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Abstract: This study focuses on fund portfolio investments in the Chinese market. The 

application of classic portfolio optimization methods encounters several issues when applied 

to fund portfolios. For example, issues such as the non-normal distribution of returns on funds 

or fund portfolios, turnover rate limitations in fund investments, and liquidity constraints of 

fund assets, which can lead to transaction costs and opportunity costs, are prevalent 

challenges. The existence of these issues can compromise the effectiveness of classic 

portfolio optimization methods like Mean-Variance Optimization. This may result in a 

reduction of accuracy in determining the portfolio’s optimal weights, a deviation of actual 

trading results from the model’s optimal expectation, and may even render the optimal 

weights impractical in real-world scenarios. To address these challenges, this paper integrates 

the 2-Step covariance matrix method (2-Step method) and the measurement of fund 

transaction costs into the portfolio optimization process. The paper finds that the 2-Step 

method, compared to the baseline, can indeed improve the risk-return indicators of the 

potimal fund portfolio. The inclusion of the transaction cost can effectively control the 

turnover frequency of the portfolio. Even after accounting for these costs, the 2-Step method 

continues to exhibit a significant improvement effect compared to the baseline.  

Keywords: Portfolio Optimization, Covariance Matrix, Hedge Fund, Transaction Cost, Fund 

of Fund 

1. Introduction 

In recent years, hedge funds have flourished in the Chinese market, and a multitude of high-quality 

hedge fund assets have emerged, earning favor from investors. Consequently, methods to effectively 

combine superior hedge fund assets to form portfolios that balance returns and risks have gradually 

captured investors' attention. However, the application of classic portfolio optimization methods in 

hedge fund portfolios encounters several issues: 

(1) The distribution of hedge fund returns deviates from the normal and t-distributions, for instance 

exhibiting significant kurtosis or skewness, distinct from traditional stock returns. This leads to 

inaccurate risk estimations, neglect of tail risks, unstable optimization results, and potentially overly 

concentrated positions. 

(2) In actual hedge funds transactions, various factors such as portfolio turnover limitations, fund 

liquidity constraints, and the trading complexity relative to other secondary market tradables bring 
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about significant trading costs. Traditional frameworks rarely incorporate quantitative penalties for 

fund portfolio position adjustments, which may result in an inability to actualize the model's optimal 

portfolio or significant deviations from the optimal results in practical operations. 

This paper quantitatively integrates the 2-Step method, aiming to improve hedge fund risk 

estimation by enhancing covariance matrix estimation methods, and fund transaction costs into the 

optimizer. This effort seeks to create a more effective fund portfolio with improved return-risk ratios 

and practicality. 

2. Literature Review 

First and foremost, when it comes to the realm of portfolio optimization, Mean-Variance 

Optimization (MVO) plays a foundational role. A vast amount of academic research has been 

conducted around MVO, leading to numerous enhancements and adaptations. In the industry, MVO 

is widely regarded as a fundamental starting point for various investment strategies. However, MVO 

has been widely criticized over the years for various reasons, a primary concern being the sensitivity 

of optimal results to model inputs [1-2]. Such sensitivity hinders its adaptability to short-term market 

regime-switching, and makes it challenging to achieve exceptional out-of-sample performance [3]. 

The academic community has consequently proposed various extensions to MVO, new optimization 

objective functions, and new asset allocation methods, such as Max Diversification Ratio [4], Risk 

Parity [5], Mean-CVaR [6], Mean-semivariance [7], and Efficient CDaR [8], each making 

breakthroughs in various dimensions. In this paper, for more robust evaluation and control of research 

variables, the globally accepted "most robust" MVO framework that excludes the impact of expected 

returns, the Global Minimum Variance (GMV) portfolio [9], is chosen as the starting point of the 

discussion. 

