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Abstract.  Neurodevelopmental disorders such as Attention-Deficit/Hyperactivity Disorder
(ADHD) and autism spectrum disorder (ASD) are highly prevalent, often comorbid
conditions that significantly impact cognitive, behavioural, and social functioning.
Neuroimaging has emerged as an important tool in understanding the underlying neural
mechanisms of these disorders, contributing to efforts toward biologically grounded
diagnosis and personalised intervention. This review synthesises findings from 28 recent
neuroimaging studies (2022–2025) using MRI, fMRI, EEG, and advanced computational
modelling to examine structural, functional, and network-level abnormalities in ADHD and
ASD, as well as transdiagnostic overlaps. ADHD-specific studies highlight fronto-striatal
dysconnectivity, delayed cortical maturation, and reduced basal ganglia iron levels, with
recent advances in machine learning enhancing precision phenotyping. ASD-focused
research underscores heterogeneity in cerebellar morphology, atypical predictive coding, and
genetically driven cortical thinning. Transdiagnostic investigations reveal converging
alterations in executive control networks and shared dimensional traits across diagnostic
boundaries, supporting dimensional models of neurodevelopment. Despite these advances,
challenges remain, including small and heterogeneous samples, overreliance on cross-
sectional data, limited reproducibility, and interpretability issues in multimodal integration.
The review concludes by advocating for longitudinal, harmonised, and multisite
neuroimaging designs aligned with frameworks like the Research Domain Criteria (RDoC),
as well as the incorporation of machine learning models that integrate cognitive, clinical,
and biological data. By identifying shared and distinct neural markers, this review aims to
support the development of robust, developmentally informed, and transdiagnostically valid
neuroimaging biomarkers to inform early diagnosis and tailored interventions in
neurodevelopmental disorders.
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1. Introduction

A wide range of disabilities that interfere with brain development have been grouped together under
the general category of "neurodevelopmental disorders" [1]. Rare genetic syndromes, cerebral palsy,
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congenital neural anomalies, autism and attention deficit hyperactivity disorder (ADHD are just a
few of the neurological and psychiatric conditions that fall under this broad category despite their
clinical and etiological differences [1]. Among these, autism spectrum disorder (ASD) and
Attention-Deficit/Hyperactivity Disorder (ADHD) are two of the most frequently diagnosed, both
showing high prevalence rate and exerting considerable impacts on individual functioning.
According to a random-effects meta-analysis of relevant studies, 8.0% of children and adolescents
worldwide suffer from ADHD [2]. ADHD symptoms typically appear before the age of twelve [3],
affecting an individual’s capacity to focus (inattention), their level of activity (hyperactivity), and
their ability to control impulses (impulsivity) [3]. An inattentive child or adolescent may be easily
distracted, having trouble following directions or listening to others, or forgetting to do simple
things like put on socks or clean their teeth [3]. Although ASD is less prevalent than ADHD, it
remains an important neurodevelopmental condition to consider. According to statistics from the
CDC's ADDM Network, 3.2% of 8-year-old children have been diagnosed with ASD [4]. The
diagnostic criteria for AD include deficits in verbal and nonverbal communication, restricted and
repetitive patterns of behaviour, and impairments in social interaction [5]. Regardless of
socioeconomic class, colour, nationality, or culture, these fundamental characteristics are present [5].
However, due to substantial individual differences among ASD patients, the prevalence of these
diagnostic features can vary significantly across individuals [5]. Although diagnostic frameworks
such as DSM‑5 permit dual diagnoses, distinguishing between them remains challenging due to
symptom overlap and heterogeneous clinical presentations [6]. For example, assessments are made
more difficult by the overlap between characteristics like social inattentiveness and sensory
sensitivity in ASD and fundamental attentional deficiencies in ADHD. This can result in delayed or
incorrect diagnoses, which has long-term effects on treatment strategies and developmental
outcomes.

