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Abstract. A complex number is an element in a number system containing both real numbers 
and the imaginary unit 𝑖, satisfying 𝑖! = −1. Since their discovery, complex numbers have 
been a powerful means of mathematical calculation. Complex analysis is a part of 
mathematical analysis that investigates complex numbers and their analyticity, holomorphicity, 
etc. Many renowned mathematical giants once had their own research in complex analysis, 
such as Cauchy, Gauss, Euler, etc. On the grounds that it deals with functions of complex 
numbers, complex analysis is a helpful area in the whole mathematics field. There are plenty of 
applications of complex analysis in both the mathematical field and the physics field. In this 
paper, the history of complex numbers and complex analysis is presented. Also, some contents 
of complex variables are shown, including the basic properties of complex numbers, the 
derivative and integral of functions of complex numbers, and several critical theorems in the 
area of complex analysis. 
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1. Introduction  
Complex analysis, also known as the theory of functions of a complex variable, is a part of 
mathematical analysis that investigates complex numbers and their analyticity, holomorphicity, etc. It 
is based on functions of complex variables and complex numbers. 
Complex analysis is definitely an important branch of math. For students who majors in math, 
complex analysis is such an appropriate topic to be a capstone of their undergraduate study as it 
integrates many of the topic in the mathematical field. Also, it has connections with other branches of 
mathematics——the theorems and results in complex analysis also appear in lots of other areas of 
research in both pure and applied mathematics. With a solid foundation of experience of complex 
analysis, students are able to form a more clear and deeper mathematical framework. For the whole 
scientific community, it is imperative as well since complex analysis is enable to generalize the 
analytical method from real variables to complex variables. Many famous mathematical giants once 
had their own research in complex analysis——Cauchy, Gauss, Euler, just to name a few. 

As the basis of complex analysis, complex number itself is of great importance. Complex numbers 
are a powerful means of mathematical calculation such as multiplying vectors and rotating the angles. 
These numbers contain both the real numbers and the imaginary part called 𝑖. A claim has to be made 
here that many people consider “real numbers” as the numbers which exist and which people come 
across every day. This concept is in some sense confounding because imaginary numbers aren’t 
numbers that “do not exist” in the other way. The concept of numbers is abstract and mathematicians 
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have always regarded “real numbers” and “imaginary numbers” as on the same logical level. The 
utility of complex numbers can simplify the calculation of mathematical or physical problems to a 
rather great extent. The existence of complex plane——formed by the real axis and the imaginary axis
——introduces the concept of “numbers” from one-dimensional to two-dimensional. For the whole 
mathematic field, the appearance of complex numbers brings renewal of notion. Also, the area of 
complex numbers is a synthesis of algebra, trigonometry, geometry, etc. Thus, it has many real-life 
applications. 

Complex analysis is an extremely useful tool because it has a quite high application value. As 
computers appeared in the end of the last century, there are a wider range of applications of complex 
analysis. Many scientific problems can be easily solved when using the complex variables besides the 
real domain. Plenty of areas of research start from complex analysis, including pure and applied 
mathematics, quantum mechanics, electrical engineering, nuclear engineering, hydrodynamics, etc. 
For instance, complex analysis has an intrinsic property that it is two dimensional. Many theorems and 
results in complex analysis can be shown geometrically on the complex plane. Thus, it can be related 
to some areas, especially in physics, where the problems are presented in a plane, like electric fields 
and ideal fluid flow. [1] Also, complex analysis can be used in aerodynamics to design various kinds 
of wings. [2] In the area of electrical and mechanical engineering, to be more specific, it is common to 
find the time function using integral transform in complex analysis. In applied mathematics, 
algorithms of complex analysis have been used to find conformal maps [3] and solve Riemann-Hilbert 
problems. [4] In physics, the most classical problems are about fluid mechanics, like the Hele-Shaw 
problem. Even in biology, a field that one has never thought of being related to analysis, complex 
analysis can still contribute to the area of signal processing using Fourier transform method. Therefore, 
the vast range of applications makes complex analysis even more critical. 

2. Complex analysis 

2.1 History development of complex numbers 
The history of complex numbers can date back to the 16th century. Complex numbers originated from 
mathematicians’ demand for solving cubic equations. During the 1500s, mathematicians were 
confused by finding the solutions of the cubic equation 𝑥! + 𝑐𝑥 = 𝑑. 
One of the mathematicians, Targaglia, eventually found out the formula to find the solutions. He 

defined two numbers 𝑢 and 𝑣 such that )
𝑢 − 𝑣 = 𝑑
𝑢𝑣 = ("

!
)! . Then, the solution was that 𝑥 = √𝑢! − √𝑣! . 