Another way to mitigating the shortcomings of MVO is enhancing the precision of returns and risk 

estimations, primarily by refining methods used for estimating the covariance matrix to augment its 

robustness and eliminate noise. According to Peter J. and his collegues, their research introduced the 

Minimum Covariance Determinant estimator, a robust estimator that considers the model's stability 

when facing outliers [10], and Rousseeuw, P.J et al. further proposed the Elliptic Envelope method 

for anomaly detection [11]. Besides, other studies presented several shrinkage estimators, combining 

the sample covariance matrix with a structured target [12-14]. Estrada, J. explored a risk measurement 

method focusing on adverse price fluctuations - semivariance [15]. These methodologies have been 

proven to significantly bolster the MVO framework. It’s also worth noting that improving the 

accuracy of expected return estimations is another viable direction, with numerous well-constructed 

methodologies present in both academia and industry, details of which will not be further delved into 

within this paper. 

The 2-Step method, pioneered by the study conducted by Arnott, R.D. et al. [16], refined EWMA 

by applying a 2-Step volatility management approach that has demonstrated efficacy in increasing 

risk-adjusted returns in Factor Investing. This paper further extends the 2-Step concept to more risk 

measurement methods. Considering the characteristics of hedge fund products and the inherent 

cyclicity and seasonality in the Chinese market, this paper adjusted the hyperparameters of the model 

to explore whether the combination of these methods can solve the current difficulties faced in fund 

investment. 

Lastly, the return distribution of funds or fund portfolios (such as discretionary stock/CTA 

strategies) exhibiting sharp peaks and fat tails is largely influenced by the time series variability in 

volatility levels. This observation can be traced back to research such as the research [17], which 

mentions the uneven distribution of risk events over time. There sharp peaks and fat tails are also due 

to characteristics of specific investment strategies, like the inherent leverage in CTA strategies. 

Generally, short-term volatility persists more reliably than short-term return predictions, making it a 

Proceedings of the 2nd International Conference on Financial Technology and Business Analysis
DOI: 10.54254/2754-1169/70/20231612

69



good predictor of future risk. To highlight short-term fluctuations, commonly, EWMA is used to 

prioritize recent data, tuning the model for short-term variability. The 2-Step method we implemented 

pursues a similar goal, balancing the model between long-term and short-term fluctuations, and 

adapting to the time-varying volatility of multiple funds, making the model more adaptable to short-

term market regime-switching. 

3. Data and Methodology 

3.1. Data 

The fund data used in this article comes from Go-Goal, a reputable hedge fund data platform in China. 

Various fund indices, including long-only equity, long-short equity, equity index-enhancement, CTA, 

macro strategy, and multi-strategy, were chosen as inputs for the portfolio optimization model. Go-

Goal's fund universe mainly includes non-institutionalized ‘sunshine’ hedge fund products with open-

to-public performance, issued domestically through trust platforms, brokers, fund subsidiaries, and 

hedge funds’ own platforms. Indices are calculated using a weighted average method, considering 

dividend reinvestment. More details are available at (https://cloud.12345fund.com/home). Due to the 

nascent development of transparent hedge funds in the China market, this study utilizes hedge fund 

data available since December 31, 2015, collected on a weekly frequency.  

3.2. Risk Measurements and the 2-Step Covariance Matrix 

For risk measurement methods, this paper employs various approaches including the sample 

covariance matrix (Cov), exponentially weighted covariance matrix (Exp_Cov), semi-covariance 

(Semi_Cov), Ledoit-Wolf Shrinkage (LW_Const_Corr, LW_Single_Factor, LW_Regularized), 

Minimum Covariance Determinant estimator (Min_Cov_Det), Elliptic Envelope Method 

(Elliptic_Envelope), and Oracle Approximating Shrinkage Estimator (OAS). Based on these 

measurements, a further 2-Step transformation is performed. The calculation method is as follows: 

(1) Set a baseline model: Cov、Exp_Cov、Semi_Cov、LW_Const_Corr、LW_Single_Factor、

LW_Regularized、Min_Cov_Det、Elliptic_Envelope, OAS. 

(2) Calculate the long-term risk matrix Σ𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 corresponding to different baseline models. 

