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Abstract. Parkinson’s Disease (PD) is a neurodegenerative disorder whose etiology is not fully 

understood. The human gut microbiome, a complex community of microorganisms residing in 

the digestive tract, has recently emerged as a potential factor influencing various health 

conditions, including neurodegenerative diseases. The causal involvement of the human gut 

microbiome in Parkinson’s disease (PD) remains elusive, primarily due to the challenge of 

distinguishing causation from mere correlation, and the presence of contradictory findings in 

existing research. The relationship between the gut microbiome and PD was assessed using a 

two-sample Mendelian randomization (MR) approach. Assessing the impact of microbial traits 

using data from independent genome-wide association studies (GWAS) (comprising 2,259 

samples) on PD within a cohort of 15,056 cases and 449,056 controls. We performed multiple 

sensitivity analyses to validate our findings. Preliminary MR analysis indicated that 

modifications in the bacterial composition of the Firmicutes and Proteobacteria phyla are 

associated with changes in PD risk. Additionally, bacteria in other genera also play a role in this 

causal association. We provide a comprehensive discussion of the results obtained from our MR 

analysis and highlight the distinctions between our study and prior research efforts.  
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1.  Introduction 

Parkinson’s disease (PD) is a common neurodegenerative disorder characterized by tremor, stiffness of 

movement, and a unique gait [1, 2]. Research shows that the prevalence of PD in people over 60 years 

old is 1.37% (95% confidence interval 1.02%-1.73%) [3]. It can be estimated that the number of PD 

patients in China may be up to 3.62 million. So it is necessary to identify new modifiable risk factors to 

prevent and treat the disease.  

Much evidence shows that the human intestinal microbiome is very important to human health [4]. 

New research shows a link between the complexity and diversity of our gut microbiome and Parkinson’s 

disease. The microbiome and the brain communicate with each other. The gut microbiome has been 

identified as the gut-brain function’s key regulator. Many biological mechanisms exist that could 

potentially explain how the gut microbiome affects the underlying biology and physiology of age-related, 

psychiatric, neurodevelopmental, and neurodegenerative diseases. 

Research shows that people diagnosed with Parkinson’s disease often exhibit an imbalance in the 

composition of their gut microbiota. More than 30% of tested genes, species, and pathways show altered 

abundance in PD individuals, and these gut microbiota are associated with various pathways associated 
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with PD development [5] . Notably, the findings in this case primarily established correlations, which 

makes establishing causality challenging. In animal models, humanized mice transplanted with 

Parkinson’s disease-associated microbiota had worsened motor symptoms compared with healthy 

controls. The results suggest that alpha-synuclein (αSyn) overexpression and dysbiosis interact to 

influence disease outcome in mice [6] . However, whether specific microbial species play a role in the 

disease process remains unknown. 

Mendelian randomization (MR) is a method of causal inference. It operates on the fundamental 

principle of inferring the impact of biological factors on disease by leveraging the influence of naturally 

assigned genotypes on phenotypes [7]. In MR, researchers analyze data from Genome-Wide Association 

Studies (GWAS) to pinpoint specific genetic variations, commonly referred to as Single Nucleotide 

Polymorphisms (SNPs). These SNPs serve as instrumental variables that are linked to biological traits 

of interest. Utilizing these instrumental variables, researchers can then estimate the causal impact of 

these biological traits on disease outcomes, thereby providing a more robust understanding of disease 

etiology. Since SNPs are randomly assigned and unaffected by confounding factors, employing genetic 

variation as a means to investigate causality helps to mitigate potential confounders and enhance the 

reliability of causal inference [8]. By applying the knowledge gained from GWAS in human genetics, 

we can obtain more precise evaluations of the makeup and variability of our microbiome. Additionally, 

this knowledge allows us to gain valuable insights into its functional capabilities, particularly in relation 

to the host and the gut-brain axis [4]. It is important to highlight that the microbiome is remarkably 

diverse, constantly changing, and highly responsive to external factors. These characteristics make it a 

promising target for potential therapeutic interventions. However, in order to investigate innovative 

microbiome-based therapies, establishing causal relationships is crucial. Therefore, an increasing 

number of researchers are using MR to examine the impact of gut microbiome variation on various 

health outcomes. 

This article examines the properties of two-sample MR analysis of genetic effects based on host-

microbiome relationships to investigate potential causal relationships between human gut microbiome 

variation and Parkinson’s disease risk. 

2.  Methods 

2.1.  Gut microbiome GWAS data and instrument selection. 

The dataset comprises 16S sequencing data from 2,259 samples in the Flemish Gut Flora Project, 

encompassing 152 microbial trait genome-wide association analyses (EGA European Genome-Phenome 

Archive) [9]. Significant SNPs were identified from the pooled GWAS data using screening criteria (p 

< 5×10-7, linkage disequilibrium r² = 0.1) to ensure SNP independence and mitigate the impact of genetic 

pleiotropy on the results. 

