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Abstract. In the process of creating digital twin models of plants, the simulation accuracy of 

models generated by conventional 3D reconstruction methods is insufficient. Considering the 

increasing number of models over time, adopting deep learning-based models not only consume 

a significant amount of time but also require substantial computational resources consumption. 

Therefore, we proposed a method for generating digital twin models of plants, aiming to ensure 

the simulation credibility while effectively reducing resource costs. Experimental results show 

that this method is capable of generating plant models that closely resemble physical entities at 

different growth periods. Compared with other construction methods, this approach achieves 

higher simulation credibility (CD=0.089, EMD=0.034, KNN=0.005, RGB=4.97) with lower 

computational resources consumption (ROM=7.46MB, VRAM=2456MB, Time=0h5min48s) 

when generating a digital twin model. 

Keywords: Digital Twin, Plant model, Computational resources consumption, Simulation 

credibility. 

1.  Introduction 

The fourth industrial revolution, marked by digitization, is poised to bring about extensive and profound 

changes to the world. Digital Twin (DT), as the general-purpose technology to drive the next revolution, 

possesses immense potential for applications across various domains [1]. Initially derived from the 

“mirror space model” proposed by Michael Grieves in his product lifecycle management course, DT 

integrates simulation technologies from Multidisciplinary, Multiphysics, and Multiscale simulation 

techniques by utilizing data from physical models, sensor updates, and historical states. Employing this 

technique, the digital world in the information dimension and the physical world in terms of entities 

merge seamlessly, giving rise to Digital Twin Models (DTM) capable of reflecting the composition, 

characteristics, and functionalities of physical entities. In the digital realm, by observing the changes 

occurring in DTMs under the influence of various simulated factors, significant costs of trial and error 

in the physical world can be reduced, thereby providing decision-making plans for solving potential 

future issues. 

To achieve a reasonable balance between environmental, social and economic performance in 

intelligent manufacturing system, and minimize manufacturing and processing costs as well as 

mitigating potential risks, DT maps real products onto DTMs. This enables the continuous presentation 

of the latest product state to manufacturers for evaluating product performance and eliminating the 

substandard items. In this regard, Yildiz combined DT with Virtual Reality (VR) [2], introducing the 
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concept of a Virtual Factory that integrates simulation models of the factory and its subsystems. It 

employs a collaborative virtual reality learning scenario involving multi-user to demonstrate and 

evaluate wind turbines. This approach is regarded as a dynamic, open, and holistic solution. Although 

the integration of these two technologies enhances production efficiency and user experience in 

intelligent manufacturing, however, most studies have focused on non-living entities, leaving many 

issues regarding the application of DT in life forms worthy of further exploration. 

In summary, in response to the limitations of existing research, this study delves into the field of 

agriculture and proposes a method for generating a digital twin model that can accurately replicate the 

growth status of plants. This method utilizes a 3D reconstruction technique based on deep learning to 

establish a one-to-one mapping relationship between physical entities and their digital counterparts, 

constructing a DTM of a life-form exemplified by plants, throughout the entire lifecycle. This enables 

the precise reproduction of objects from the physical world into the digital realm. In addition, to evaluate 

the construction effectiveness of the generated DTMs using the proposed method, we summarize a set 

of evaluation metrics and put forth a corresponding computational method to assess the effectiveness of 

the DTM generated at different periods of plant growth. 

2.  DTM Generation Methods Applicable to Plants 

The life cycle of most plants begins with the germinating period, followed by the growing period, the 

maturing period, and eventually the wilting period. To accurately present the growth states of plants 

during each period using DTM, we proposed a method called Plant Digital Avatar Generating Method 

(PDAG) for generating digital twin models of plants. This method utilizes a multi-view geometry-based 

reconstruction approach to generate DTMs. To ensure that the generated DTMs not only faithfully 

capture the changes in plant morphology across different growing periods but also reflect the entire 

lifecycle of a plant, PDAG analyzes the growth characteristics, at different periods. and selects the 

algorithms from the Neural Radiance Fields (NeRF) [3]and the Neural Implicit Surfaces (NeuS) [4] for 

the current growth cycle. By adjusting the training network parameters of the chosen algorithm, PDAG 

generates DTMs with high simulation credibility. While delivering high-quality models, PDAG is able 

to effectively reduce the computational resources cost associated with the model generation, thus 

enhancing the effect of the DTM construction. 

