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Abstract: The paper delves into a detailed empirical analysis leveraging the ARIMA model,
with data gleaned from the weekly return trends of the Nasdaq Index. Using diagnostic tools
such as ACF, PACF, and the AIC information criteria, the study zeroes in on the optimal lag
period for the model. Subsequently, this refined model is employed to forecast potential
trajectories for the Nasdaq Index's weekly returns. Through a thorough examination of
analytical outcomes, especially AIC values, the study gauges the margin of prediction errors,
culminating in the selection of the most proficient forecasting model: ARIMA (2,0,2).
Importantly, these analytical insights serve as a valuable compass for investors aiming to
capitalize on lucrative opportunities or mitigate potential risks within the Nasdaq stock
exchange. Furthermore, it underscores the importance of empirical data analysis in guiding
informed decision-making, ensuring optimal returns in the volatile Nasdaq market landscape.
This work acts as a beacon for those navigating the intricate nuances of stock market
investments.
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1. Introduction

This paper has greatly relied on the ARIMA model to make analysis and prediction. ARIMA model
has good forecasting accuracy for many economic time series data, such as money supply, gross
national product, etc. It is also a widely used econometric model. It may be necessary to employ a
high order model with numerous parameters in some applications in order to effectively capture the
dynamic structure of the data, making the AR or MA models covered in the preceding sections
difficult to use. The introduction of the ARMA models helps to solve this problem [1,2]. The paper
extracted data from weekly return of Nasdaq Index. In the process of research, the paper applied ACF,
PACEF, unit roots, and AIC information methods. [3]

2. ARIMA Model

First, I discuss a simple autoregressive model. The lagged value xt1 may be helpful in predicting xt
when lag-1 autocorrelation is statistically significant for xt. A straightforward model that utilizes this
predictability is:

Xt = o+ P1X1 + a4 (1)
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For asset returns, the above results imply that given the past return xt—1, the current return is
centered around ¢0 + ¢p1xt —1 with standard deviation ca .( Tsay)
A straight-forward generalization of the AR(1) model is the AR(p) model:

Xt = d)o + ¢1xt_1 + -+ d)pxt_p + a; (2)

where p is a nonnegative integer and {at} is defined in Equation (1). The AR(p) model is in the same
form as a multiple linear regression model with lagged values serving as the explanatory variables.

(Tsay)
Then, a time series xt follows an ARMA (p,q) model if it satisfies:

Xt — P1Xp—1 = P+ ar — 010, (3)

For this model to be meaningful, I need two parameters do not have the same value; otherwise,
there is a cancellation in the equation and the process reduces to a white noise series.

Auto-Regressive and Moving Average Model is an important method to study the time series, for
many economic time series can be built with a high degree of agreement with the ARMA model.Both
AR and MA models are special forms of ARMA models, i.e., for ARMA (p,q), if order q = 0, then it
is autoregressive model AR(p); if order p = 0, then it becomes moving average model MA(q).

3. Data

This article employs weekly data from Nasdaq Index, including the indicators such as mean, standard
deviation, and Sharpe ratio. The descriptive and summative statistics of these selected dates are
presented in Table 1, along with their respective values in rate of return, ranging from 2018-01-02 to
2021-12-30. All of data are calculate using R software. Also, Sharpe ratio is calculate based on the
formula:

Sharpe ratio = Mean/Standard Deviation.

Table 1: Selected Summative Statistics from Nasdaq Index

Mean Min Max Standard Deviation Sharpe ratio
0.04424 -12.32133 9.34600 1.616807 0.02736
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Figure 1: Time series Plot about 5-year data in rate of return in Nasdaq, from 2018-01-02 to 2021-
12-30.
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4.  Empirical Analysis
The experiment conducts 1-year, 3-year, and 5-year data. In order to find data set with normal

distribution, the study run a normal Q-Q plot in R.
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Figure 2: Normal q-q plots for 1 year, 3 years, and 5 years data
From figure 2, the results show that all data follow a normal distribution, since those scatter dots

fall along a straight line respectively. Then, the experiment should examine ACF and PACF to
identify the numbers of AR and MA terms required.
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Figure 3: ACF of 3-year data Figure 4: PACF of 3-year data

For the AR (p) model, its autocorrelation coefficients decay geometrically or oscillational with
increasing lag order, while its partial autocorrelation coefficients cut off at p order. For the MA (q)
model, its autocorrelation coefficient is truncated after order q, and its partial autocorrelation
coefficient shows a geometric or oscillatory decay with increasing lag order. In the actual
identification, (1) for the non-significant ACF and PACF, the coefficient can be regarded as 0
according to the need; (2) the isolated values with large lag order can be disregarded; (3) the number
of observation points of the time series can be as large as possible. Therefore, AR term is 2 and MA
term is also 2. Using auto.arima function in R, I can get possible results of ARIMA (1,0,2), ARIMA
(2,0,2), and ARIMA (3,0,2).