Targaglia then told the formula to another mathematician, Girlamo Cardano but without the proof. 
However, Cardano combined the knowledge in geometry and proved the formula. He then rewrote it 
into a more direct way: 

𝑥 = ./(#
$
)$ + ("

!
)! + #

$

!
− ./0#

$
1
$
+ 0"

!
1
!
− #

$

!

			                                     (1) 

Cardano figured out the solutions to the cubic equation, whereas he failed to explain the confusion 
that when 𝑐 and 𝑑 are negative, there would be square roots of negative numbers in the solution. This 
paved the way for the introduction of √−1. 

Rafael Bombelli, who was almost an engineer instead of mathematician, once noticed Cardano’s 
solution to the cubic equation. He regarded Cardano’s method as a synthesis of the real domain and 
something that could be discovered as a brand-new area in mathematics. He identified √−1 to be the 
phrase “plus of minus”. Also, he identified the opposite (−√−1)  as “minus of minus” 
(𝑚𝑒𝑛𝑜	𝑑𝑖	𝑚𝑒𝑛𝑜) and abbreviated it as 𝑚𝑑𝑚. [5] He then found out the identity that 𝑖$ = −1 and 
made the claim that “plus of minus times minus of minus makes minus”, where the last “minus” 
actually meant −1. The claim was written in mathematical equation, which was (𝑖)(−𝑖) = −1. [6] 
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After he identified complex numbers, he demonstrated the combination of real numbers and complex 
numbers. He claimed that the two parts of a solution of the equation 𝑥! = 15𝑥 + 4 , 𝑥 =
:2 + √−121
!

+ :2 − √−121
!

, only differed in the sign. Thus, he wrote that 

)
:2 + √−121
!

= 𝑎 + 𝑏√−1
:2 − √−121
!

= 𝑎 − 𝑏√−1
. With his correct proof of this expression, he indicated that real numbers 

are actually complex numbers, too. In the 16th century, Cardano also came across the issue with the 
“discovery” of imaginary numbers. However, along with this quadratic equation, he almost ignored it 
and commented that the imaginary numbers were “as subtle as they are useless”. [7] As Bombelli 
made this discover, he was seen as the one who initiated the world of “new algebra”. [8] Since then, 
more and more mathematicians have developed the area of imaginary quantities.  

During the late 17th century, René Descartes first mentioned the term “imaginary” to express 
complex numbers. Besides, he tried to associate the complex numbers with geometrical meanings, 
which he succeeded when solving the equation 𝑧$ = 𝑎𝑧 − 𝑏$ . Several decades later, German 
mathematician Gottfried Wilhelm Leibniz started to find some properties about complex numbers 
when doing related calculations. For example, he found that :𝑎 + √−𝑏 +:𝑎 − √−𝑏 =
:2𝑎 + 2√𝑎$ + 𝑏 by squaring the left part of the equal sign. He also summed up the previous 
experience and proved those mathematicians’ formula. Furthermore, his most valuable contribution is 
that he officially used the term “imaginary”. Unlike Descartes, Leibniz explained the use of the word 
“imaginary”——the amphibian between being and not being——and gave meaning to this new 
terminology. He set the beginning of modern research on complex quantities.  

The next significant development of complex numbers was by Leonhard Euler. He provided the 
most basic and fundamental concept in the current field of complex numbers——he coined the symbol 
𝑖 to stand for √−1. That means, to be specific, 𝑖 = √−1. [9] However, the mathematician didn’t 
believe that complex numbers did exist. In 1747, d’Alembert proved that there were no “categories” in 
the field of complex number and that every complex number can be written in the form of 𝑎 + 𝑏𝑖. This 
eliminated a bunch of paradoxes stating that complex numbers could be classified into a few 
categories. 

As complex numbers are rapidly developing in their algebraic meanings and properties, 
mathematicians were also developing the field for complex numbers’ geometric possibilities. During 
the same time of Leibniz, mathematician John Wallis first used a geometric expression of complex 
numbers. His finding was based on Descartes’s method, which used the Pythagorean theorem and the 
properties of isosceles triangles. Meantime, he presented a concept that complex numbers can be 
demonstrated as a segment in a plane. Later, William Rowan Hamilton added on his theory that the 
plane should be a kind of "𝑎𝑏𝑖" plane, which is parallel to the commonly-used xy-coordinate system. 