The rolling window is adaptable, ranging from a minimum of one year to a maximum of three 

and a half years, based on a rule of thumb derived from the characteristics of the beta rotation 

cycle in China's market in recent years. 

(3) Calculate the average risk matrix Σ𝑎𝑣𝑒𝑟𝑎𝑔𝑒 by averaging K short-term risk matrices.  

(4) Obtain the 2-Step covariance matrix. 

Σ2−𝑆𝑡𝑒𝑝𝑖
= {

Σ𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑖
 , Σ𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑖

∈ [(1 − 𝛼) ∗ Σ𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑖
, (1 + 𝛼) ∗ Σ𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑖

]

Σ𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑖
 , Others

 

In this paper, 𝛼 is set to 0.05, and rolling window K is set to 8, 16, and 24 weeks. 

To intuitively understand this 2-Step covariance matrix, when the long-term volatility is close to 

the short-term volatility, we believe that the volatility environment of all assets (in the past six months) 

has not undergone regime-switching, so the risk matrix continues to use Σ𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒. However, when 

the long-term volatility exceeds the range of short-term volatility, it is believed that the volatility 

condition of some or all assets has changed, and therefore it is necessary to use the short-term average 

risk matrix Σ𝑎𝑣𝑒𝑟𝑎𝑔𝑒  to replace Σ𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒. Since our model inputs are hedge fund indices, which 

inherently exhibit more robust and less volatile performances compared to individual funds or small 

fund portfolios, we have chosen to apply a relatively strict volatility interval constraint parameter 𝛼. 
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3.3. Integrating Fund Transaction Costs into the Objective Function 

As mentioned earlier, Minimum Variance (Min-Var) is used as the starting point for our research. 

We first include the transaction cost term into the Min-Var objective function: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒       𝜆 ∗ 𝑤𝑇𝛴𝑤 + 𝑐 ∗ 𝛴|𝑤 − 𝑤𝑝𝑟𝑒| 

Where,𝛴 represents the covariance matrix,the constant term c represents transaction costs, the 

constant term 𝜆 is a ‘balancing’ coefficient,𝑤𝑝𝑟𝑒 is the weight of the portfolio in the previous period, 

and 𝑤 is the portfolio weight to be optimized. 

However, the introduction of transaction cost calculation in this objective function makes the 

original problem challenging to solve. A method is employed to address this issue, which transforms 

the problem into two continuous convex optimization problems. The steps are as follows: 

Step 1: Solve the Min-Var problem without the transaction cost term to get optimal weights 𝑤∗.  

Step 2: Define cost coefficient array𝑐∗ 

𝑐𝑖
∗ = {

𝑐𝑖, 𝑤𝑖
∗ ≥ 𝑤𝑝𝑟𝑒_𝑖

−𝑐𝑖, 𝑤𝑖
∗ < 𝑤𝑝𝑟𝑒_𝑖

 

Step 3: Obtain optimal weights 𝑤𝑎𝑓𝑡𝑒𝑟_𝑐𝑜𝑠𝑡
∗ : 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒        𝜆 ∗ 𝑤𝑇Σ𝑤 + 𝑐T𝑤 − 𝑐𝑇𝑤𝑝𝑟𝑒 

𝑠. 𝑡.     {
0 ≤ 𝑤𝑖 ≤ 𝑤𝑝𝑟𝑒_𝑖 , 𝑐𝑖

∗ < 0

𝑤𝑝𝑟𝑒_𝑖 ≤ 𝑤𝑖 ≤ 1, 𝑐𝑖
∗ ≥ 0

 

3.4. Transaction Costs and Coefficient Lambda 

For secondary market assets (most representatively, such as stocks and futures), the transaction cost 

c is easy to determine. However, there is no fixed standard for fund transactions. This paper estimates 

the trading friction of funds from the perspective of opportunity cost. Suppose fund transactions, such 

as redemptions, result in a capital ‘lock-up’ period of T days, and considering 250 trading days in a 

year, with an annualized capital opportunity cost of R, the estimated transaction friction is: 

𝑐 =
𝑇

250
∗ 𝑅 

The opportunity cost can refer to various aspects, for example, the risk-free rate, the yield of 

monetary funds, and the cost of capital etc. 