After the establishment of ARIMA model, it is necessary to test its stability, the three commonly
used test methods are: (1) the distribution of characteristic roots, the characteristic roots of the model
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should be fully distributed outside the unit circle; (2) residual normality, the QQ-plot test residual
normality, if the residuals do not satisfy the normal distribution, it means that the model has a bias;
(3) residuals of the ACF and PACEF, the residuals should be independent of each other. White noise
sequence.

Itis necessary to choose the model with better statistical properties. Specifically, available methods
are: select the model with higher R-square and the most significant statistical properties of parameters;
select the model with smaller AIC or BIC information criterion; select the model with higher
prediction accuracy. [4]

Then, I do model comparison by using AICc function in R. The smaller the AIC value, the better
the model fit. For model ARIMA (2,0,2) and ARIMA (3,0,2), their AIC values are 3003.481 and
3005.479, which are much smaller than ARIMA (1,0,2). Therefore, I choose these two models to do
model diagnostics.
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Figure 5: Auto plot of ARIMA (2,0,2)
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Figure 6: Auto plot of ARIMA (3,0,2)

From figure 5 and 6, the graphs show that all points are within the circle. This means that both
models are invertible. Finally, I can pick either model to do forecast in Nasdaq Market.
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Table 2: The estimation results of ARIMA (2,0,2) Model

ARI AR2 MA1 MA?2

Coefficients -1.7544 -0.8928 1.6295 0.7496

Standard error 0.0348 0.0334 0.0511 0.0484

t-value 50412 26.731 31.888 15.488

Table 3: The estimation results of ARIMA(3,0,2) Model

AR1 AR2 AR3 MA1 MA2
Coefficients -1.8614 -0.7936 -0.5621 1.3635 0.7248
Standard error 0.0364 0.0296 0.0411 0.0624 0.0349
t-value 51.137 26.811 13.676 21.851 20.767

I further conduct a predictive analysis of the selected Models, and the forecast results for the next
eight periods are as shown in the Figure 7 and Figure 8.
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Figure 7: 8 forecasts on fitted data using ARIMA (2,0,2)
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Figure 8: 8 forecasts on fitted data, using (3,0,2) model
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In addition to the drawing, I calculated the prediction errors of the two selected models, as shown
in Table 4. According to Table 4, it can be obtained that the ARIMA (2,0,2) model has the smallest
prediction error, which indicates that the ARIMA (2,0,2) prediction is optimal. [5]

Table 4: The Predictability of the selected Models

the root mean square of

forecast errors (RMSFE) the mean absolute forecast errors (MAFE)
ARIMA (2,0,2) 1.943 1.614
ARIMA (3,0,2) 1.9812 1.6159

5. Conclusion

In this research, a meticulous empirical analysis was conducted with the goal of predicting the future
trend of the Nasdaq Index’s weekly returns. The study chiefly utilized the ARIMA model, renowned
for its robust forecasting accuracy in various economic time series data. This model's adaptability and
precision make it a cardinal tool in capturing the dynamic structure of economic data efficiently,
providing a reliable basis for our analysis.

Various ARIMA models were considered and critically evaluated through a systematic approach
that considered statistical robustness and predictive accuracy. The selection process was enhanced
using the auto.arima function in R, yielding potential models such as ARIMA (1,0,2), ARIMA (2,0,2),
and ARIMA (3,0,2). Subsequently, comprehensive testing was undertaken to ensure the chosen
model's stability and reliability. This involved analyzing the distribution of characteristic roots,
evaluating residual normality through QQ-plot tests, and examining the independence of residuals
via ACF and PACEF of the residuals.

The criterion for choosing the optimal model was stringent, ensuring only the model with
compelling statistical properties and predictive accuracy was selected. A pivotal role in this selection
was played by the AIC value, a crucial indicator of the model's goodness of fit. The ARIMA (2,0,2)
model emerged as the most favorable, exhibiting the smallest AIC value and the least prediction error
compared to the alternatives.

In essence, the ARIMA (2,0,2) model stood out as the optimal prediction model, embodying a
blend of accuracy and reliability in forecasting the future trends of the Nasdaq Index’s weekly returns.
This empirical analysis’s outcomes are instrumental, providing crucial insights and guidelines that
could be significantly beneficial to investors in navigating and strategizing for investment in the
Nasdaq stock market, enabling them to optimize benefits while mitigating risks effectively. The
study's significance lies in its potential to serve as a robust reference, offering valuable perspectives
and strategic directions in the realm of investment analysis and decision-making within the Nasdaq
stock market.
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