After few decades, some mathematicians discovered some imperative formulas and properties. For 
instance, Abraham de Moivre put forward his theorem that (cos(𝜃) + 𝑖 sin(𝜃)% = cos(𝑛𝜃) +
𝑖 sin(𝑛𝜃). Also, Leonhard Euler discovered the formula that 𝑒&' = cos 𝜃 + 𝑖 sin 𝜃. These both count 
for the fundamental basis of complex numbers.  

As Carl Friedrich Gauss proved the fundamental theorem of algebra using complex numbers, [10] 
the development of the complex numbers area has been increasing promptly. More and more core 
theorems have appeared, such as the Cauchy Riemann Theorem, the residue theorem, the Cauchy’s 
integral theorem etc. [11] Moreover, a novel important branch of mathematics appeared——complex 
analysis. In this area, mathematicians focus on problems not only related to pure and applied math, but 
also all kinds of applications, from electrical engineering to quantum mechanics. For instance, a new 
way to solve linear boundary-value problems, which is called “unified method” of Fokas has caught 
many people’s attention. [12] For years, researchers have long been trying for scientific breakthrough 
and solving real-life problems using complex numbers and complex analysis.  
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2.2 Complex analysis 
First, we have to be clear with the definition of complex numbers. It is an element of a number system 
that contains real numbers and an element 𝑖, the imaginary unit. 𝑖 satisfies that 𝑖 = √−1. Every 
complex number can be written in the form 𝑎 + 𝑏𝑖 where 𝑎 and 𝑏 are real numbers and 𝑎 is called the 
real part, 𝑏 is called the imaginary part. The commonly used symbol for complex numbers is 𝑧. 

From the definition, we can find the most basic rule of 𝑖, which is 𝑖$ = −1.  
Then the complex plane is introduced, which is a Cartesian plane. The complex plane has one real 

axis and one imaginary axis. Suppose a complex number 𝑧 = 𝑥 + 𝑖𝑦, the Cartesian representation will 
be (𝑥, 𝑦) on the complex plane. Also, another critical representation is the polar representation of 
complex numbers. We use 𝜌 to stand for the modulus of 𝑧, which means the distance from the point 𝑧 
to the origin. The modulus of a complex number can also be written as |𝑧|. We use 𝜃 to represent the 
argument of 𝑧. Thus, 𝑧 = 𝜌(cos 𝜃 + 𝑖 sin 𝜃) and 𝜌 = :𝑥$ + 𝑦$. Based on Euler’s discovery, 𝑧 =
𝜌(cos 𝜃 + 𝑖 sin 𝜃) = 𝜌𝑒&'. 

The complex conjugate of 	𝑧 is a fundamental but important concept. The symbol we use is 	𝑧̅. 
Suppose 	𝑧 = 𝑥 + 𝑖𝑦, then 	𝑧̅ = 𝑥 − 𝑖𝑦 and the Cartesian representation will be 	(𝑥, −𝑦). As to the 
polar representation, 𝜌 of 	𝑧L  equals 𝜌 of 𝑧 since :𝑥$ + 𝑦$ = :𝑥$ + (−𝑦)$.𝜃 of 𝑧̅ equals the opposite 
number of 𝜃 of 𝑧. A crucial formula is that 𝑧𝑧̅ = 𝑥$ + 𝑦$ = 𝜌$. 

After basic knowledge and definition, some simple properties of complex numbers are mentioned, 
such as the addition, subtraction, multiplication, and division of complex numbers. 
Suppose 𝑧( = 𝑥( + 𝑖𝑦( = 𝜌(𝑒&'" 	𝑎𝑛𝑑	𝑧$ = 𝑥$ + 𝑖𝑦$ = 𝜌$𝑒&'# 

Then, 𝑧( ± 𝑧$ = (𝑥( ± 𝑥$) + 𝑖(𝑦( ± 𝑦$)							𝑧(𝑧$ = (𝑥( + 𝑖𝑦()(𝑥$ + 𝑖𝑦$) = (𝑥(𝑥$ − 𝑦(𝑦$) +
𝑖(𝑦(𝑥$ + 𝑦$𝑥()	𝑎𝑛𝑑	𝑎𝑙𝑠𝑜		𝑧(𝑧$ = 𝜌(𝜌$𝑒&('"*'#) = 𝜌(𝜌$(cos(𝜃( + 𝜃$) + 𝑖 sin(𝜃( + 𝜃$)			