To further understand the mechanisms underlying neurodevelopmental disorders, neuroimaging
has become one of the most critical tools in assessing their neural bases. In addition to identifying
brain variations in various neurodevelopmental diseases, neuroimaging techniques are being
increasingly used for early diagnosis, treatment monitoring, and exploration of developmental
trajectory. Magnetic resonance imaging (MRI) is a neuroimaging technique that uses strong magnets
to generate a powerful magnetic field, causing protons in the body to align with it and enabling the
acquisition of detailed three-dimensional antomical image [7]. MRI is commonly utilized to measure
cortical thickness and volumetric abnormalities, facilitating the detection of atypical brain
development such as cortical overgrowth in ASD or delayed cortical thinning in ADHD [8,9].
Functional MRI (fMRI), as another frequently used neuroimaging technique, reveals brain function
by identifying regions activated during sensory stimulation or cognitive tasks [10]. However, since
fMRI has relatively low temporal resolution, electroencephalography (EEG) is frequently used to
further record brain activities by measuring brain’s electrical signals with high temporal precision
[11]. By enabling more nuanced characterisation of neurodevelopmental disorders, these
technologies have advanced research towards individualised treatments and objective, biologically
based diagnostics.

Despite the significant advances enabled by neuroimaging techniques, several critical gaps
remain. First, the identification of reproducible biomarkers is hindered by the heterogeneity of
clinical presentations and differences among subtypes [12]. The developmental interpretation of
ASD and ADHD is limited by methodological inconsistencies and the predominance of cross-
sectional study designs, despite meta-analyses highlighting both shared and disorder-specific brain
abnormalities [12]. Second, the co-occurrence of ASD and ADHD complicates the interpretation of
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neural signatures. It remains unclear whether deficits such as attentional disruption arise from two
different diagnostic categories or reflect manifestations of a shared underlying neurobiology [13].
Additionally, current diagnosis and treatment focus primarily on behavioural symptoms rather than
brain abnormalities. Given that many individuals with ASD and ADHD may share certain
biomarkers, it is necessary to re-examine the validity of the existing diagnostic classifications for
these disorders.

To further address these challenges, this review aims to synthesise different neuroimaging
findings in both ADHD and ASD, emphasizing developmental trajectories, comorbidity, and shared
neural mechanisms. This review begins with a short methodological section which describes the
literature search strategy and including criteria. Then we outlined the disorder-specific neuroimaging
findings and transdiagnostic studies. Lastly, we concluded the current limitations and proposed
future research directions. The purpose of this review is to provide guidance for the development of
reliable neuroimaging biomarkers that aid with dimensional diagnosis, early detection, and tailored
treatments for neurodevelopmental disorders.

2. Method

This review searched PubMed database for articles reporting neuroimaging findings in individuals
with ASD or ADHD published between January 2022 and April 2025. The search terms used were
(Comorbidity [title/abstract] OR transdiagnostic [title/abstract]) AND (neuroimaging [title/abstract]
OR MRI [title/abstract]) AND ("Developmental Disorder"[title/abstract] OR "Autism"[title/abstract]
OR "ADHD"[title/abstract]). The studies were included if they met the following criteria: 1. Studies
described neuroimaging (EEG, fMRI etc.) findings related to ASD or ADHD patients, 2. Studies
focused on ADHD or ASD transdiagnostic diagnosis, symptomatology, treatment response, or
developmental trajectory, 3. Studies used original data and reported reliable results, and 4. Studies
published in English and were fully accessible from Pubmed. The studies were excluded if they met
the following criteria: 1. Studies were review papers, case studies, conference abstracts or meta-
analyses, and 2. Studies were not related to this topic. After carefully assessment, at total of 26
papers were included and reviewed in this study.

3. Abnormal brain structure and function in ADHD patients

Neuroimaging studies have repeatedly observed the changes in both brain structure and function,
particularly in areas related to executive functions, reward processing and attention regulation in
Attention-deficit/Hyperactivity Disorder (ADHD) patients (Table. 1).

Table 1. ADHD related papers summary

Re
f
N
o.

Aut
hors Main Topic MRI

Modality Participants Participa
nts Age

Neuropsychol
ogical Test Key Findings

1

Lon
g et
al.

[14]

Meta-analysis of
gray matter

abnormalities in
pediatric BD and

ADHD

Voxel-based
morphometr

y (VBM)

268 PBD
and 1,333

ADHD
youth

Children
and

adolesce
nts

(mean
12–16
years)

Not specified;
review/meta-

analysis

Shared GMV reductions in right
insula and ACC; distinct

alterations in IFG, hippocampus,
and precentral gyrus across

disorders.
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2

Sch
ulze
et al.
[15]

Brain iron levels and
their association

with cognition and
comorbidities in

ADHD

Quantitative
Susceptibilit
y Mapping

(QSM)

111 children
(ADHD =

58; controls
= 53)

13.2
years

(mean)

Sustained
attention,
inhibition
(SSRT),
working

memory, IQ

No group differences in iron
susceptibility; higher iron linked

to better sustained attention;
internalizing disorders showed

higher iron (uncorrected).

