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Abstract. Multi-omics analysis is a relatively new approach which sets of data are combined for 

analysis. It integrates the genomic, epigenomic, transcriptomic, proteomic, and metabolomic 

data from diseased individuals and is capable of comparing the different changes in levels of 

each identified molecules with the assist of charts and graphs by information technologies, 

ultimately proposing potential biomarkers and correlations that are possible targets for cancer 

drugs. Lung cancer, nowadays is the most common cancer being diagnosed worldwide. Thus, 

lung cancer, amongst the remaining cancer, should not be overlooked. The pathogenesis and 

treatment of lung cancer is an urgent problem in the medical field that needs to be researched 

thoroughly. By integrating this new approach to the most common cancer, we try to find more 

possibilities for targeted drug development. We analyzed the data from the existing database to 

find out whether the control group and the disease group were up-regulated or down-regulated 

to analyze some targets, contributing to the development of targeted drugs. 
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1.  Introduction 

Lung cancer is the most common cancer and one of the main causes of cancer-related deaths worldwide. 

According to GLOBOCAN 2020, there are an estimated 2.2 million new lung cancer cases (11.4%) and 

nearly 1.8 million lung cancer deaths (18.0%) in 2020. China had the highest number of lung cancer 

cases and mortality rates (37.0% and 39.8%, respectively) in 2020, posing a serious threat to the public 

health [1]. Thus, it shows that lung cancer should not be overlooked and the pathogenesis and treatment 

of lung cancer is an urgent problem in the medical field that needs to be researched thoroughly. The 

occurrence of lung cancer is caused by the activation of oncogenes or the inactivation of tumor 

suppressor genes, which leads to uncontrolled replication and growth of lung cells. Tumors can disrupt 

the normal structure of lung tissue, block nutrient or oxygen supply, and affect normal lung function. 

The two most common causes are specific genetic mutations and environmental carcinogens. Tobacco 

is the most common risk factor for cancer. More than 4000 chemical substances have been found in 

tobacco, including at least 69 known carcinogens and other toxic substances related to serious diseases 

[2]. 
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At present, the most direct treatment method for lung cancer is surgical resection of the cancer tumor. 

In the early stages, complete resection of lung tumors is possible. When lung cancer progresses to the 

advanced stage, when the tumor is too large or has already spread, it is difficult to completely remove 

the tumor tissue through surgery, which also limits the possibility of some patients undergoing surgery. 

Chemotherapy and radiation therapy are auxiliary treatment methods for cancer, which can be used to 

reduce tumor size before surgery. However, the side effects of chemotherapy and radiation therapy are 

very significant, not only causing significant physical harm to patients, but also causing harm to their 

mental health, seriously affecting their quality of life. Targeted therapy is a type of cancer treatment that 

targets proteins that control the growth, division, and spread of cancer cells. It is the foundation of 

precision medicine. It helps the immune system destroy cancer cells, cut off signals that help form blood 

vessels, and ultimately kill cancer cells. This therapy is widely used because it can accurately destroy 

cancer cells with relatively less obvious side effects. As long as the patient has a good target, targeted 

treatment will be very effective. Thus, this article aims to analyze the targets of cancer patients through 

multi-omics approach, to seek more possibilities to develop more effective targeted drugs to treat lung 

cancer.  

In order to shed light on the development of targeted medications to lung cancer, scientists first are 

required to obtain a deeper understanding of the relationships between multiple aspects and features of 

the lung adenocarcinoma cells so that drugs targeting the specific signal transduction pathway, protein 

expression or metabolites could be established. In order to obtain a more comprehensive understanding 

of the correlation between multiple disease-associated features and molecular levels, multi-omics 

analysis integrates the genomic, epigenomic, transcriptomic, proteomic, and metabolomic data from 

diseased individuals and is capable of comparing the different changes in levels of each identified 

molecules with the assist of charts and graphs by information technologies, ultimately proposing 

potential biomarker. Furthermore, it offers a theoretical basis for researching and developing target drugs. 

Various multi-omics approaches had previously been done to lung cancer treatments in recent years. 