,"
,#
=

-"
-#
𝑒&('".'#)	(𝑧$ ≠ 0).  
There are properties between any two complex numbers. The first is that we cannot compare 

complex numbers directly, which means we cannot write 𝑧( > 𝑧$. Instead, we can only compare the 
modulus of two complex numbers, such as |𝑧(| > |𝑧$|. The second property is that the triangle 
inequality in the real domain can also be applied to complex numbers. We get the consequence that for 
any two complex numbers, S|𝑧(| − |𝑧$|S ≤ |𝑧$ − 𝑧(|.  

After knowing many basic calculations and operations of complex numbers, we are able to manage 
some functions of complex numbers. We define 𝑓(𝑧) = 𝑢(𝑧) + 𝑖𝑣(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) as a 
function of 𝑧 where 𝑢(𝑥, 𝑦) is the real part of 𝑧 and 𝑣(𝑥, 𝑦) is the imaginary part of 𝑧. The mapping of 
the function is also worth understanding. For instance, for the function 𝑤 = 𝑧$, we know that 𝑢 =
𝑥$ − 𝑦$ and 𝑣 = 2𝑥𝑦. Thus, we can think of transforming the function geometrically from the 𝑥𝑦 
plane to the 𝑢𝑣 plane. After the transformation, it’s easy for us to find the images of the certain 
hyperbolas.  

Next, we now define the continuity and differentiability of functions 𝑤 = 𝑓(𝑧), which paves the 
way for the derivatives and integrals of complex functions. We say that 𝑓(𝑧) is continuous at 𝑧 = 𝑧/ if 
lim
,→,$

𝑓(𝑧) = 𝑓(𝑧/).  

Now, it’s time to look at the concept of derivatives in the area of complex numbers. Let 𝑓 be a 
function whose domain contains a neighborhood |𝑧 − 𝑧/| < 𝜀 of a point 𝑧/. The derivative of 𝑓 at 𝑧/ 
is 𝑓1(𝑧/) = lim

,→,$

2(,).2(,$)
,.,$

, and the function 𝑓 is said to be differentiable at 𝑧/ when 𝑓′(𝑧/) exists.  

After learning the definition of the derivatives of complex numbers, we can skip to one of the most 
fundamental yet significant equations in the field of complex numbers——Cauchy-Riemann 
Equations. To proof the equations are correct, we have to make some preparations. We first assume 
that 𝑓′(𝑧/)  exists, and we have 𝑧/ = 𝑥/ + 𝑖𝑦/,			∆𝑧 = ∆𝑥 + 𝑖∆𝑦, ∆𝑤 = 𝑓(𝑧/ + ∆𝑧) − 𝑓(𝑧/) =
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[𝑢(𝑥/ + ∆𝑥, 𝑦/ + ∆𝑦) + 𝑖𝑣(𝑥/ + ∆𝑥, 𝑦/ + ∆𝑦)] − [𝑢(𝑥/, 𝑦/) + 𝑖𝑣(𝑥/, 𝑦/)].  Then, by dividing the last 
two equations, we get: 

 ∆4
∆,
= 5(6$*∆6,8$*∆8).5(6$,8$)

∆6*&∆8
+ 𝑖 9(6$*∆6,8$*∆8).9(6$,8$)

∆6*&∆8
. Next, we do two caseworks to solve the 

equation. 
1. Horizontal approach  

We can reach that  ∆𝑦 = 0 and let ∆𝑥 tend to be 0. The equation above will turn into:  

𝑓1(𝑧/) = lim
∆6→/

𝑢(𝑥/ + ∆𝑥, 𝑦/) − 𝑢(𝑥/, 𝑦/)
∆𝑥

+ 𝑖 lim
∆6→/

𝑣(𝑥/ + ∆𝑥, 𝑦/) − 𝑣(𝑥/, 𝑦/)
∆𝑥

 
which is the same as  𝑓1(𝑧/) = 𝑢6(𝑥/, 𝑦/) + 𝑖𝑣6(𝑥/, 𝑦/)                                     (2) 