3

Dup
ont

et al.
[16]

Sex differences in
GPe functional
connectivity in

adults with ADHD,
with/without
comorbidities

Resting-state
fMRI (seed-

based
analysis of

external
globus

pallidus)

137 adults
with ADHD
(75F/62M),
45 healthy
controls

18–50
years

DSM-IV
ADHD

diagnosis;
CAARS,
WURS-k,

SCID;
comorbidity

history

ADHD males showed decreased
GPe connectivity to frontal and

occipital regions vs. females; FC
patterns differed by sex and

comorbid depression; no sex ×
overweight/SUD interaction.

4
Kim
et al.
[17]

Resting-state fMRI
and graph theory in

adolescents with
social phobia ±

ADHD

Resting-state
fMRI (To
achieve

158
adolescents
(36 SP-only,

60
SP+ADHD,
62 healthy
controls)

Mean =
14.16
years

GOASSESS
(modified
Kiddie-
SADS)

Altered default mode and
cerebellar connectivity in SP;

ADHD impacts topology (e.g.,
superior occipital gyrus); graph
metrics used to classify groups

via machine learning.

whole brain
coverage

with
acceptable

image
repetition
times, a
voxel

resolution of
3 × 3 × 3

mm with 46
slices was
chosen.)

5
Li et
al.

[18]

Personalized fMRI
analysis to identify

generalizable
biomarkers for

symptom domains
across SCZ, BP, and

ADHD

Resting-state
and task-

based fMRI

142 adults
with SCZ,

BP, or
ADHD

(discovery =
78;

validation =
55)

Adults
(mean 34

years)

67 clinical
symptom

items across
YMRS,
HAMD,

BPRS, ASRS

Symptom-domain biomarkers
(e.g., attention, appetite,

psychosis) are more
reproducible with individualized

fMRI than group-based;
replicated in external sample.

6

Seg
ura

et al.
[19]

Brain-symptom-
genomic mapping in
children with autism

and ADHD

Resting-state
fMRI

166 children
(6–12 years)
with ASD or

ADHD

6–12
years

ADOS-2,
KSADS,
SRS-2,

SWAN, SCQ,
CBCL

Autism symptom severity
correlated with iFC in FPN and
DMN; no significant ADHD-

symptom associations;
implicated gene expression
linked to neuron projection.

7
Wu

et al.
[20]

Comparison of
clinical, cognitive,
and neuroimaging

differences between
ADHD-I and

ADHD-C

Structural
MRI,

Diffusion
Tensor

Imaging
(DTI)

277 children
with ADHD
(145 ADHD-

I, 132
ADHD-C),
98 controls

Children

CBCL,
Conners’

Rating Scale,
TMT, Stroop,

CANTAB

ADHD-C had more
behavioral/emotional problems;

ADHD-I had greater anxiety;
neuroimaging showed distinct

structural patterns.

In terms of brain structure, ADHD has been associated with mild yet widespread reductions in
grey matter volume, particularly in the prefrontal and subcortical regions [14]. By examining voxel-
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based morphometry across 29 studies [14], reported consistent reductions in the bilateral
dorsolateral prefrontal cortex, anterior cingulate cortex, and putamen. These regions play a critical
role in attentional control and response inhibition, suggesting that structural immaturity or
underdevelopment in these regions may underlie core symptoms of inattention and impulsivity [14]
Furthermore, the cognitive and affective characteristics of ADHD patients were explained by the
more pronounced decreases in volumes in the left precentral gyrus, left inferior frontal gyrus, and
right superior frontal gyrus [14]. Using quantitative susceptibility mapping (QSM) to examine brain
iron levels [15], added a new dimension to ADHD neuroimaging, reporting that children with
ADHD have lower levels of iron in basal ganglia, a biomarker potentially linked to dopaminergic
dysfunction, a well-established neurochemical characteristic of the disorder. Additionally [16],
found that adult males with ADHD exhibited decreased connectivity between the globus pallidus
externus (GPe) and the anterior cingulate cortex, a pattern not observed in females.

fMRI studies have revealed global alterations in functional networks. Using graph theory on
resting-state fMRI data from teenagers [17], found changed global efficiency and modularity in
important networks, such as the default mode and salience networks. This result is consistent with
other research indicating that internally directed cognition and salience attribution are dysregulated
in ADHD [15-17].

