above the Dotted Line, Meet the Criteria of Maximising

Returns for a Given Risk Level or Minimising Risk for a Specific Return. This Upper Curve Is
Referred to As the Efficient Frontier of the Asset Portfolio.
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Sharpe Ratio [5]. This metric offers a risk-adjusted evaluation of a portfolio's performance. The
Sharpe Ratio quantifies the excess expected return of a portfolio relative to its overall standard
deviation. The formula for the Sharpe Ratio is:

_ E(p—Ry)
Xp =—2—F 3)

Where X, represents the Sharpe Ratio, g, is the portfolio's standard deviation, and R is the
risk-free rate. The ratio illuminates the amount of additional return achievable for every unit of risk
undertaken. Empirical research often leverages the Sharpe Ratio to determine the most optimal
portfolio allocation on the efficient frontier.

4. Literature Review

The applicability and relevance of Markowitz's Portfolio Theory (MPT) have been empirically
evaluated across various global markets. In the Malaysian context, Lee et al. (2016) [6] emphasized
the synergies between the Capital Asset Pricing Model (CAPM) and MPT, elucidating their roles in
the Kuala Lumpur Stock Exchange. Their findings accentuated CAPM's prowess in forecasting stock
behaviour and underscored the importance of Markowitz diversification in risk mitigation. Parallelly,
Sira¢ek and Kien (2017) [7] explored MPT in the U.S. market, leveraging the Dow Jones Industrial
Average index for portfolio construction. Their research provides substantial insights into optimized
security selection, balancing risk, and return.

A discernible trend in recent literature is the integration of advanced computational methodologies
with traditional portfolio theories. Ma et al. (2020) [8] presented a pioneering approach,
amalgamating deep learning with MPT to enhance stock return predictions. Their exploration
revealed the promise of tools like Deep Neural Networks in reshaping the investment landscape.
Notably, studies focused on the Chinese market have exhibited a growing interest in MPT's potential
and limitations. Wu (2022) [9] employed a comprehensive analysis, incorporating Monte Carlo
simulations, to critically evaluate MPT's practicality in the real stock market scenario. In a congruent
vein, Zhang (2023) [10] harnessed the computational capabilities of Python to fortify the empirical
application of Markowitz's theory in portfolio optimization.

However, a nuanced observation reveals a gap. Despite the wide-ranging investigations into MPT
across diverse markets, such as the work of Sri Artini and Sandhi (2020) [11] which spanned the
Chinese, Indonesian, and Indian markets, and its confluence with advanced technologies highlighted
by Jang and Seong (2023) [12], there remains a paucity of research concentrating on the empirical
nuances of MPT within the Chinese stock market, especially when leveraging Python.

Given this backdrop, the present study aspires to bridge this gap, utilizing Python's robust
computational capacities to provide a granular analysis of Markowitz's portfolio theory's intricacies
within China's dynamic stock market landscape.

5.  Empirical Analysis

The empirical analysis undertaken in this research reflects the specific characteristics of China's
securities market. This study operates under the following assumptions: (1) Stock prices fully capture
all available information in the securities market [13]; (2) Transaction costs are disregarded; (3)
Assets can be divided infinitely; (4) Portfolio decisions are guided by the expected return and variance
[14]; (5) Investors exhibit a relentless pursuit for returns, meaning, all other factors held constant,
they will gravitate towards portfolios with higher expected returns; (6) Short selling of stocks is
prohibited.
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For the purpose of this analysis, five stocks were selected from China's stock market: Guizhou
Maotai, China Merchants Bank, Longyi, Haitian Flavouring, and Sany Heavy Industry. Data
corresponding to these stocks were sourced from NetEase Finance, spanning from June 11, 2018, to
February 1, 2022. This data facilitated the computation of the covariance and correlation coefficients
of these stocks over the said period. Subsequent analyses sought to maximise the Sharpe ratio and
minimise portfolio variance, leading to the identification of two optimal portfolios. The weightings
of these portfolios were then determined. Calculations were performed to ascertain the return,
variance, and Sharpe ratio of both portfolios—one optimised for maximum Sharpe ratio and the other
for minimum variance. These portfolios' positions on the efficient frontier were duly marked,

culminating in the graphical representation of the efficient frontier.

Table 1: Correlation Coefficient.

Guizhou China Merchants | Longi Haitian Sany Heavy
Maotai Bank shares Taste Industry
Guizhou Maotai | 1.000000 0.466756 0.207298 |0.518991 |0.397854
gg;?{a Merchants 1) /<756 1.000000 0.163934 [0.302402 |0.444368
Longi shares 0.207298 0.163934 1.000000 |0.154415 |0.227150
Haitian Taste 0.518991 0.302402 0.154415 |1.000000 |0.321604
Sany Heavy 0.397854 0.444368 0.227150 [0.321604 | 1.000000
Industry

Table 1 presents the correlation coefficients of the five selected stocks, while Table 2 details the
annualised rate of return covariance of the chosen stocks.