Back as soon as in 2020, Asada et al. integrated RNA and miRNA expressions, compared 25 cancer 

related genes and filtered out 6 potential genes influencing that survival rates of patients [3] combined 

data of DNA methylation, RNA, miRNA, and DNA copy number and determined in total of six cancer 

subtypes and their corresponding survival rate related genes on the chromosome [4]. Subsequently, 

specific oncogene NUF2 and regulators of radiotherapy resistance such as GALNT2 are discovered in 

2021, 2023 respectively [5, 6]. As a new technology integrating etiology with data science, researches 

on lung adenocarcinoma and its related targets remained superficial and incomprehensive. 

Despite its various advantages, drawbacks of multi-omics approaches remained significant. To begin 

with, due to the differences in size, format and resolution among multiple data sets, multi-omics data 

are often hard to integrate for analysis. Moreover, due to differences in experimental procedures and 

equipment, multi-omics data sets are often scarce and incomplete. In addition, analysis and comparation 

between multi-omics data sets may generate confounding results leading to undecipherable correlations 

which decreases the reliability of the results, this need to be carefully analyzed be experts with prevalent 

data sets. Finally, multi-omics data usually involves patients’ private information, which may raise 

concerns about its privacy protection [7]. For example, omics data may reveal genetic information, 

cancer variants or treatment biomarkers related to diseases or characteristics that are private to patients. 

Therefore, it is important to no violate any personal privacy and ethical concerns while dealing with 

multi-omics data sets. 

As a result, we integrated existing lung adenocarcinoma multi-omics data sets and analyzed the 

correlation in the new method, seeking to provide valuable insights to targeted drug development and 

clinical medications to lung adenocarcinoma. 

2.  Method 

Firstly, we downloaded our lung adenocarcinoma related multi-omics data sets from CBioPortal and 

extracted mRNA and RPPA related data for further analysis. We analyzed the intersection of the two 

data sets using Boolean logic and filtered their co-expressed targets. Then, we calculated the difference 
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in expression of the target genes, sorted the 10 genes with highest increased and decreased expression, 

respectively, and speculated treatment targets for the progression of lung adenocarcinoma. 

2.1.  Read 

By using “read_csv” method in “pandas” pack, a data file with dataframe structure is read. Input 

“data_rppa_zscores.txt” and “data_mrna_seq_v2_rsem_zscores_ref_all_samples.txt” to the dataframe, 

then use “head” methodology to read the first five lines in order to examine if all datas are read correctly. 

2.2.  Examination  

The examination of the presence of “TGCA-44-2657-01” in two dataframes is done at the start by using 

the following code, since the intersection of data column “TGCA-44-2657-01” need to be obtained 

afterwards.  

 

data_rppa_columns[1] in data_rna.columns 

 

A variable of Boolean type is returned, and the variables of this type can only be “true” or “false”. If 

the above code returns “true”, it means that there is a column named “TCGA-44-2657-01” in both data 

boxes, then the data can continue to be analyzed. Otherwise the analysis terminates 

2.3.  Intersection 

The following code is used to obtain common elements (intersections) of this data column after 

conforming the existence of the common column.  

 

common_data = np.intersectid(data_rppa[‘TCGA-44-2657-01’],data_rna[‘tcga-44-2657-01’]) 

2.4.  Filtration 

Moreover, only obtaining common elements are not enough, the name of genes corresponding to these 

common elements need to be excavated as well. Therefore, filtration is done by inputting these common 

elements back to the original dataframe by the following codes.  

 

rppa_filter_condition = data_rppa[‘TCGA-44-2657-01’].isin(common_data) 

rppa_wanted_cols = [‘ Composite. ELement. REF*, ‘TCGA-44-2657-01*] 

rppa_data_after_filter = 

data_rppa. LocLrppa_ Fil ter_condition, rppa_wanted_colsJ- sort-valuesC” TCGA- 44-2657- 

011) 

 

Especially, “rppa_filter_condition = data_rppa[‘TCGA-44-2657-01’].isin(common_data)”is used as 

a condition for filtration. If a row of data_rppa dataframe, which is a gene sample, has its “TCGA-44-

2657-01” data present in common_data, then this row will be labelled as “true”. Therefore, 

“rppa_filter_condition” and “data_rppa” will obtain the same Boolean type classified by the same row 

number. This Boolean type will be used as filter condition to filtrate the data of “data_rppa”, then the 

corresponding gene names are obtained.  