Moreover, individual-level analyses have highlighted the potential of inter-individual variability
advancing precision psychiatry [18], who employed individualised functional connectomes to
distinguish ADHD from healthy controls more accurately than group-level analyses, serve as an
example of the shift towards personalised neuroimaging in ADHD [19]. employed machine learning
and connectome-based symptom mapping in a related field to pinpoint particular functional circuits
associated with the severity of clinical symptoms. They suggested customised targets for potential
interventions such as transcranial magnetic stimulation (TMS) by simulating the effects of
neuromodulation, suggesting that neuroimaging-guided treatment personalisation may be a
promising direction. Additionally, [20] categorize ADHD into inattentive and mixed subtypes and
found that combined-type patients exhibited worse cognitive performance and more widespread
functional abnormalities.

Consequently, these research agree on a paradigm that conceptualises ADHD as a disorder with
altered neurodevelopmental trajectories, including changes in structural maturation, iron deposition
and functional networks. There is potential to move beyond categorical diagnosis and towards more
physiologically based, individualised care by combining multimodal neuroimaging with
individualised and symptom-focused approaches. To implement these strategies in clinical settings,
translational validation, harmonisation of analytical workflows, and replication in larger samples are
still necessary.

4. Abnormal brain structure and function in ASD patients

Neuroimaging studies dedicated to ASD have discovered a complex and heterogeneous neural
profile, spanning structural, functional, and network-level alterations. The six ASD-specific studies
(Table. 2) reviewed here offer insights into the neurobiological basis of symptom variability,
cerebellar morphology, predictive coding disruptions, and the roles of genetic and clinical
heterogeneity, but also show some limitations which need to be addressed in future research.
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Table 2. ASD related papers summary

R
ef
N
o.

Aut
hors Main Topic MRI Modality Participan

ts

Partici
pants
Age

Neuropsych
ological

Test
Key Findings

1

Elan
dalo
ussi
et
al.

[21]

Cerebellar
morphology

and its
association with
social cognition

in autism

Structural MRI (cerebellar
volumetry using CERES)

n = 850
children

and
adolescen

ts from
Healthy
Brain

Network

Mean
= 10.8
years
(range
5–18
years)

Social
Responsive
ness Scale

(SRS)

Cerebellar volume in
cognitive lobules is

associated with social
communication and

IQ; suggests
cerebellum's role in
social functioning
across diagnoses.

2

Dua
n et
al.

[22]

Predicting
anxiety

(MASC-2
score) in

children with
ASD using
fMRI and

spectral graph
neural networks

Resting-state functional MRI (rs-
fMRI)

70
children

with ASD
and 26

typically
developin
g controls

8–15
years

Multidimen
sional

Anxiety
Scale for
Children

(MASC-2)

Spectral features (FFT,
PSD) improved

anxiety prediction
accuracy over standard

correlation-based
models; best model

MAE ≈ 13.77.

3

Nen
adić
et
al.

[23]

Predictive
coding

abnormalities
across

neuropsychiatri
c disorders

fMRI, EEG, behavioral
paradigms

72 studies
across
SCZ,
ASD,
mood,

cognitive,
PTSD,
SUD

All
ages

Oddball,
illusion, and

decision
tasks for

predictive
coding

SCZ shows impaired
non-social predictive
coding; ASD shows
deficits in social cue
prediction; predictive

coding linked to
symptom severity.

4

De
met
et
al.

[24]

Interaction of
autistic and
schizotypal

traits on
hippocampal
structure and
function in

healthy adults

Structural MRI and arterial spin
labeling (ASL)

318 for
MRI, 346
for ASL

(nonclinic
al adults)

18–40
years

Autism
Quotient

(AQ),
Multidimen

sional
Schizotypy

Scales,
SPQ-B, O-

LIFE

Synergistic effects of
schizotypy and autistic
traits on hippocampal
subfield volumes and

rCBF; some traits
modulate

structure/function
interactions.

5

De
met
et
al.

[25]

Genetic
heterogeneity
and clinical
profiles in

developmental
and epileptic

encephalopathie
s (DEEs)

Structural MRI and EEG (EEGs
were performed during the sleep-

wake cycleusing 21 electrodes
(including Fp1, Fp2, F3, F4,

F7,F8, T3, T4, T5, T6, C3, C4,
P3, P4, O1, O2, Fz, Cz, Pz,a

ground electrode and a reference
electrode))

20
children

with DEE

0–16
years

IQ/DQ
assessments

(Gesell,
WPPSI,
WISC)

High genetic
heterogeneity; DEE

often linked to
developmental delay,
autism, intellectual
disability; 80% had

normal MRIs, but EEG
abnormalities

common.
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6

van
Oort

et
al.