2.2.  Parkinson’s disease GWAS data. 

Parkinson’s disease GWAS data consisted of 15,056 European ancestry cases, 18,618 European ancestry 

proxy cases, and 449,056 European ancestry controls obtained from the European Bioinformatics 

Institute [10]. 

2.3.  Mendelian randomization methods. 

This article uses the inverse variance weighting method. The IVW method analyzes effect estimates for 

all SNPs [11]. Using multiple SNPs with relaxed p-value thresholds in MR analyzes increases the 

likelihood of weak instrument bias and introduces horizontal pleiotropic pathways between SNPs and 

outcomes [12]. 

The MR-Egger regression method was applied to test for horizontal pleiotropy and the effect 

estimates were compared with those obtained by the IVW method. The MR-Egger regression slope 

between multiple SNP outcomes and SNP exposure associations can be viewed as an unbiased causal 

effect between exposure (microbial signature) and outcome (PD), assuming any level of pleiotropic 
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effects versus SNP exposure effects [13, 14].This article uses maximum likelihood (ML) to estimate 

probability distribution parameters [15].The TwoSampleMR R package (version 0.5.7) is used for 

analyse and data visualization. 

2.4.  Sensitivity analysis. 

Horizontal pleiotropy. Horizontal pleiotropy, a potential source of bias in causal effect estimation using 

the gIVW method, can be effectively identified using the intercept gEgger regression. This statistical 

approach provides an estimate of the directional pleiotropic effect [16]. 

Heterogeneity. When multiple independent risk variants coexist within a locus, the amalgamation of 

these signals may relocate the primary association from causal variants to a nearby non-causal variant 

[17]. Such shifts can also arise due to variations in the quality of variant genotype imputation, leading 

to fluctuations in association signal statistics among adjacent variants in linkage disequilibrium [18].  

Directionality test. To mitigate MR signals influenced by reverse causality, we employed the MR 

Steiger test [19], a method designed to assess the directionality of the causal effects estimated through 

MR. Subsequently, we eliminated all MR signals displaying reverse directionality. 

3.  Results 

3.1.  Forward MR reveals gut bacteria that causally affect PD risk.  

Using Mendelian Randomization (MR) analyses, we found 6 bacterial species that could potentially 

affect PD risk through a causal path. For example, higher bacterial abundance in the Coriobacteriaceae 

family was associated with a slightly increased risk of Parkinson’s disease, approximately 1% for each 

standard deviation (SD) increase in bacterial abundance (odds ratio [OR]: 1.02). Likewise, each SD 

increase in Firmicutes bacteria was associated with a 3% increased risk of PD (OR: 1.03). Each SD 

increase in the unclassified group and other bacteria within the phylum Proteobacteria was associated 

with a 5% and 2% lower risk of PD, respectively (OR: 0.95 and 0.98). 

 

Figure 1. The letters in the name of a microbial trait represent the classification level of the microbial 

trait, where “F”, “G”, “O” and “P” represent “family”, “genus”, “order” and “phylum”.  
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3.2.  Effects of PD on gut microbial traits. 

Alterations in the abundance of bacteria were observed in various groups, including Bacteroides, 

Coprococcus, Fusicatenibacter, Sutterella, as well as families such as Peptostreptococcaceae and 

Sutterellaceae, with marginal changes of per standard diviation in a range of up and down 10% (OR 

range: 0.90–1.10) in PD patients. Conversely, bacteria in other groups (Aestuariispira, Faecalitalea, 

Lactobacillus, and Prevotella) and the Gammaproteobacteria class exhibited more pronounced responses 

to PD. Notably, bacteria in the Collinsella group, an unclassified group under the Rhodospirillaceae 

family, and the Alphaproteobacteria class were significantly affected by PD. 

 

Figure 2. The letters in the name of a microbial trait represent the classification level of the microbial trait, 

among which “C”, “F”, “G”, “O” and “P” represent “class”, “family”, “genus”, “order” “ and “phylum.”  

4.  Discussion 

The MR results allow us to identify numerous microbiota that either influence or are influenced by 

Parkinson’s disease. Our findings partially overlap with those of previous studies, showing some 

fluctuation in certain microbiota groups, which introduces a degree of contradiction in relation to prior 

research. 

A study utilizing 16S rRNA gene sequencing demonstrated a clear decrease in both the abundance 

and diversity of microbiota in MPTP-treated mice. Specifically, the abundance of P. Coriobacteriaceae 

was markedly reduced [20]. However, another study employing next-generation sequencing examined 

64 Italian patients with Parkinson’s disease, revealing a significant increase in the presence of 

Coriobacteriaceae in their gut microbiota composition [21]. A study conducted in China utilized fecal 

samples from 20 patients and selected the V4 region of 16S ribosomal ribonucleic acid for high-

throughput sequencing analysis. This study also proposed the concept of an increase in 

Coriobacteriaceae [22]. Our study’s results align with those of the last two studies, showing 2% per 

standard diviaion increase of its abundancy (OR: 1.02).  