The “rna_data” dataframe is opperated like this as well. 

following code is used to obtain common elements (intersections) of this data column after 

conforming the existence of the common column.  

2.5.  Output 

From the filtering step above, we not only acquired the name of the genes from the intersection of two 

data groups, but also used “sort_values” to arrange them in order, and chose the only top ten and bottom 

ten data values using the following code: 
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rppa_index =np.concatenate([np.arange(10),np.arange(len(rppa_data_after_filter)-10,len(rppa_ 

data_after_filter))]) 

rppa_result = rppa_data_after_filter.iloc[rppa_index,:] 

 

In the table, “rppa_result” represented the final result for RPPA data, and it is the same method for 

RNA data. After we obtained the first and last ten rows from the table, what we got is still to data sets, 

we still need to merge the tables to become a single table. As we have a common column of “TCGA-

44-2657-01”, we are able to merge two tables base on this common key using internal combination using 

the following code: 

 

final_ret = pd.merge(rna_result,rppa_result,on=‘TCGA-44-2657-01’) 

final_ret.to_csv(“merged_data.csv”) 

 

And the following code is used to rewrite the final result in a .csv file 

final_ret.to_csv(“merged_data.csv”). 

2.6.  Integration 

The previous five steps generates a result for only one person; however, we need to integrate more data 

to obtain a more accurate and comprehensive result. 

First, we need to identify all patients both present in the RPPA and the mRNA set but the following 

code. 

 

common_cols = np.intersect1d(data_rppa.columns,data_rna.columns) 

 

Then, we perform the following code to merge the RPPA and mRNA data for each patients and 

download their data individually to obtain a csv document, or table, for each of the 181 patients. The 

logic of the program is identical to what was explained previously in the five steps. 

 

def data_reshape(col,cnt): 

     

    common_data = np.intersect1d(data_rppa[col],data_rna[col])  

     

    print(str(cnt),”:”,col,str(common_data.shape[0])) 

     

    rppa_filter_condition = data_rppa[col].isin(common_data) 

    rppa_wanted_cols = [‘Composite.Element.REF’,col] 

    rppa_data_after_filter = data_rppa.loc[rppa_filter_condition,rppa_wanted_cols].sort_values(col) 

    rppa_index = np.concatenate([np.arange(10),np.arange(len(rppa_data_after_filter)-

10,len(rppa_data_after_filter))]) 

    rppa_result = rppa_data_after_filter.iloc[rppa_index,:] 

     

    rna_filter_condition = data_rna[col].isin(common_data) 

    rna_wanted_cols = [‘Hugo_Symbol’,’Entrez_Gene_Id’,col]  

    rna_data_after_filter = data_rna.loc[rna_filter_condition,rna_wanted_cols].sort_values(col) 

    rna_index = np.concatenate([np.arange(10),np.arange(len(rna_data_after_filter)-

10,len(rna_data_after_filter))]) 

    rna_result = rna_data_after_filter.iloc[rna_index,:] 

 

    final_ret = pd.merge(rna_result,rppa_result,on=col)  

    final_ret.to_csv(col+”.csv”) 

    print(col+’.csv’+’ download’) 
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for i,col in enumerate(common_cols):    

    data_reshape(col,i+1) 

 

We define a function “data_reshape” that takes two arguments: “col” and “cnt”. The parameter “col” 

is a string indicating the name of the column to be processed, and “cnt” is an integer indicating the 

position of the currently processed column in the common_cols list. 

The main operation of the function is as follows. First, we find the intersection of the two datasets 

with the “np.intersectld” function and store the result in the “common_data” variable. Then we printed 

the names of the columns currently being processed, the number of intersections, and the names of the 

columns. Next, we created some variables for storing the filtered RPPA and RNA data and the names of 

the columns to be retained. 