[26]

Linked ICA of
multimodal

neuroimaging
and

biobehavioral
dimensions

across disorders

Multimodal MRI (VBM, DTI,
rs-fMRI, stress fMRI)

295 adults
(225 with
psychiatri

c
diagnoses

, 70
controls)

18–74
years

CAARS,
AQ-50,
IDS-SR,

BRIEF-A,
PID-5, ASI,

PTQ

ECN-FPN connectivity
under stress linked to
negative affect and

cognitive symptoms;
multimodal DMN

component linked to
ASD diagnosis.

From a structural perspective [21], used structural MRI and the CERES segmentation pipeline to
investigate cerebellar morphology in a large sample of 850 children and adolescents. They reported
that greater volume in cerebellar cognitive lobules, such as Crus I and II, was associated with
enhanced social responsiveness, reinforcing the cerebellum’s expanding role in social cognition.
However, the reliance on anatomically rather than functionally defined regions may have weakened
region-function specificity. Additionally, the study’s cross-sectional design limited its ability to track
developmental changes over time.

Turning to functional neuroimaging and predictive modeling [22], applied a novel Spectral Brain
Graph Neural Network (SpectBGNN) to resting-state fMRI data from 70 children with ASD to
predict anxiety symptoms. Their use of frequency-domain features (e.g., FFT, PSD) outperformed
conventional connectivity measures, illustrating the potential of AI in psychiatric phenotype
prediction. However, the model’s generalizability was limited by a modest sample size, narrow
focus on a single comorbidity, and absence of external validation. Additionally [23], synthesized
evidence across fMRI, EEG, and behavioral paradigms to test predictive coding models, finding that
individuals with ASD exhibited reduced sensory precision in auditory and sensorimotor circuits.
While supporting theories of atypical perceptual inference, the heterogeneity of tasks and
demographics in the synthesis limits interpretability, and the underrepresentation of children restricts
developmental conclusions.

These studies approached ASD from transdiagnostic or multimodality perspectives [24]. used
structural MRI and arterial spin labeling in a large non-clinical sample to explore autistic and
schizotypal traits. They found shared alterations in temporal regions and distinct cortical surface
features, supporting models of dimensional interaction across psychiatric phenotypes. However, the
reliance on self-report measures, the absence of clinical diagnoses, and the cross-sectional design
weaken causal inferences about neurodevelopmental mechanisms [25]. also adopted a structural
lens, examining children with developmental and epileptic encephalopathy (DEE) who exhibited
ASD-like traits. Their findings highlighted cortical thinning linked to diverse genetic variants,
emphasizing the complexity of genotype–phenotype relationships. Nevertheless, the small and
specific DEE sample reduces generalizability to idiopathic ASD, and the lack of formal statistical
integration across EEG, MRI, and genetic data limits the interpretive power of their multimodal
approach. Similarly, focusing on functional dynamics [26], applied linked independent component
analysis (ICA) to integrate structural, diffusion, and functional MRI data in youth with ASD. They
identified multimodal brain components associated with executive function and internalizing
symptoms, exemplifying the strength of integrated dimensional imaging. Nonetheless, linked ICA’s
statistical complexity hinders mechanistic interpretation and practical clinical translation, and
replication in independent cohorts is still required.

Taken together, these findings enhance our understanding of ASD as a complex and biologically
heterogeneous disorder. They demonstrate how genetic variation, network-level dynamics,
cerebellar morphology, and computational models contribute to explaining the variability in ASD.
Nonetheless, common challenges — such as small or highly specific samples, lack of longitudinal
data, overreliance on cross-sectional designs, and limited external validation — underscore the need
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for reliable, developmentally sensitive, and reproducible neuroimaging research. Future studies
would benefit from larger, stratified cohorts; interpretable multimodal integration; and designs that
link brain mechanisms to meaningful clinical outcomes.

5. Transdiagnostic alterations in brain structure and function

Neurodevelopmental disorders including ASD and ADHD show similarities in brain anatomy,
behaviour, and cognition, as demonstrated by an expanding body of research (Table. 3). This has led
to a transdiagnostic shift in neuroimaging, aiming to uncover shared brain mechanisms,
developmental pathways, and symptom dimensions rather than focusing solely on categorical
diagnoses The reviewed studies — including meta-analyses, multimodal clustering, genetic
correlations, and functional network mapping — provide an integrated perspective on brain-based
similarities among ASD, ADHD, and related psychiatric disorders.