In this study, pea seedlings were selected as the research subject and cultivated using a combination 

of soil-based and hydroponics methods. The process of implementing PDAG is illustrated in figure 1, 

which is divided into three steps: data acquisition and processing, selecting the algorithm for generating 

DTM, and generating DTM. 

The first step involves the collection and processing of growth data. Initially, video data of plants at 

various growth periods is collected at specific intervals. Subsequently, only the video data showing 

significant changes in plant characteristics is retained. Finally, a number of images are extracted from 

the videos to be utilized for generating DTMs. 

The second step entails the selection of an algorithm for DTM generation. The purpose of data 

acquisition and processing is to identify the images required for generating DTMs, thereby enabling the 

construction of DTM using model’s generation algorithm. Initially, DTMs are generated at distinct 

periods according to the default settings of the algorithm. Subsequently, a comparative analysis is 

conducted between the generated models and the physical entities to assess differences, allowing for the 

identification of suitable DTM generation algorithms for varying plant growth periods. 

The final step involves the generation of DTMs. The parameters of the selected algorithm’s 

generation network chosen and adjusted to generate DTMs with good construction outcomes. 

Additionally, parameter adjustments should consider to balance between model generation quality and 

computational resources consumption. In conclusion, by following the aforementioned three steps, an 

accurate digital representation of plants at different growth periods can be obtained. 
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Figure 1. Flowchart of PDAG 

3.  Experiment 

3.1.  Weight Allocation 

To quantitatively compare the effectiveness of generating DTM using different methods, we used 

evaluation formulas to calculate the results. Weight allocation should accurately assign the influence of 

each evaluation metric on the computational results, which is essential for the evaluation outcome. As 

numerous factors affect both simulation credibility and computational resource usage, a comprehensive 

consideration of evaluation metrics is necessary to derive reliable computational scores. We categorized 

all relevant influencing factors into two levels of evaluation metrics, as shown in Table 1. DTM 

simulation credibility, build time, Video Random Access Memory (VRAM), and ROM were considered 

as the primary level of evaluation indicators for assessing model construction effectiveness. Among 

them, the simulation credibility metric comprised Chamfer Distance (CD) [5], Earth Mover’s Distance 

(EMD) [6], K-Nearest Neighbor (KNN) [7], and colour as secondary evaluation indicators.  

Table 1. Two-level of evaluation metrics for measuring DTM generation effect 

Primary level evaluation indicators Simulation credibility Building time VRAM ROM 

Secondary evaluation indicators CD EMD RGB KNN 
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3.2.  Evaluation Formula 

To calculate the scores for the simulation credibility and construction effect scores of PDAG, NeRF, 

NeuS, and MVS in generating DTM for each growth period of plants, an evaluation formula has been 

specified. To map the quantitative values of various evaluation metric to specified ranges and remove 

the magnitude of the different dimensional evaluation metrics, as shown in Equation 1, this formula 

normalizes the evaluation metrics: 

𝑋𝑛𝑜𝑟 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

(1) 

Where “X” denotes the quantitative value of an evaluation indicator in a specific growth period, 

“Xmax” represents the maximum quantified value of a certain evaluation indicator in a given growth 

period, “Xmin” is the minimum quantitative value of the assessment metric during a given growth cycle, 

and “Xnor” signifies the normalized quantitative value of a certain evaluation indicator. 

Once the normalization is complete and the inverse is taken, we calculated the simulation credibility 

score of the DTM using the weighted summation formula shown in Equation 2: 

𝑋𝐴 = ∑ 𝑋𝐴𝑖𝜔𝐴𝑖

4

𝑖=1

(2) 

Where, XA1 ,  XA2 ,  XA3 , and XA4  are the normalized quantitative values of the four secondary 

evaluation indicators for simulation credibility, while ωA1, ωA2, ωA3, and ωA4 denote the weight values 

of these indicators, respectively, and XA represents the simulation credibility scores of DTM generated 

by PDAG, NeRF, NeuS, and MVS. 