After, we filtered the RPPA data that satisfies the condition by “data_rppa[col].isin(common_data)” 

and stored the result in the rppa_filter_condition variable; we selected the desired columns from 

data_rppa based on the filter condition and stored the result in the “rppa_wanted_cols” variable. 

Later, we sorted the filtered RPPA data, stored the result in the “rppa_data_after_filter” variable, 

calculated the index to be retained and stored the result in the “rppa_index” variable. Finally, we selected 

data from the “rppa_data_after_filter” based on the index and stored the result in the rppa_result variable. 

Similarly, we filtered, sorted, and performed selected operations on the RNA data and the results are 

stored in the rna_result variable. And now we have acquired the data from both data and we need to 

combine them effectively to show the results more intuitively. 

We used the “pd.merge” function to merge the RPPA and RNA data, stored the results in the final_ret 

variable, saved the merged data as a CSV file and printed out the file name. 

Finally, the code iterates through each column in the common_cols list with a loop and passes each 

column to the data_reshape function for processing. 

The code above generated, in total, 181 csv documents for us, and we are going to carry out four 

procedures to visualize our data: arranging the z-scores for each patient, filtering out the 10 highest and 

lowest z-score values, counting which gene is most appeared for the all patients, and finally calculating 

the z-score average. 

 

os.chdir(‘./CSV’) 

min_list = np.array([]) 

max_list = np.array([])  

 

for f in os.listdir(): 

    if not f.startswith(‘.’): 

        csv = pd.read_csv(f) 

        min_list = np.concatenate([min_list,csv[‘Hugo_Symbol’][:10].values]) 

        max_list = np.concatenate([max_list,csv[‘Hugo_Symbol’][10:].values]) 

 

majority_min = pd.Series(min_list).value_counts()[:10] 

majority_min 

majority_max = pd.Series(max_list).value_counts()[:10]  

majority_max 

 

This code gets all the CSV files in the current directory and reads them as DataFrame objects. Then, 

for each CSV file, it extracts the first 10 values and the last 10 values of the gene symbol (Hugo_Symbol) 

column in it and adds them to the min_list and max_list arrays respectively. 

Specifically, the code first creates two empty arrays “min_list” and “max_list”, and then uses the 

“os.listdir()” function to get all the files in the current directory. For each file, if it does not start with “.” 

it means that it is a CSV file and can be read as a DataFrame object using “pd.read_csv(f)”. 
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Next, the code uses “csv[‘Hugo_Symbol’][:10].values” to extract the first 10 values of the gene 

symbol column in each CSV file and adds them to the min_list array using the “np.concatenate()” 

function. Similarly, the code uses “csv[ ‘Hugo_Symbol’][10:].values” to extract the last 10 values of the 

gene symbol column in each CSU file and adds them to the max_list array using the “np.concatenate()” 

function. 

Finally, the code prints out the min_list and max_list arrays separately in order to view their contents. 

Table1. Most appeared genes with minimum z scores 

Hugo_Symbol Appearances 

CASP14 4 

GMPPA 3 

SLC1A5 3 

LMOD2 3 

ATCAY 3 

BARHL2 3 

KLK15 3 

TEX13A 3 

IL20RB 3 

NXF5 3 

Table 2.  Most appeared genes with minimum z scores 

Hugo_Symbol Appearances 

RPL37 3 

NT5E 3 

NPRL3 3 

ZNF10 3 

PAPOLG 2 

WDR77 2 

HIF1AN 2 

UQCRFS1 2 

DNTTIP1 2 

IFNAR2 2 

We then calculated the average z-score values for the expression of the genes above using the 

following code. 

 

min_mean_list = [] 

 

for f in os.listdir(): 

    if not f.startswith(‘.’): 

        csv = pd.read_csv(f) 

        csv = csv.iloc[:10,:] 

         

        temp_mean_list = [] 

         

        for col in majority_min.index: 

            if col in csv[‘Hugo_Symbol’].values: 
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                temp_df = csv[csv[‘Hugo_Symbol’] == col] 

#                 print(temp_df) 

                mean_value = temp_df[f.split(‘.’)[0]].mean() 

                temp_mean_list.append(mean_value) 

            else: 

                temp_mean_list.append(0) 

                 

        min_mean_list.append(temp_mean_list) 

 

min_mean_arr = np.array(min_mean_list) 

 

min_ret = min_mean_arr.mean(axis=0) 

 

We then carried out the same procedures for genes that appeared the most in the table. 