Table 3. Transdiagnostic papers summary

R
ef
N
o.

Auth
ors Main Topic MRI

Modality Participants Participa
nts Age

Neuropsychol
ogical Test Key Findings

1
Park
et al.
[27]

Transdiagnostic
cortical thickness
alterations across

six psychiatric
disorders

Structural
MRI

(cortical
thickness

)

28,546 total
(12,876 patients,
15,670 controls)

All ages
(pooled
ENIGM

A
samples)

Not
applicable

(meta-
analysis of

imaging data)

A shared morphological
alteration pattern found across
disorders; paralimbic regions
most affected; correlated with

myeloarchitecture,
neurotransmitter systems

(dopamine, serotonin), and
functional gradients.

2

Roote
s-

Murd
y et
al.

[28]

Transdiagnostic
cortical gray

matter patterns
across eight
psychiatric

disorders using
federated

neuroimaging

Voxel-
based

morphom
etry

(VBM)

4,102 individuals
across eight sites

Mixed
ages

across
psychiatr

ic and
control
groups

Not
applicable

Gray matter reductions found in
bilateral insula, medial PFC, and
parahippocampal regions across

multiple disorders; federated
analysis ensures data privacy.

3

Norb
om et

al.
[29]

T1w/T2w-ratio
and multimodal

clustering to
identify brain-

based subtypes in
ASD and ADHD

T1w/T2w
MRI,

cortical
thickness,

and
surface

area

310 participants
(ASD = 136,

ADHD = 100,
TD = 74)

2.6–23.6
years

SCQ, RBS-R,
SWAN, IQ
measures

No case-control differences in
T1w/T2w; multimodal clustering

revealed 3 subgroups with
distinct cortical profiles but

similar clinical traits.

4

Wata
nabe

&
Wata
nabe
[30]

Neural dynamics
of comorbid

ASD+ADHD vs.
pure ASD/ADHD

Resting-
state
fMRI

Pure ADHD
(N=30), pure
ASD (N=30),
ASD+ADHD
(N=33), TD

(N=67)

5–13
years ADI-R, CPRS

ASD+ADHD children show
unique frontoparietal dynamics
not seen in pure ASD/ADHD;
ADHD-like traits in comorbid

group are distinct.
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5

Vand
ewou
w et
al.

[31]

Transdiagnostic
subgroups based
on resting-state

connectivity
across ASD,

ADHD, and OCD

Resting-
state
fMRI

POND (N=551)
and HBN

(N=551); ages
5–19

5–19
years

SWAN, IQ
tests,

diagnostic
measures

Biologically homogeneous
subgroups identified, associated
with behavior (e.g., impulsivity),
not diagnosis; replicated across

two datasets.

6
Meda
et al.
[32]

Meta-analysis of
set-shifting task

fMRI studies
across multiple

disorders

Task-
based
fMRI
(set-

shifting)

466 patients and
457 healthy

controls

Adults
(18–43
years)

Set-shifting
tasks (e.g.,

WCST, TMT,
Stroop)

Shared hyperactivation in medial
frontal, ACC, superior parietal,

and temporal regions;
frontoparietal network involved

across disorders.

7

Naku
a et
al.

[33]

Link between
cortico-amygdalar
connectivity and

externalizing/inter
nalizing behaviors
in ASD, ADHD,

and OCD

T1-
weighted
MRI, rs-
fMRI,

and DWI

346 children
aged 6–18 (ASD,

ADHD, OCD,
TDC)

6–18
years

Child
Behavior
Checklist
(CBCL)

No significant associations
between

externalizing/internalizing
behaviors and cortico-amygdalar

connectivity; null findings
validated with bootstrapping.

8
Xie
et al.
[34]

Identification of a
neuropsychopathol
ogical (NP) factor
linking multiple

psychiatric
disorders

Task-
based
fMRI,

Resting-
state
fMRI

IMAGEN
(N=1,750), with

validation in
ABCD, HCP,
ADHD-200,

STRATIFY/EST
RA (total
N=4,942)

Adolesce
nts to
young
adults

Multiple
behavioral
symptom

assessments
(externalizing

,
internalizing),

DAWBA

NP factor reflects shared
crossdisorder brain connectivity
signatures; generalizable across
samples and timepoints; linked

to delayed PFC development and
executive function deficits.