Similarly, the score for the effectiveness of construction is calculated using Equation 3: 

𝑋𝐵 = ∑ 𝑋𝐵𝑖𝜔𝐵𝑖

4

𝑖=1

(3) 

Where, XB1, XB2, XB3, XB4 express the normalized quantitative values of credibility, ROM, building 

time, and existing factors. ωB1, ωB2, ωB3, and ωB4 indicate the weight values corresponding to these 

indicators. XB  denotes the score of construction effectiveness for DTM generated by PDAG, NeRF, 

NeuS, and Multiple View Stereo (MVS) [8], respectively. 

3.3.  Parameter Setting Scheme of PDAG 

After ensuring the model’s appropriate simulation credibility, the highest-scoring construction approach 

was selected, resulting in the algorithm chosen for PDAG and the corresponding training network setup 

scheme as shown in Table 2. 

Table 2. Algorithms chosen for PDAG and the corresponding training network setup scheme 

4.  Experiment result 

The DTM constructed by different methods, as shown in figure 2, demonstrated varying levels of 

simulation credibility. Firstly, throughout the entire growth cycle, the PDAG achieved the highest 

Period Selected 
algorithm Settings of the training network 

Germinating 
period NeRF RES = 512 MC density 

threshold = 5.000 
Mesh Render mode = 

Vertex Colours 

Growing 
period NeuS Learning rate = 5e-4 Batch size = 64 Iteration times = 

100000 

Maturing 
period NeuS Learning rate = 5e-4 Batch size = 256 Iteration times = 

100000 

Wilting 
period NeRF RES = 600 MC density 

threshold = 6.000 
Mesh Render mode = 

Vertex Colours 
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simulation credibility score, which was 96.9% higher than the lowest score obtained by MVS. NeRF 

and NeuS have similar scores, with even the lowest scoring NeuS surpassing MVS by 64.8%. Secondly, 

in terms of colour presentation, the majority of the areas in the DTMs generated by PDAG, NeuS, and 

NeRF appear green, while most areas generated by MVS appear grey, deviating from the colour of the 

physical entity. Upon closer examination of the model details, although the branch reconstruction by 

MVS was relatively realistic compared to the physical entity, the dense point distribution in the buds 

and leaf parts led to poor reproduction effects. 

 

Figure 2. DTMs constructed with different generation methods 

5.  Conclusion 

We presented a new method called PDAG for constructing digital twin models of plants. Firstly, image 

data of plants were captured, screened and used to develop a dataset. Then, NeuS or NeRF algorithms 

were selected based on the characteristics of plants at different growth periods to generate models. 

Finally, the parameter settings of the training network of the selected algorithms were adjusted, and the 

DTM of the plant at different growth periods was generated and rendered. The proposed method 

achieved the highest score of 1.951 in terms of the simulation credibility of the generated plant model, 

which was 71% higher than NeRF and 92.6% higher than NeuS. The highest score of model construction 

effect reached 1.778, which was 6.1% higher than NeRF and 34.3% higher than NeuS. Experimental 

results shown that this method can effectively reduce the computational resources consumption while 

ensuring a certain level of simulation credibility in the generated DTM, thereby improving the model 

construction effect. 
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In conclusion, researchers can apply PDAG in the transformation of agricultural cultivation using 

digital twin technology. This not only allows for the continuous visualization of plant growth in the 

virtual world but also reduces the enormous time and effort required for generating plant models. 

Consequently, this will benefit researchers in understanding the changing trends of plants throughout 

their entire growth cycle in a short period of time, enabling them to efficiently identify critical feature 

changes at key growth periods and then will implement necessary protective measures to enhance crop 

survival rates.  

However, there are some limitations in this study. Firstly, the experiments were conducted using pea 

seedlings, and the differences in the construction effect of DTM for other plant species generated by 

PDAG have not been compared. Secondly, the simulation credibility and computational resources 

consumption of DTM generated by other reconstruction algorithms still require further investigation. 
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