 

max_mean_list = [] 

 

for f in os.listdir(): 

    if not f.startswith(‘.’): 

        csv = pd.read_csv(f) 

        csv = csv.iloc[10:,:] 

         

        temp_mean_list = [] 

         

        for col in majority_max.index: 

            if col in csv[‘Hugo_Symbol’].values: 

                temp_df = csv[csv[‘Hugo_Symbol’] == col] 

#                 print(temp_df) 

                mean_value = temp_df[f.split(‘.’)[0]].mean() 

                temp_mean_list.append(mean_value) 

            else: 

                temp_mean_list.append(0) 

                 

        max_mean_list.append(temp_mean_list) 

 

max_mean_arr = np.array(max_mean_list) 

 

max_ret = max_mean_arr.mean(axis=0) 

 

min_df = pd.DataFrame({‘Hugo_Symbol’:majority_min.index,’value’:min_ret}) 

min_df.to_csv(‘min_ret.csv’) 

 

max_df = pd.DataFrame({‘Hugo_Symbol’:majority_max.index,’value’:max_ret})  

max_df.to_csv(‘max_ret.csv’) 

 

The main purpose of this code is to read all the CSV files in the current directory and calculate the 

average value of each gene for each file. 

The code first creates two lists, “min_mean_list” and “temp_mean_list”, and then uses the 

“os.listdir()” function to get all the files in the current directory. For each file, if it does not start with “.” 

it means that it is a CSV file, and you can use “pd.read_csv(f)” to read it as a DataFrame object. 

Proceedings of  the 2nd International  Conference on Modern Medicine and Global  Health 
DOI:  10.54254/2753-8818/33/20240767 

40 



Next, the code uses “csv.iloc[:10,:]” to extract the first 10 rows of data from each CSV file and stores 

the result in a CSV variable. 

The code then creates an empty “temp_mean_list” list for storing the mean values for each gene. For 

each element in the “majority_min” index (i.e., each gene), perform the following. 

If the gene is in the Hugo_Symbo1 column of the CSV, extract the row containing the gene from the 

CSV and store the result in the temp_df variable. 

Use “temp_df[f.split(‘.’)[0]].mean()” to calculate the mean value for that gene in that file and add 

the result to “temp_mean_list”. 

If the gene is not in the “Hugo_Symbo1” column of the CSV, add 0 to “temp_mean_list”. 

Finally, the code adds the temp_mean_list to the “min_mean_list” and prints out “min_mean_list” to 

see its contents. 

We then carried out the same procedures for genes that appeared the most in the table, and the result 

of the final table is presented in the results section as Fig.  

3.  Result 

To begin our analysis, we downloaded our multi-omics data sets of patients diagnosed with lung 

adenocarcinoma from CBioPortal by searching “tcga luad”, in which TCGA stands for “The Cancer 

Genome Atlas Program” and LUAD stands for “Lung Adenocarcinoma”. Then, we selected mRNA and 

RPPA related data for further analysis using python. Firstly, we modelled the expression of mRNA 

strands and proteins in two normal distribution, and calculated z-scores for the expression levels for 

each gene in each patient. As there is a direct link between transcription and translation, if a mRNA 

strand is synthesised, the corresponding protein is also very likely to be synthesized. Furthermore, 

mRNA and protein expression levels with the same z-score after standardisation also represent a likely 

correlation their probability of expression are the same. As a result, we analysed the intersection of the 

two data sets using Boolean logic to find, if any, genes of which mRNA and protein expression converges. 

Then, we ranked the difference in z-score of the target genes and sorted the 10 genes with highest 

increased and decreased expression, respectively, and speculated treatment targets for the progression 

of lung adenocarcinoma. The flow chart of the analysis is listed below. 

 

Figure 1. Multi-omics analysis flow chart. 