9

van
Eijnd
hove
n et
al.

[35]

Protocol using
RDoC to study

shared and distinct
mechanisms of

psychiatric
comorbidity

Structural
and

functiona
l MRI

Target N = 650
patients, 150

controls (adults)

≥18
years

CAARS, AQ-
50, IDS-SR,
ASI, SCID,
MATE-Cr,
BRIEF-A,

etc.

Study integrates multi-level data
(genes to behavior) across NDD

and stress-related disorders;
promotes dimensional, RDoC-

based models.

10
Wen
et al.
[36]

Review of
machine learning

approaches for
dimensional

neuroimaging
endophenotypes

Multimod
al MRI
(review:

structural,
functiona

l, DTI)

Review (AD,
SCZ, MDD,

ASD, MS; >20
studies)

All ages
(Review)

Not
applicable
(review)

Machine learning enables
discovery of brain-based

subtypes and transdiagnostic
endophenotypes; DNE
framework proposed.

11

Zhan
g et
al.

[37]

Symptom
subtyping in ASD
and ADHD using

clustering,
neurocognition,

and DTI

Structural
MRI and
Diffusion

Tensor
Imaging

164 (ASD=65,
ADHD=47,

TD=52)
Children

AQ, SNAP-
IV, CANTAB,
C-WISC-III,

PPT, VF

Three transdiagnostic subtypes
identified with distinct

symptom-neurocognition-
connectivity profiles; corpus

callosum and fine motor
function key mediators.

12
Hoy
et al.
[38]

Genetic and neural
correlates of

transdiagnostic
symptom

dimensions across
the lifespan

Structural
and

functiona
l MRI
(multi-
study

review)

46
genomic/neuroi
maging studies

in general
population

samples

All ages
(children
to older
adults)

Latent
dimensional

models
(HiTOP,
bifactor,

PCA, etc.)

Transdiagnostic factors (e.g., p-
factor) associated with polygenic
scores (ADHD, neuroticism) and

global cortical structure; brain
alterations and genetic risk

shared across disorders.
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13

More
au et
al.

[39]

Comparison of
CNVs, PRSs, and

idiopathic
conditions in
terms of their

effect on
functional brain

connectivity

Resting-
state
fMRI

33,452
individuals

across 9 datasets

Mixed
(children
to older
adults)

Not
applicable
(genetic-

connectome
analyses)

CNVs had larger effects on
connectivity than PRSs; effects
aligned with CNV gene count
and severity score; PRSs had
limited connectivity impact.

The structural convergence across illnesses, especially in cortical morphology, is a major theme
in transdiagnostic neuroimaging [27]. reported that large-scale cortical thickness gradients capture
shared alterations between ASD and ADHD, especially within association cortices involved in
attention and cognitive control. Similarly [28], implicated reductions in the prefrontal and temporal
lobes in their analysis of transdiagnostic grey matter similarities between ASD and ADHD. By
grouping young people with ASD and ADHD based on T1w/T2w ratios and cortical thickness [29],
built on this and identified neurobiologically defined subtypes that transcend diagnostic categories.
Despite the fact that these studies show a strong anatomical basis for dimensional models,
conclusions on developmental trajectories are limited due to their reliance on cross-sectional
samples and the lack of replication in independent cohorts.

Complementing these structural findings, functional connectivity studies have identified shared
disruptions in executive and salience networks [30]. reported that children with comorbid ASD and
ADHD exhibit less flexible frontoparietal dynamics compared to those with either disorder alone,
suggesting that neural rigidity may underlie overlapping cognitive deficits [31]. similarly used
resting-state fMRI to identify replicable subgroups across neurodevelopmental conditions, revealing
distinct patterns of network integration and segregation that do not align with diagnostic labels.
These studies underscore the importance of individualised and dimensional approaches. However,
the absence of task-based validation and overreliance on resting-state data limits interpretation of
functional specificity.

Task-based and meta-analytic analysis reveal another layer of convergence. In a meta-analysis of
fMRI research on set-shifting tasks [32], discovered that the dorsolateral prefrontal cortex and
anterior cingulate cortex—areas linked to cognitive flexibility—were consistently hypoactivated in
ASD and ADHD. These findings support a dimensional view that executive dysfunction is a
common cognitive. However, this study did not account for comorbidities within samples and
instead relied on activation maps drawn from the literature, which could complicate findings.
Dimensional models have also been used to study the neurobiological relationships between traits.
For example [33], found that lower prefrontal–limbic coupling predicted behavioural dysregulation
across diagnostic boundaries in their examination of cortico-amygdalar connectivity in relation to
externalising symptoms. Smilarly [34], discovered a "neuropsychopathological factor" that is
common to several mental illnesses and is connected to anatomical changes in the medial prefrontal
cortex and anterior insula. Although these studies frequently lack developmental granularity and rely
on trait-based measures without diagnostic confirmation, they provide strong support for cross-
disorder endophenotypes.