2. Vertical approach 
We can write ∆𝑥 = 0 and let ∆𝑦 tend to be 0. The equation will turn into: 

𝑓1(𝑧/) = lim
∆8→/

𝑣(𝑥/, 𝑦/ + ∆𝑦) − 𝑣(𝑥/, 𝑦/)
∆𝑦

− 𝑖 lim
∆8→/

𝑢(𝑥/, 𝑦/ + ∆𝑦) − 𝑢(𝑥/, 𝑦/)
∆𝑦

 

which is the same as 𝑓1(𝑧/) = −𝑖_𝑢8(𝑥/, 𝑦/) + 𝑖𝑣8(𝑥/, 𝑦/)`                                (3) 
As we assumed that 𝑓1(𝑧/) exists, there must be (2) = (3). Thus, we can get the 𝐶𝑎𝑢𝑐ℎ𝑦 −

𝑅𝑖𝑒𝑚𝑎𝑛𝑛	𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠: 𝑢6(𝑥/, 𝑦/) = 𝑣8(𝑥/, 𝑦/)		𝑎𝑛𝑑		𝑢8(𝑥/, 𝑦/) = −𝑣6(𝑥/, 𝑦/). 
Notice that in general, these conditions are not sufficient to get 𝑓′(𝑧/) to exist but under very mild 
extra conditions on 𝑢 and 𝑣 they are sufficient.  

Now we move on to the integrals of complex functions. For the definite integrals of functions 𝑤(𝑡), 
when 𝑤(𝑡) = 𝑢(𝑡) + 𝑖𝑣(𝑡) where 𝑢 and 𝑣 are real-valued numbers, the definite integral of 𝑤(𝑡) over 
an interval 𝑎 ≤ 𝑡 ≤ 𝑏 is defined as ∫ 𝑤(𝑡)𝑑𝑡 = ∫ 𝑢(𝑡)𝑑𝑡:

; + 𝑖 ∫ 𝑣(𝑡)𝑑𝑡:
;

:
; . Given this definition, we 

can also have 𝑅𝑒 ∫ 𝑤(𝑡)𝑑𝑡:
; = ∫ 𝑅𝑒[𝑤(𝑡)]𝑑𝑡:

;  and 𝐼𝑚∫ 𝑤(𝑡)𝑑𝑡:
; = ∫ 𝐼𝑚[𝑤(𝑡)]𝑑𝑡:

; . Then, we mainly 
focus on the contour integrals of complex functions. The definition of this kind of integral is in terms 
of the values of 𝑓(𝑧) along a given contour 𝐶, which extends from a point 𝑧 = 𝑧( to another point 𝑧 =
𝑧$. It is written as ∫ 𝑓(𝑧)𝑑𝑧	

=  or ∫ 𝑓(𝑧)𝑑𝑧,#
,"

. After knowing this, we assume that 𝑧 = 𝑧(𝑡)					(𝑎 ≤ 𝑡 ≤
𝑏) represents a contour 𝐶, which extend from a point 𝑧( = 𝑧(𝑎) to another point 𝑧$ = 𝑧(𝑏). Also, we 
suppose that the function is continuous on the interval 𝑎 ≤ 𝑡 ≤ 𝑏. Now, we can eventually define the 
contour integral of 𝑓 along 𝐶 in terms of the parameter 𝑡: 

∫ 𝑓(𝑧)𝑑𝑧	
= = ∫ 𝑓[𝑧(𝑡)]𝑧1(𝑡)𝑑𝑡:

; 	                                                  (4) 
In an easy way, we can also call this integral the integral of a function along a path, where path is a 

continuous function.  
Now, let’s move on to a specific, also special, topic in the area of integrals of complex numbers: 

integrals along contours.  
Before we look at integrals along contours, we should first focus on the definition of “contour”.  
We define a set of points 𝑧 = (𝑥, 𝑦) to be an arc if there exists  

𝑥 = 𝑥(𝑡) and 𝑦 = 𝑦(𝑡)			(𝑎 ≤ 𝑡 ≤ 𝑏)	                                             (5) 
given that 𝑥(𝑡) and 𝑦(𝑡) are both continuous functions of the real number 𝑡 in the complex plane.  