The results of the analysis are listed as follow. 
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Figure 2. Intersection results of proteome and transcriptome. 

In total, 81 genes were found to exist having the same z-score level of mRNA and protein expression, 

meaning that there is a significant correlation between each of the paired groups as they have same 

probability of existence in the human body. After the combination of results, we are able to filtered out 

the other irrelevant genes, and rank the target genes as follow according to their   z-score value as follow. 

Table 3. List of differentially expressed genes. 

 Hugo_Symbol Entrez_Gene_Id TCGA-44-2657-01 

20422 ZP4 57829 -1.3531 

4818 DEFB4A 1673 -1.2587 

8567 IRS2 8660 -0.9179 

11110 MRPL33 9553 -0.7430 

13083 PDE12 201626 -0.6891 

725 SOWAHC 65124 -0.6717 

4461 CXCL5 6374 -0.6639 

1115 ASPG 374569 -0.6428 

6542 FMR1NB 158521 -0.6401 

3688 CHMP2A 27243 -0.5369 

5334 ECM2 1842 0.8386 

12884 PARD6A 50855 0.8798 

2568 ADGB 79747 0.8917 

531 ALDH1L1 10840 0.9030 

11812 NHSL2 340527 0.9191 

12861 PAPD7 11044 0.9876 

16152 SLC25A33 84275 0.9881 

17599 TARP 445347 1.0511 

20332 ZNF767 79970 1.3384 

13948 PRCD 768206 1.9639 

The z-score value of the expression in each protein in the patient above indicates the probability of 

gene expression. The z-score value is calculated by the observed value of expression deducting the mean 

expression value then divided by the standard deviation of the value when the data of gene expression 

is modeled into a normal distribution. 

In order to obtain more knowledge about the targets, we first searched and filtered existing targets 

suggested by other experts in the area via PubMed   and found that IRS2 was suggested in 2022 by H. 
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Peng et al as a direct symbol of tumorigenesis. The analysis, however, is nowhere near complete. We 

then calculated the average of each z-score value according to the name of the gene for over 200 patients 

and generalized a table of genes each with the most increased and decreased expression, and the table is 

listed below. 

Table 4. Highest 10 average z-scores of the 200 patients 

Rank Hugo_Symbol Value 

1 RPL37 0.0202232044198895 

2 NT5E 0.01805414364640884 

3 NPRL3 0.018520994475138122 

4 ZNF10 0.016159668508287293 

5 PAPOLG 0.013338674033149171 

6 WDR77 0.012006629834254144 

7 HIF1AN 0.007766850828729283 

8 UQCRFS1 0.013050276243093921 

9 DNTTIP1 0.015307734806629836 

10 IFNAR2 0.009991160220994475 

Table 5. Lowest 10 average z-scores of the 200 patients 

Rank Hugo_Symbol Value 

1 CASP14 -0.025752486187845303 

2 GMPPA -0.017875138121546962 

3 SLC1A5 -0.016581215469613258 

4 LMOD2 -0.017814364640883977 

5 ATCAY -0.018302209944751385 

6 BARHL2 -0.01981160220994475 

7 KLK15 -0.02165966850828729 

8 TEX13A -0.01472817679558011 

9 IL20RB -0.013792817679558011 

10 NXF5 -0.018898342541436467 

In a detailed search and examination of the functions of the 20 genes, we found 3 genes in total 

directly contributing to lung adenocarcinoma. Beginning with RPL37 which is ranked number 1 in the 

expression table above. The next genes is WDR77, ranking number 6 among the most expressed proteins, 

and it is found to proliferate the cells by letting then to reenter the cell cycle, ultimately forming cancer. 

Last but not least came IL20RB, which promotes bone metastasis of lung cancer. 

RPL37 

RPL37 is a gene that is the source of expression of a ribosomal protein located at the 60S subunit in 

the cytoplasm. The L37E ribosomal proteins is the family of which the gene belongs. In a nutshell, 

Ribosomes catalyze the building and synthesis of proteins, they contain two subunits in total - a smaller 

40S subunit and a larger 60S subunit - consist of 4 RNA strands and almost 80 structurally unique 

proteins. The RPL37 gene is associated with several diseases such as cataract 4, multiple types, and 

atrial septal defect. L. Daftuar et al. found in an 2013 article that RPL37 is among the RPs that activates 

p53, a tumor-suppressor gene by the downregulation of Mdm level [8]. 