The Research Domain Criteria (RDoC) framework and multimodal integration have also
influenced transdiagnostic perspectives. For example [35], presented the MINDS study protocol,
which utilises cognitive tasks, diffusion imaging, and fMRI to evaluate constructs such as working
memory and threat processing across both ADHD and ASD. This design is a prime example of the
potential of dimensional, cross-domain imaging, even though it is still in the recruitment stage. In
the same way [36], examined machine learning applications for dimensional neuroimaging,



Proceedings	of	ICEIPI	2025	Symposium:	Understanding	Religious	Identity	in	Educational	Contexts
DOI:	10.54254/2753-7048/2025.ND26282

41

highlighting the potential of multi-domain integration while also warning against task heterogeneity
and overfitting, which compromise the generalisability of the model.

Through the clustering of neurobiological traits and symptom dimensions, machine learning and
data-driven approaches have significantly advanced the area. By using unsupervised clustering on
behavioural and neuroimaging data [37], discovered transdiagnostic symptom categories that
provided a more compelling explanation for variation than diagnostic labels. After reviewing multi-
study neuroimaging-genetic data [38], came to the conclusion that latent dimensional factors—like
the p-factor—offer more reliable connections with brain structure than models specific to a given
illness. Likewise [39], shown that genetic heterogeneity, such as polygenic risk scores and CNVs,
influences brain connectivity in ASD and ADHD, especially in frontal-temporal networks. Despite
their potential, these models are frequently hampered by differences in sample size, neuroimaging
acquisition methods, and the lack of external validation.

Taken together, these findings show that there is significant neurobiological overlap between
ASD and ADHD, especially in networks that promote attention, cognitive flexibility, and emotion
regulation as well as in prefrontal, cingulate, and temporal areas. Transdiagnostic approaches
provide a robust framework for understanding shared brain mechanisms and tailoring interventions
to symptom dimensions rather than categorical diagnoses. However, to realise the promise of
physiologically grounded precision psychiatry, harmonised, longitudinal, and multi-center research
is needed to address typical obstacles, such as cross-sectional designs, limited sample numbers, and
inconsistent imaging modalities.

6. Conclusions and future directions

This review synthesised current neuroimaging research on ADHD, ASD, and their transdiagnostic
overlap. Converging evidence from structural, functional, and multimodal imaging modalities shows
that extensive changes in the brain networks and regions underlying executive function, social
cognition, attention regulation, and sensory integration constitute the foundation of
neurodevelopmental disorders. ASD-specific research found unique cerebellar contributions,
predictive coding anomalies, and genotype-related structural variability, whereas ADHD studies
focused on disrupted fronto-striatal circuitry maturation, altered functional connectivity, and
emerging applications of individualised models. Crucially, transdiagnostic research transcended
categorisation frameworks and revealed shared-dimensional links between the brain and behaviour
that transcended diagnostic boundaries, especially in the temporal, cingulate, and prefrontal cortices.

The discipline still faces significant methodological and translational obstacles in spite of these
advancements. The use of cross-sectional data in several studies limited our knowledge of
developmental trajectories. Replication across independent cohorts is still uncommon, and
generalisability is diminished by small or demographically limited samples. Furthermore, although
promising, the integration of multimodal data is frequently statistically difficult and uninterpretable,
which hinders practical use. Reproducibility and meta-analytical synthesis are further complicated
by the variation in analytic pipelines, imaging acquisition parameters, and neuropsychological
evaluations.

Therefore, future research should prioritise longitudinal, multisite designs employing
standardised protocols. Dimensional frameworks, such as those aligned with the RDoC, may
provide more comprehensive descriptions of both shared and disorder-specific mechanisms.
Furthermore, to improve diagnostic and prognostic value in the real world, machine learning models
ought to include clinical, cognitive, and biological aspects. To ensure that neuroimaging
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technologies benefit diverse populations and capture the entire range of neurodevelopmental
diversity, the field must strive for transparency, interpretability, and inclusivity.
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