The definition above naturally produces a mapping of 𝑡 into the 𝑥𝑦 plane. For the sake of 
convenience, we can just describe the points of the arc 𝐶 through 𝑧 = 𝑧(𝑡)			(𝑎 ≤ 𝑡 ≤ 𝑏) where 𝑧(𝑡) =
𝑥(𝑡) + 𝑖𝑦(𝑡). Then, the arc 𝐶 is called a “simple arc” as long as the arc is simple and 𝑧(𝑡() ≠ 𝑧(𝑡$) 
given that 𝑡( ≠ 𝑡$. This also means that the arc does not cross itself at any point. Moreover, when arc 
𝐶 is “simple” except that 𝑧(𝑏) = 𝑧(𝑎), we can say that arc 𝐶 is a “simple closed curve”. A curve like 
this has a positive orientation when it is counterclockwise.  

After the basic definition, we move forward a single step. Now, we suppose that the parameter 𝑡 is 
also a function of some real numbers 𝜏 and a real-valued function Φ, which means 𝑡 = 𝛷(𝜏)			(𝛼 ≤
𝜏 ≤ 𝛽). Then, we can rewrite 𝑧 by 𝑧 = 𝑍(𝜏)				(𝛼 ≤ 𝜏 ≤ 𝛽) where 𝑍(𝜏) = 𝑧[𝛷(𝜏)].  
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Now we take the derivative of 𝑥(𝑡) and 𝑦(𝑡) and suppose that 𝑧1(𝑡) = 𝑥1(𝑡) + 𝑖𝑦′(𝑡) for 𝑥′(𝑡) and 
𝑦′(𝑡) are continuous on the interval 𝑎 ≤ 𝑡 ≤ 𝑏, then the arc is called a “differentiable arc” with the 
function |𝑧1(𝑡)| = :[𝑥′(𝑡)]$ + [𝑦′(𝑡)]$ integrable over the interval 𝑎 ≤ 𝑡 ≤ 𝑏. Notice that according 
to the definition made in calculus, the length of arc 𝐶 can be represented as 𝐿 = ∫ |𝑧1(𝑡)|𝑑𝑡:

; . With our 

assumption above that 𝑡 = 𝛷(𝜏), we can get 𝐿 = ∫ |𝑧′[𝛷(𝜏)]|𝛷′(𝜏)𝑑𝜏>
? . As 𝑍1(𝜏) = 𝑧′[𝛷(𝜏)]𝛷′(𝜏), 

we can also have the expression for the length that 𝐿 = ∫ |𝑍1(𝜏)|𝑑𝜏>
? .  

If 𝑧 = 𝑧(𝑡) is a differentiable arc and 𝑧′(𝑡) ≠ 0 on the entire interval 𝑎 < 𝑡 < 𝑏, then the unit 
tangent vector has the expression T = ,1(@)

|,%(@)|
. Since 𝑡 can be any value on the interval 𝑎 < 𝑡 < 𝑏, T is 

continuous when it turns. An arc that has these properties can be referred to as “smooth”. Thus, if an 
arc 𝑧 = 𝑧(𝑡)				(𝑎 ≤ 𝑡 ≤ 𝑏) is smooth, we can have that 𝑧′(𝑡) is continuous on the interval 𝑎 ≤ 𝑡 ≤ 𝑏 
and that it is nonzero on the interval 𝑎 < 𝑡 < 𝑏. 

Now, finally, we can reach the definition of “contour”. A contour, as known as piecewise smooth 
arc, is an arc consisting of a finite number of smooth arcs joined end to end. Only if the contour 𝐶: 𝑧 =
𝑧(𝑡)						(𝑎 ≤ 𝑡 ≤ 𝑏) has the property that 𝑧(𝑎) = 𝑧(𝑏) can 𝐶 be called a “simple closed contour”. 

After we know the definition of contours and the integral of contours, some very important 
theorems have to be mentioned in order to solve some specific problems.  

The first theorem is Cauchy-Goursat Theorem. Let 𝑧 = 𝑧(𝑡)	(𝑎 ≤ 𝑡 ≤ 𝑏) represents a simple 
closed contour 𝐶 which is described counterclockwise. The condition for applying the theorem is that 
the function 𝑓 is analytic at each point interior to and on the contour 𝐶. We start with this equation: 
∫ 𝑓(𝑧)𝑑𝑧	
= = ∫ 𝑓[𝑧(𝑡)]𝑧1(𝑡)𝑑𝑡:

;  and 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦), 𝑧(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡) . Since 
𝑓[𝑧(𝑡)]𝑧1(𝑡)𝑑𝑡 = {𝑢[𝑥(𝑡), 𝑦(𝑡)] + 𝑖𝑣[𝑥(𝑡), 𝑦(𝑡)]} ∙ [𝑥1(𝑡) + 𝑖𝑦′(𝑡)] , we can get ∫ 𝑓(𝑧)𝑑𝑧	