WDR77 

WDR77 is one of the WD40-containing proteins that are expressed for rapid growth of the epithelial 

cells for which it enables cells to join the cell cycle. Z. Gu .et al in 2013 published that the WDR77 gene 
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is re-activated in cells found to be in lung adenocarcinoma and caused abnormally high proliferation by 

letting cells to re-enter the cell cycle [9]. 

IL-20RB 

IL-20RB, also known as the beta subunit of human interleukin-20 receptor, is a recombinant protein 

product primarily used in immunohistochemical testing. IL-20RB is mainly expressed in skin tissue and 

is secreted by peripheral blood mononuclear cells (PBMCs) and activated epithelial cells. Its receptor is 

formed by combining IL-20Ralpha and IL-20Rbeta subunits. IL-20 must bind to both IL-20Ralpha and 

IL-20Rbeta simultaneously to activate STAT3 transcription factor and subsequently activate the 

expression of downstream genes. A recent article in 2022 published by Y. He et al. suggested that IL-

20RB directly promoted the metastasis of lung adenocarcinoma to the bone marrow, and proved that the 

reduced expression of this gene could effectively decrease the metastasis of lung adenocarcinoma cells 

to the bone marrow [10]. 

4.  Discussion 

Although our method of simple multi-omics analysis and integration suggested some of the possible 

targets related to lung adenocarcinoma, there are still limitations for this experiment. In terms of data, 

the recorded data sets are identified through CBioPortal by searching “tcga luad”. Therefore, the 

experimental autonomy is relatively low since we didn’t collect the data by ourselves. In addtion, the 

accuracy of this dataset cannot be monitored, this leads to a problem since the data collecting process is 

sophisticated. Firstly, the researchers need to collect lung tissue from a lung adenocarcinoma patient 

(disease group), and the lung tissue from health person (control group). Then, the samples need to be 

chopped and grined, so the DNA and RNA can be extracted. After extraction, sequencing is done to 

DNA RNA and proteins, which leads to analysis of the data. By using instruments, the up regulation or 

down regulation of each patient’s DNA, RNA and protein can be clearly displayed, and this forms the 

data set. As described, each step has a high experimental error rate. Therefore, if this ready-made data 

is used, the accuracy of the experiment cannot be confirmed.  

Despite the of the limitation in data accuracy, using Multi Omics approach to analyse the data to 

detect the possible targets is still a very promising research direction while both results from our method 

included found targets of lung adenocarcinoma, which proved our method to be effective. This could 

offer an idea and enlightment for of analysis of future researches on the same topic. In the future, more 

and more people will get cancer in their early age, because this is already a global trend. Therefore, the 

demand of developing more targeted drugs to cope with this trend will increase as well. Moreover, 

targeted therapy can precisely attack on cancer cells, meanwhile having damage to normal civillians 

cells in patient’s body. Thus, this therapy for cancer will definitely be more of a treatment option 

compared to other conventional therapy (e.g chemotherapy), which proved the importance of the 

analysis of targets for lung adenocarcinoma using our method of multi-omics and bioinformatics.  

5.  Conclusion 

In a nutshell, we designed a possible approach to filter and locate targets for lung adenocarcinoma 

treatments and validated it’s functionality by proving that it is capable of finding possible genes 

interacting with cancer cells. We integrated the RNA expression with the protein expression level, and 

calculated z-score averages from data provided from a third party site after modelled into a normal 

distribution. Then we ranked RNA and gene expression in individuals and all luad patients as a whole 

to uncover possible target genes responsible or related to lung adenocarcinoma. The fact that we have 

discovered identified genes from our method proved that the method is completely practical, feasible 

and is able to provide useful information and shed light on future cancer research using bioinformatics. 

In addition, the coding in this method is not exclusive, which could be altered flexibly according to the 

demand of the researchers, as long as the central thesis is clear. 
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