The coefficient 𝜆 in the objective function acts to balance the risk term with the cost term, similar 

to the risk aversion coefficient in MVO. When transaction costs are high, 𝜆 allows the role of risk not 

to be entirely dominated by high costs, preventing the portfolio from being constrained by trading 

friction and becoming stagnant. 

𝜆 = 𝑀𝑎𝑥( 
𝑐

𝑤𝑝𝑟𝑒
𝑇 𝛴𝑤𝑝𝑟𝑒

 , 1) 
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3.5. Extension from Min-Var to Max-Sharpe 

Besides examining the Min-Var portfolios, we also tried to take expected returns into account. For 

simplicity, we avoided using complicated return prediction models, instead assuming that funds' 

historical returns could represent future performances. Max-Sharpe is a classic optimizer that 

considers both returns and risk. The study also transformed it into a simplified convex optimization 

problem [18]. Under certain assumptions (such as the sum of weights being equal to one and the 

existence of a feasible domain where the portfolio's expected return rate is higher than the risk-free 

rate), its equivalent quadratic programming problem is as follows: 

Obtain optimal weights 𝑤∗: 

𝑀𝑖𝑛 𝑦𝑇Σ𝑦 

𝑠. 𝑡. (𝜇 − 𝑟𝑓𝑒)
𝑇

𝑦 = 1 

(𝑦, 𝜅) ∈ 𝜒+ 

𝜒+ ≔ {𝑤 ∈ 𝑅, 𝑘 ∈ 𝑅|𝜅 > 0,
𝑤
𝜅

∈ 𝜒} ∪ {0,0} 

𝑤∗ =
𝑦

𝜅
 

Further considering the transaction cost term within the Max-Sharpe framework: 

Step 1: Solve the Max-Sharpe Problem without costs to obtain optimal weights 𝑤∗: 

Step 2: Define cost vector 𝑐∗ 

𝑐𝑖
∗ = {

𝑐𝑖, 𝑤𝑖
∗ ≥ 𝑤𝑝𝑟𝑒_𝑖

−𝑐𝑖, 𝑤𝑖
∗ < 𝑤𝑝𝑟𝑒_𝑖

 

Step 3: Obtain final optimal weights 𝑤𝑎𝑓𝑡𝑒𝑟_𝑐𝑜𝑠𝑡
∗ : 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒        𝜆 ∗ 𝑦𝑇Σ𝑦 + 𝑐T𝑦 − 𝑐𝑇(𝑤𝑝𝑟𝑒 ∗ 𝜅) 

𝑠. 𝑡.     {
0 ≤ 𝑦𝑖 ≤ 𝑤𝑝𝑟𝑒_𝑖 ∗ 𝜅, 𝑐𝑖

∗ < 0

𝑤𝑝𝑟𝑒_𝑖 ∗ 𝜅 ≤ 𝑦𝑖 ≤ 𝜅, 𝑐𝑖
∗ ≥ 0

 

𝑠. 𝑡. (𝜇 − 𝑟𝑓𝑒)
𝑇

𝑦 = 1 

(𝑦, 𝜅) ∈ 𝜒+ 

𝜒+ ≔ {𝑤 ∈ 𝑅, 𝑘 ∈ 𝑅|𝜅 > 0,
𝑤
𝜅 ∈ 𝜒} ∪ {0,0} 

𝑤𝑎𝑓𝑡𝑒𝑟_𝑐𝑜𝑠𝑡
∗ =

𝑦

𝜅
 

4. Analysis and Discussion 

4.1. Empirical Data and Results 

This section primarily displays empirical results through historical back-testing. The settings are as 

follows: The back-testing period is from January 2017 to September 2023, with all data from 2016 

retained for initializing the covariance matrix. Portfolios are monthly-rebalanced, and the 
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optimization objectives include Min-Var and Max-Sharpe. Taking into account the scarcity of high-

quality hedge fund products, inherent strategic cyclicality, and the necessity for risk management, 

asset diversification is emphasized as a key in real-world investments. Therefore, in the optimization, 

a constraint has been implemented to ensure that a single asset does not exceed a 60% allocation. 