The Firmicutes phylum is to elevate the risk of Parkinson’s disease by increasing its abundance. This 

result is corroborated by prior studies. In a study involving a model organism, specifically rotenone-

treated mice, the Firmicutes ratio increased after three weeks of treatment [23]. One study demonstrated 
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the enrichment of 25 MEs in the PD group, and among these, six were associated with inflammatory 

indicators and an increased abundance of two biomarkers from the Firmicutes phylum [24]. This 

suggests that alterations to MEs in the gut microbiota may contribute to changes in the inflammatory 

response. The Coprococcus genus within this phylum contributes to these alterations. In our study, we 

observed an increase in the abundance of Coprococcus due to Parkinson’s disease. However, multiple 

reports have demonstrated alterations in Coprococcus in both directions, reflecting the bidirectional 

influence of PD on the gut microbiome and the gut microbiome on PD [25]. Studies containing results 

of Coprococcus being more abundant in control subjects compared to those with PD also exist [26]. 

Research demonstrates that bacteria capable of producing short-chain fatty acids, such as Coprococcus, 

exhibit a decrease in the microbiome of individuals with PD compared to controls [27, 28]. Lactobacillus 

genus in this phylum increased due to PD, which in a study this group were positively associated with 

enriched microbiota-associated epitope in PD [24]. Furthermore, they conducted HUMAnN2 analysis 

to discern significant functional pathways associated with microbiota in the PD group. Lactobacillus 

exhibited a negative correlation with isopropanol biosynthesis and a positive correlation with monocyte 

count. This finding further suggests that Lactobacillus may influence immunity through microbiota-

associated epitopes. 

The results of the analysis of the Proteobacteria phylum using MR indicate that an increase in 

Proteobacteria is associated with a decreased risk of PD, with an odds ratio value of 0.98. However, the 

majority of studies conclude that Proteobacteria are more abundant in individuals with PD than in 

controls [26, 29,30]. By examining the class, order, family, and genus within this phylum, we can 

elucidate an explanation for this phenomenon. Our findings indicate an increase in the 

Gammaproteobacteria class and a decrease in the Alphaproteobacteria class in PD patients, which 

aligns with the results of the majority of previous studies [31, 32]. A decrease in the Sutterellaceae 

family and the Sutterella genus is also supported by previous research [21]. 

Increases in the order Bacteroidetes were associated with reduced risk of Parkinson’s disease, and 

Bacteroidetes genus in this order was found to be reduced in patients with Parkinson’s disease. One 

study showed that PBM treatment over 12 weeks resulted in a trend toward an increase in the number 

of genera within the order Bacteroidetes [33]. The genus Bacteroidetes is generally associated with a 

healthy microbiome, being more abundant in high-fiber diets and less abundant in high-fat diets. 

Additionally, people with Parkinson’s disease have been consistently found to have a reduced 

microbiome [34, 35]. 

The microbiome’s impact on Parkinson’s disease does not exhibit a robust causal relationship. 

Conversely, Parkinson’s disease exerts a more pronounced influence on microbiome abundance. The 

Rhodospirillales order (HB), impacted by PD, displays a 30 % decrease per standard deviation (OR: 

0.70), while the Collinsella genus exhibits a 37% increase per SD (OR: 1.37). Various other genera also 

demonstrate a fluctuation within the range of 12% decrease to 25% increase per SD (OR: 0.82-1.25). 

Certain bacterial groups, such as the Peptostreptococcaceae family [36] and Fusicatenibacter genus 

[37] have limited influence on PD and lack comprehensive studies regarding their functional alterations. 

Microbiota exhibiting a robust causal relationship with PD, such as Collinsella, have previously been 

associated with low dietary fiber intake and weight loss. Therefore, further investigation of the link 

between PD and diet is warranted [38]. 

5.  Conclusion 

We utilized two-sample MR to reveal the causal relationship between the abundance of gut microbiomes 

and the risk of Parkinson’s disease. We uncover that a small number of gut bacteria can contribute to the 

risk of PD, albeit with limited impact. Parkinson’s disease can influence numerous gut microbiomes, 

and certain ones exhibit more pronounced effects. Among these microbiomes, some have already been 

verified to have associations with human weight and dietary patterns. Going forward, we can investigate 

the causal relationship among these three factors using multivariable Mendelian randomization. This 

analysis will help determine if specific diets can mitigate PD risk by influencing the gut microbiome, 

potentially offering avenues for PD prevention.  
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