= =
∫ 𝑢𝑑𝑥 − 𝑣𝑑𝑦	
= + 𝑖 ∫ 𝑣𝑑𝑥 + 𝑢𝑑𝑦	

= .  
Then, we have to apply the Green’s theorem in calculus, which says that ∫ 𝑃𝑑𝑥 + 𝑄𝑑𝑦	

= =
∬ w𝑄6 − 𝑃8x𝑑𝐴
	
B . Since 𝑓 is continuous on 𝑅 and is analytic, 𝑢 and 𝑣 are also continuous on 𝑅. For the 

same reason, since 𝑓′ is continuous on 𝑅, the first-order partial derivatives of 𝑢 and 𝑣 are also 
continuous on 𝑅 . Thus, we can use the theorem and write ∫ 𝑓(𝑧)𝑑𝑧	

= = ∬ (−𝑣6 − 𝑢8)𝑑𝐴
	
B +

𝑖∬ (𝑢6 − 𝑣8)𝑑𝐴
	
B .  
However, problem arises that according to the Cauchy-Riemann equations, 𝑢6 = 𝑣8 and 𝑢8 = −𝑣6, 

so the two double integrals must have the value of 0. That gives us the Cauchy-Goursat Theorem: If a 
function 𝑓 is analytic at all points interior to and on a simple closed contour 𝐶, then 

∫ 𝑓(𝑧)𝑑𝑧	
= = 0.		                                                                (6) 

The next theorem to introduce is the Cauchy integral formula. The theorem says that given that 
function 𝑓 is analytic anywhere inside and on a simple closed contour 𝐶, which is positively oriented, 
if 𝑧/ is any point interior to 𝐶, then  

𝑓(𝑧/) =
(
$C& ∫

2(,)#,
,.,$

	
= .			                                                         (7) 

Also, the formula can be written as ∫ 2(,)#,
,.,$

	
= = 2𝜋𝑖𝑓(𝑧/) for easy calculation.  

The theorem and formula indicate that if 𝑓 is analytic within and on a simple closed contour 𝐶, the 
values of 𝑓 inside the contour 𝐶 will be determined only by the values of 𝑓 on 𝐶. Thus, when it is hard 
to find the values of a function inside a simple closed contour, we may think of this formula and 
transfer the key to the problem solving to finding the values on the contour, which is usually easier for 
us to find the solution. 

At last, an imperative theorem has to be introduced, which is the Cauchy’s residue theorem. Before 
the theorem is shown, we have to recall the definition of two things. 
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The first is the Laurent’s theorem. Suppose that 𝑓 is analytic throughout a domain 𝑟( < |𝑧 − 𝑧/| <
𝑟$, which has a center at 𝑧/, and 𝐶 is any positively oriented simple closed contour which is around 𝑧/ 
and lies in the domain. Then, at each point in the domain, there is always a special representation for 
𝑓(𝑧): 

𝑓(𝑧) = ∑ 𝑎%(𝑧 − 𝑧/)%D
%E/ + ∑ :&

(,.,$)&
D
%E( 			                                          (8) 

where 𝑎%  and 𝑏%  have the property that 𝑎% =
(
$C& ∫

2(,)#,
(,.,$)&'"
	
= 				(𝑛 = 0,1,2,⋯ ), 𝑏% =

(
$C& ∫

2(,)#,
(,.,$)(&'"
	
= 				(𝑛 = 1,2,⋯ ). 

This series representation enables us to expand the function under some specific conditions. 
The second definition we are going to recall is the residue. As is introduced before, the Laurent 

series representation tells us that  
𝑓(𝑧) = ∑ 𝑎%(𝑧 − 𝑧/)%D

%E/ +∑ :&
(,.,$)&

D
%E( 		(0 < |𝑧 − 𝑧/| < 𝑟$) and 𝑏% =

(
$C& ∫

2(,)#,
(,.,$)(&'"
	
= 	      (9) 

for any positively oriented simple closed contour 𝐶. When 𝑛 = 1, we have 𝑏( =
(
$C& ∫ 𝑓(𝑧)𝑑𝑧	

= . 𝑏( here 

is the coefficient of (
,.,$

, which is named as the “residue” of 𝑓 at the singular point 𝑧/. 
We usually express the residue like this: 