Table 2: Annualised Rate of Return Covariance.

Guizhou China Merchants | Longi Haitian Sany Heavy
Maotai Bank shares Taste Industry
Guizhou Maotai  |0.112822  |0.046906 0.053652 |0.067956 |0.053621
gg;?{a Merchants | h46006  |0.089091 0.031110 |0.035213  {0.053182
Longi shares 0.053652  |0.031110 0.271947 [0.048350 |0.062656
Haitian Taste 0.067956  |0.035213 0.048350 |0.156561 |0.049921
Sany Heavy 0.053621  |0.053182 0.062656 |0.049921 |0.159019
Industry

As observed in Figure 2, the annualised returns of all five stocks exceed 0, signifying a reduced
likelihood of negative returns. Furthermore, the correlation coefficients and covariances depicted in
Table 1 and Table 2 suggest moderate relationships among the stocks. These characteristics make
them suitable candidates for portfolio construction.
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Table 3: Summary Statistics.

Count |Mean Std. err  |Min P25 P50 P75 Max
GZMT [886.0 [0.001003 {0.021159 [-0.105361 |-0.010342 |0.000406 [0.013360 {0.090792
ZSYH [886.0 [0.000611 [0.018803 [-0.068975 |-0.009799 |-0.000561 [0.011486 {0.095211
LIGF 881.0 |NaN NaN -inf -0.015678 |0.000784 [0.018516 |inf
HTWY [886.0 [0.000270 |0.024925 [-0.240623 |-0.012359 |0.000422 [0.012076 |0.095330
SYZG |886.0 |0.001009 [0.025120 |-0.105153 [-0.013620 [0.000840 |0.013656 [0.095237

Table 3 presents the descriptive statistics for individual stocks, detailing the daily log returns. The
'Mean' column signifies the average daily log return for each stock. Specifically, the daily log return
for Guizhou Maotai stands at 0.001003, for China Merchants Bank at 0.00611, for Haitian Taste at
0.000270, and for Sany Heavy Industry at 0.001009.

The column labeled 'Std. err' delineates the standard deviation of the logarithmic returns for each
stock. For instance, the standard deviation for Guizhou Maotai's daily log return is 0.021159, for
China Merchants Bank's is 0.018803, for Haitian Taste's is 0.024925, and for Sany Heavy Industry's,
it's 0.025120.

Lastly, the 'Min' and 'Max' columns indicate the lowest and highest daily logarithmic returns
respectively for each stock. To elucidate, Guizhou Maotai has a range from -0.105361 to 0.090792,
Haitian Taste's range spans from -0.240623 to 0.095330, and Sany Heavy Industry's varies from -
0.105153 to 0.095237.

Longi shares was suspended from trading on April 9, 2019, and resumed on April 17, 2019, due
to the implementation of share allotment. As a result, in the calculation of daily logarithmic returns
for Longi shares—specifically for mean, standard deviation, and the minimum and maximum
values—the Python computation resulted in NaN and inf values. This was due to a division by zero
error. With the provided data, annual logarithmic returns for the stocks, excluding Longi shares, are
as follows: Guizhou Maotai at 25.28%, China Merchants Bank at 15.40%, Haitian Taste at 6.79%,
and Sany Heavy Industry at 25.79%.

Table 3, the individual stock descriptive volume statistics, provides insights into the quartiles of
the daily log returns of the respective stocks. Additionally, Figure 1 illustrates the value of daily log
returns corresponding to each quartile for these stocks.

This research then employs a Monte Carlo simulation to derive random weights for 20,000
portfolios, capturing the expected returns, standard deviations, and Sharpe ratios associated with each
weight combination.

The highest Sharpe ratio for these portfolios was identified under specific constraints on the stock
weights, ensuring the sum of weights equated to 1. Utilising Python's minimize function, the research
sought to minimise the negative value of the Sharpe ratio. Initially, weights for all five stocks were
set at 0.2. The optimal outcome produced stock weights of [0.49397271, 0.13896104, 0.00895254,
0.00895254, 0.00895254, 0.00895254, 0.00895254, 0.00895254, 0.00895254, 0.00895254,
0.0095254, 0.00895254, 0.02272108, 0.33539263], correlating to an expected portfolio return of
0.2435, a standard deviation of 0.2897, and a Sharpe ratio of 0.8404.