4.1.1. Empirical Results of the 2-Step Covariance Method under Min-Var Optimizer 

To begin with the Min-Var Optimizer, Table 1 displays the return-to-risk ratios, Annualized Return 

(Ret), Annualized Volatility (Std), Annualized Downside Volatility (DStd), Sharpe Ratio (SR), 

Sortino Ratio (Sortino), and Maximum Drawdown (MDD), of optimal portfolios corresponding to 2-

Step and baseline models, excluding the fund transaction cost item c and the coefficient 𝜆. Table 2 

presents the return-to-risk ratios of 6 selected hedge fund indices for the same period. 

From Table 1, it’s evident that across the entire period, compared to the baseline, all 2-Step 

methods manage to reduce the portfolio volatility to varying degrees. Moreover, nearly all 2-Step 

methods can significantly enhance the portfolio’s Sharpe Ratio or at least match the baseline. 

Although Table 2 reveals a dominant performance of CTA within the interval, primarily due to the 

CTA bullish market condition between 2020 and 2021, most of the 2-Step optimized portfolios, even 

with a maximum of only 60% CTA holdings, could achieve a lower annualized volatility compared 

to holding CTA only. This highlights the significance of diversification. 

Table 1: Comparison of risk-return metrics between 2-Step and baseline methods without the 

transaction cost c. 

 SR(2-Step) SR Std(2-Step) Std 

Cov 1.53  1.51  3.54% 3.63% 

Elliptic_Envelope 1.55  1.41  3.63% 3.69% 

Exp_Cov 1.53  1.52  3.53% 3.59% 

LW_Const_Corr 1.51  1.50  3.55% 3.64% 

LW_Regularized 1.49  1.50  3.69% 3.69% 

LW_Single_Factor 1.49  1.50  3.57% 3.63% 

Min_Cov_Det 1.56  1.36  3.63% 3.70% 

OAS 1.48  1.50  3.68% 3.68% 

Semi_Cov 1.50  1.46  3.56% 3.64% 

Equal_Vol  0.94   5.09% 

Equal_Weight  0.78   6.02% 

Table 2: Risk-return metrics of 6 selected hedge fund indices. 

 Ret Std SR MDD 

CTA 7.71% 3.77% 2.046  3.18% 

Equity Index-Enhancement 6.69% 12.82% 0.522  22.06% 

Equity Long-Only  3.07% 8.73% 0.351  14.13% 

Equity Long-Short 4.44% 6.99% 0.635  12.70% 

Macro 3.79% 6.35% 0.596  14.53% 

Multi-Strategy 4.18% 5.52% 0.758  8.89% 
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4.1.2. Empirical Results of Introducing Transaction Cost and Coefficient Lambda 

Based on Table 1, 2-Step method has been primarily proved to be effective in fund portfolio 

optimization. Consequently, we introduce the cost term 𝑐 and the coefficient term 𝜆 into the analysis. 

We make a reasonable assumption for the trading cost c, with R = 1.5% (representing the risk-free 

rate) and T = 1, resulting in c = 0.006%. The comparison between Figure 1 and Figure 2, displayed 

in the Appendix, vividly illustrates that the introduction of c and λ has smoothed the weights of the 

optimal portfolio, whether for the baseline or the 2-Step method, reducing spiky weight changes.  

Furthermore, from Table 3, we can observe that the introduction of transaction costs not only 

smoothens optimal weights but also maintains favorable improvements of the 2-Step method. All of 

the 2-Step approaches enhance portfolio SR significantly, outperforming ‘Equal_Vol’ and 

‘Equal_Weight’ portfolios, and effectively reduce portfolio volatility. While the smoothing of 

weights may lead to a slight reduction in SR and volatility compared to portfolios without cost 

penalties, it remains crucial for practical investment scenarios. 