𝑏( = 𝑓(𝑧),E,$
BFG .	                                                                (10) 

 
We can then get the equation ∫ 𝑓(𝑧)𝑑𝑧	

= = 2𝜋𝑖 𝑓(𝑧),E,$
BFG . The use of residues can simplify the 

evaluation of many integrals of complex functions.  
Eventually, it’s time to introduce the Cauchy’s residue theorem. Suppose 𝐶 is a positively oriented 

simple closed contour. If 𝑓 is analytic interior to and on 𝐶 except for a finite number of singular points 
𝑧H(𝑘 = 1,2,⋯ , 𝑛) inside 𝐶, then we have: 

∫ 𝑓(𝑧)𝑑𝑧	
= = 2𝜋𝑖 ∑ 𝑓(𝑧),E,)

BFG%
HE( .		                                               (11) 

 
This is a very strong and powerful theorem because it can make the evaluation of contour integrals 

of complex functions much easier. If we are going to solve a problem in which a specific contour is 
provided and the function is given, we can first write the function 𝑓  in the Laurent series 
representation and then use the Cauchy’s residue theorem.  

Here is an example where some of the theorems mentioned above can be applied. 
Problem: Let  𝐶I(𝑧/) be a circle with positive orientation. 
(a) For 𝑎 ∈ 𝐷I(𝑧/), show that ∫ (

,.;
	
=*(,$)

𝑑𝑧 = 2𝜋𝑖 

(b) For 𝑎 ∉ 𝐷I(𝑧/), show that ∫ (
,.;

	
=*(,$)

𝑑𝑧 = 0 
 
(a) According to the conditions we have, since 𝐶: 𝐶I(𝑧/) is a circle with positive orientation, 𝐶 must 

be a simple closed contour. We then suppose 𝑓(𝑧) = (
,.;

. Given that 𝑎 ∈ 𝐷I(𝑧/), we can draw the 
conclusion that the function 𝑓 is analytic inside and on 𝐶 except for a singular point 𝑎 inside 𝐶. It 
can be easily discovered that the condition corresponds to the condition of the Cauchy’s residue 
theorem. Hence, we can think of using the theorem to solve the problem. First, let’s look back to 
the theorem again. The theorem says that if a function 𝑓 is analytic inside and on a simple closed 
contour 𝐶, which is described in the positive sense, except for a finite number of singular points 
𝑧H(𝑘 = 1,2,⋯ , 𝑛)  inside 𝐶 , then ∫ 𝑓(𝑧)𝑑𝑧	

= = 2𝜋𝑖 ∑ 𝑓(𝑧),E,)
BFG%

HE( .	 Thus, ∫ (
,.;

	
=*(,$)

𝑑𝑧 =
2𝜋𝑖 𝑓(𝑧),E;

BFG = 2𝜋𝑖 ∙ 1 = 2𝜋𝑖. 
(b) Since 𝑎 ∉ 𝐷I(𝑧/), 𝑓(𝑧) =

(
,.;

 is well defined in the contour 𝐶I(𝑧/). That means that the function 
𝑓 is analytic at all points inside and on the positively oriented simple closed contour 𝐶I(𝑧/). This 
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looks much like to the prerequisite of the Cauchy-Goursat theorem, so let’s recall the theorem.The 
Cauchy-Goursat theorem tells us that if a function 𝑓 is analytic at all points interior to and on a 
simple closed contour 𝐶 , then ∫ 𝑓(𝑧)𝑑𝑧	

= = 0.	 Therefore, in our case, ∫ 𝑓(𝑧)𝑑𝑧	
=*(,$)

=

∫ (
,.;

𝑑𝑧	
=*(,$)

= 0.  
 

3. Conclusion  
Complex analysis plays an important role in the mathematics field. Since complex numbers contains 
not only real numbers but also the imaginary part 𝑖, the basic properties are more complicated than 
those of real numbers. It’s vital to always keep in mind those properties and methods, especially 
introduced in this paper, when solving problems related to complex analysis. However, with 
complicated properties, complex analysis has the advantage of simplifying calculation. This is the very 
reason why it is imperative and can be applied in so many scientific fields. As there are numerous 
applications of complex analysis in mathematics and physics, it is obvious that complex analysis is 
also a mathematical area with great scientific potential. Once we dig further in this area, more elegant 
results may appear in the future.  
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