Following a similar methodology, the weights of the minimum variance portfolio for the five
stocks were [0.11017539, 0.26214347, 0.2252433, 0.29467509, 0.10776275]. This portfolio yielded
an expected return of 0.1503, a standard deviation of 0.2504, and a Sharpe ratio of 0.6002.

For the purposes of this analysis, the portfolio with weights yielding the maximum Sharpe ratio is
denoted as Portfolio I, while the portfolio with weights resulting in the minimum variance is termed
Portfolio II. The specifics of these two portfolios are collated in Table 4.
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Table 4: Two Optimal Portfolios.

. . Expected Rate of Stanfi a‘rd .
Portfolio Weighting Deviation Sharpe Ratio
Return -
(Statistics)

[0.49397271,0.13896104,

Portfoliol  [0.00895254,0.02272108, |0.2435 0.2897 0.8404
0.33539263]
[0.11017539,0.26214347,

Portfolio IT  |0.2252433,0.29467509, 0.1503 0.2504 0.6002
0.10776275]

Beginning the discussion by contemplating the typical mindset of an investor in the Chinese
securities market, this research assumes that investors display payoff-intolerance. This means that,
for a given level of risk, investors generally desire higher returns. When the Sharpe ratio is maximised,
the stock weights correspond to Portfolio I. Under this scenario, an investor would likely opt for
Portfolio I as their investment strategy. This portfolio offers an expected return of 0.2435, a standard
deviation of 0.2897, and a Sharpe ratio of 0.8404.
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Figure 2: Feasible Set.
Photo credit: Original

Within the feasible set, Portfolio I and Portfolio II are distinctly marked. The position of Portfolio
I is indicated by a red dot, while Portfolio II is denoted by a black dot. Refer to Figure 2 for visual
clarification.
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Figure 3: Feasible Set with Efficient Frontier.
Photo credit: Original

Naturally, it's a simplification to assume every investor prioritises rewards. Such conclusions arise
purely from the assumptions adopted in this empirical analysis. A risk-averse investor might favour
the weights of Portfolio II. Yet there are also investors who don't fit neatly into categories of reward-
seeking or risk-aversion. These investors would balance their personal risk tolerance with their
investment preferences, selecting an appropriate strategy based on the efficient frontier depicted in
Figure 3.

6. Conclusion

In the empirical analysis, the data from individual stocks was processed to obtain correlation
coefficients and annualized return covariances. This was done to ascertain their suitability for
investment portfolio construction. Subsequently, the Markowitz portfolio theory was employed to
identify two optimal portfolios and to outline the set of effective portfolios. The findings indicate that
an investor, aiming to achieve the maximum return for a given risk, could opt for the portfolio with
the highest Sharpe ratio. This portfolio comprises stocks weighted as follows: Guizhou Maotai at
0.49397271, China Merchants Bank at 0.13896104, Longi shares at 0.00895254, Haitian Taste at
0.02272108, and Sany Heavy Industry at 0.33539263. This allocation results in an expected return of
0.2435 with an associated risk of 0.2897. Alternatively, for investors prioritising a given return with
minimal risk, the portfolio with the lowest variance is recommended. This consists of Guizhou Maotai
weighted at 0.11017539, China Merchants Bank at 0.26214347, Longi shares at 0.2252433, Haitian
Taste at 0.29467509, and Sany Heavy Industry at 0.10776275. Investors desiring varied risk-return
combinations can adjust their investments according to the efficient frontier.

The findings illustrate that Markowitz's portfolio theory can effectively diminish the weightings
of stocks exhibiting low returns and heightened risks among the selected equities. This facilitates
investors in channelling their capital towards a limited selection of securities that present superior
returns and risk profiles. Notably, the effective portfolio outperforms the typical portfolio, given its
capacity to either yield higher returns at a similar risk or secure equivalent returns at reduced risk
compared to the standard securities portfolio.
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In the context of the contemporary Chinese securities market, investors typically rely on technical
and fundamental analyses of individual stocks. Yet, when an investment decision is centred around a
single stock, it essentially constitutes a portfolio. The unsystematic risk linked to an individual stock
is a significant concern. Crafting an effective investment portfolio serves to mitigate the non-
systematic risk inherent in the collection. Employing an effective portfolio to sidestep certain risks
while guaranteeing returns aligns with the aspirations of many investors. Moreover, the efficient
frontier, as derived through Markowitz's portfolio theory, provides a clear roadmap for investors. By
comprehending their risk preferences and integrating them with the efficient portfolios crafted via the
efficient frontier, investors can strive to either maximise their returns or curtail their risks. This
approach can significantly aid investors, especially those unsure about astute investment strategies.

Given these considerations, applying Markowitz's portfolio theory to China's securities market
appears to be a plausible strategy.
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