Table 3: Comparison of risk-return metrics between 2-Step and baseline methods with c = 0.006%. 

 SR(2-Step) SR Std(2-Step) Std 

Cov 1.36 1.11 3.92% 4.18% 

Elliptic_Envelope 1.41 1.34 3.89% 3.80% 

Exp_Cov 1.33 1.15 3.96% 4.09% 

LW_Const_Corr 1.51 1.48 3.56% 3.65% 

LW_Regularized 1.41 1.14 3.77% 4.20% 

LW_Single_Factor 1.50 1.47 3.58% 3.65% 

Min_Cov_Det 1.40 1.34 3.88% 3.80% 

OAS 1.45 1.14 3.90% 4.20% 

Semi_Cov 1.50 1.47 3.62% 3.61% 

Equal_Vol NA 0.94 NA 5.09% 

Equal_Weight NA 0.78 NA 6.02% 

4.1.3. Empirical Results of Max-Sharpe Optimizer 

For simplicity, this section utilizes historical returns as expected returns within the Max-Sharpe 

objective function. Table 4 presents a comparative analysis of risk-return metrics between the 2-Step 

and baseline methods for an unconstrained Max-Sharpe problem with c = 0.006%. It is evident that 

the 2-Step method consistently demonstrates improvements relative to the baseline, much in the same 

vein as observed in previous Min-Var problem – characterized by an increased Sharpe ratio and a 

diminished portfolio volatility. Admittedly, using extrapolation of rolling historical returns as a proxy 

for expected returns is a straightforward approach, it may carry inherent risks, as the future always 

bring unforeseen events not reflected in historical data. Industry practices often involve more 

sophisticated modeling techniques for this purpose. However, delving into the intricacies of such 

modeling is beyond the scope of this paper. 
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Table 4: Comparison of risk-return metrics between 2-Step and baseline methods with c = 0.006%. 

 SR(2-Step) SR Std(2-Step) Std 

Cov 1.72  1.58  3.75% 3.74% 

Elliptic_Envelope 1.66  1.42  3.77% 3.82% 

Exp_Cov 1.72  1.65  3.75% 3.77% 

LW_Const_Corr 1.72  1.58  3.70% 3.76% 

LW_Regularized 1.58  1.55  3.69% 3.69% 

LW_Single_Factor 1.67  1.57  3.75% 3.75% 

Min_Cov_Det 1.64  1.46  3.80% 3.80% 

OAS 1.59  1.56  3.67% 3.72% 

Semi_Cov 1.64  1.66  3.73% 3.75% 

Equal_Vol NA 0.94  NA 5.09% 

Equal_Weight NA 0.78  NA 6.02% 

4.1.4. Performance in Bearish Periods 

In 2018 and the first half of 2022, the stock and commodity markets in China witnessed a bearish 

market condition, which typically pose challenges for portfolio investments, as strategies are likely 

to facing tail risks, and fund portfolios may encounter substantial drawdowns. Therefore, examining 

how the 2-Step method improves the risk measurement and the impact of introducing transaction 

costs on the cost-effectiveness of investment decisions during bear markets becomes crucial. 

Table 5 presents the differences in various risk-return metrics between the 2-Step and baseline 

optimal portfolios when the cost is set at c = 0.006% in 2018. Evidently, even during bearish market 

conditions, the proposed approach continues to deliver significant improvements, enhancing portfolio 

returns while reducing portfolio volatility, downside volatility, and maximum drawdowns. 

Table 5: Spread of risk-return metrics between 2-Step and baseline methods with the transaction cost 

c = 0.006%. 

 Ret Std DStd SR Sortino MDD 

Cov 3.95% -0.41% -0.13% 1.02  1.48  -1.96% 

Elliptic_Envelope -0.31% 0.40% 0.86% -0.17  -0.72  1.43% 

Exp_Cov 3.44% -0.66% -0.75% 0.88  1.21  -2.47% 

LW_Const_Corr 0.97% -0.16% 0.29% 0.35  0.20  -0.05% 

LW_Regularized 4.26% -0.97% -0.97% 1.25  2.12  -3.36% 

LW_Single_Factor 1.20% -0.19% 0.34% 0.44  0.28  -0.08% 

Min_Cov_Det 0.00% 0.00% 0.10% -0.00  -0.10  0.01% 

OAS 3.96% -1.01% -0.80% 1.16  1.83  -3.27% 

Semi_Cov 1.47% -0.23% 0.28% 0.52  0.50  -0.38% 

Average 2.10% -0.36% -0.09% 0.61  0.76  -1.12% 

4.2. Limitations and Future Research Prospects 

The research conducted in this article has its limitations, and there are several potential directions for 

future investigations. First, concerning the model inputs, this article uses hedge fund indices, which 

often comprise a multitude of constituent funds. Compared to actual portfolios, indices tend to have 

lower volatility, lower investment viability, and may contain missing data or outliers. Future research 

could consider using selected fund portfolios or incorporating investors’ perspectives into model 
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inputs. Second, there still exists several hyperparameters, such as α, λ, K, etc., which have not been 

thoroughly explored in this article. Investigating the sensitivity of the model to these hyperparameters 

is a potential direction for further research. Thirdly, this study employed a basic averaging method to 

calculate the short-term risk matrix. Future research may consider more sophisticated approaches, 

like Bayesian methods or machine learning, for their combination. Fourth, this study only applys two 

optimizers. In the academic literature, various other approaches have been proposed, including those 

by the references [4,6,7-8], or more complex objectives like Conic programming. Investigating the 

compatibility of the 2-Step method and the introduction of the cost term with them is worth exploring. 

Lastly, this study assumed a uniform transaction cost c for all assets. In practice, the trading frictions 

between assets can vary significantly (e.g., due to differences in liquidity or the use of over-the-

counter derivatives). Therefore, personalizing c based on different asset characteristics and investors' 

perspectives is also an important direction for future research. 

5. Conclusion 

This article discusses the prevailing challenges in constructing hedge fund investment portfolios in 

the domestic market of China. Addressing these hurdles, this article employs the 2-Step Method 

within various covariance matrix estimation techniques proposed in academia and introduces a metric 

to assess the trading abrasion of hedge funds, innovatively incorporating both aspects into the fund 

portfolio optimization process, grounded on the Mean Variance Optimization framework. Subsequent 

empirical research is conducted utilizing six hedge fund indices sourced from the Go-Goal platform. 

This research, on one hand, clarifies that the 2-Step method effectively uses short-term risk 

estimations to construct various risk matrices and reduces the negative impacts of the non-normal 

return distribution on the accuracy of risk estimations. It also enhances the model's adaptability to 

short-term market regime-switching. As a result, the method substantially reduces portfolio volatility 

and improves the Sharpe ratio in comparison to baseline models. On the other hand, the introduction 

of transaction costs c and coefficient λ meticulously illustrates the funds' trading opportunity costs 

and significantly modulates the optimal portfolio’s turnover rate, thereby refining the optimization 

process’s alignment with real-world investment scenarios. Ultimately, by combining transaction cost 

control with the 2-Step method in both Min-Var and Max-Sharpe optimizers, there is a steady and 

long-term improvement in the portfolio’s risk-return performance. This approach also shows 

significant resilience in multi-asset bearish market conditions, effectively reducing downside risks. 
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Appendix 

The portfolios optimal weights are displayed in this appendix. Figure 1 shows a comparison between 

optimal weights of the baseline and 2-Step method with fund trading costs (c=0.006%), while Figure 

2 shows a comparison without fund trading costs. 
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Figure 1: Comparison between optimal weights of the baseline and 2-Step method with the fund 

trading cost (c=0.006%) 
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Figure 2: Comparison between optimal weights of the baseline and 2-Step method without the fund 

trading cost  
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