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Abstract. Hadamard matrices play a key role in the study of algebra and quantum information theory, and
it is an open problem to characterize 6 × 6 Hadamard matrices. In this paper, we investigate the problem in
terms of the Schmidt rank. The primary achievement of this paper lies in establishing a systematic approach
to generate 6 × 6 Hadamard matrices and H-2 reducible matrices through partial transpose. First, if the
Schmidt rank of a Hadamard matrix is at most three, then the partial transpose of the Hadamard matrix is
also a Hadamard matrix. Conversely, if the Schmidt rank is four, then the partial transpose is no longer a
Hadamard matrix. Second, we discuss the relationship between Schmidt rank and H-2 reducible matrices.
We prove Hadamard matrices with Schmidt-rank-one are all H-2 reducible, and prove that some Schmidt-
rank-two matrices are H-2 reducible. Finally, we confirm that the partial transpose of an H-2 reducible
Schmidt-rank-one or two Hadamard matrix remains H-2 reducible.
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1. Introduction
A complex Hadamard matrix is a matrix with entries of equal modulus and orthogonal rows and columns.
Because of its unitary nature, each element takes the form 1√

n
eiθjk .

Hadamard matrices have extensive applications in various fields, including spectroscopy, error
correction codes, signal processing, and cryptography [1]. The emergence of quantum computing has
further fueled interest in Hadamard matrices, as they facilitate the transformation of ground state bits
into superimposed qubits, which enables high-level parallel computation [2].

Higher-order Hadamard matrices specifically offer the advantage of generating “qudits” with an
increased number of superimposed bases, thus enabling enhanced parallelization. Hadamard matrices
of orders one through five have been completely classified, leaving the order-six matrices as the smallest
unresolved case. Specifically, the study of order-six Hadamard matrices has garnered considerable
attention due to the associated MUB-6 problem, which asks for the maximum number of mutually
unbiased bases in C6 [3, 4]. It is established that if n = pk where p is prime and k > 0, n + 1
MUBs can be constructed in Cn. Order six remains an intriguing case, because six is the first integer
great than one that is neither prime nor prime power [5].

To approach the MUB-6 problem, we need to progress towards characterizing and generating
order-six Hadamard matrices. This paper explores the potential of Schmidt rank. We investigate the
conditions under which a Hadamard matrix remains a Hadamard matrix after partial transpose. The
Schmidt rank emerges as a valuable criterion for assessing this property [6]. This study concludes
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that the partial transpose of an order-six Hadamard matrix with Schmidt-rank-four cannot yield another
Hadamard matrix. We further explore Schmidt rank’s relationship with H-2 reducible matrix, a class of
parameterized Hadamard matrices. This study establishes that Hadamard matrices with Schmidt-rank-
one are all H-2 reducible, and Schmidt-rank-two matrices are likely to be all H-2 reducible.

2. Preliminaries
In this section, we introduce the fundamental knowledge and facts used in the paper. We define Hadamard
matrices in Sec. 2.1. In Sec. 2.2, we discuss the existence and construction of real Hadamard matrices.
Then, we introduce H-2 reducible matrix as a class of parameterized matrix in 2.3. Next in Sec. 2.4 and
2.5, we respectively introduce the notion of Schmidt rank and partial transpose of a bipartite matrix, so
as to characterize the Hadamard matrices studied in later sections. In Sec. 2.6, we introduce two kinds
of decomposition for unitary matrices, namely the CS decomposition and that for four by four unitary
matrices.

2.1. Hadamard Matrix
A Hadamard matrix is a unitary matrix whose entries have the same modulus.

Lemma 2.1. A matrix complex equivalent to a Hadamard matrix is also a Hadamard matrix.

Set U = PHQ where P and Q are complex permutation matrices and H is a Hadamard matrix.
Since complex permutation matrices are unitary and have entries of modulus 1, U is a unitary matrix
with entries of equal modulus, so U is a Hadamard matrix.

Lemma 2.2. Every complex Hadamard matrix is complex equivalent to the dephased Hadamard matrix.

We write Hadamard matrix U as

U =
1√
n

e
iα1,1 · · · eiα1,n

...
. . .

...
eiαn,1 · · · eiαn,n

 . (1)

We can apply two complex permutation matrices to U to create a Hadamard matrix V with entries 1√
n

in the first row and first column.

V =

e
−iα1,1 · · · 0

...
. . .

...
0 · · · e−iαn,1

U


1 0 · · · 0

0 e(α1,1−α1,2)i · · · 0
...

. . .
...

0 0 · · · e(α1,1−α1,n)i

 . (2)

Without loss of generality, we construct Hadamard Matrices by starting with the dephased Hadamard
matrix. All other Hadamard Matrices can be derived through complex equivalence.

2.2. Existence of Real Hadamard Matrices
1 × 1 and 2 × 2 real Hadamard matrices exist.

H1 =
[
1
]
, (3)

H2 =
1√
2

[
1 1
1 −1

]
. (4)
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Sylvester’s construction Hadamard matrix of order nm can be constructed through

Hnm = Hn ⊗Hm. (5)

where Hn and Hm are Hadamard matrices of order n and m respectively.
To prove this construction we can use the properties of Kronecker product.

(Hn ⊗Hm)(Hn ⊗Hm)†

=(Hn ⊗Hm)(H†
n ⊗H†

m)

=(HnH
†
n ⊗HmH†

m)

=(In ⊗ Im)

=(Inm).

(6)

We can construct all H2k with H2 with Sylvester’s construction.

Lemma 2.3. Hadamard matrices of odd dimension cannot be real.

Proof. The real Hadamard matrix exist if we can find rows whose entries add up to zero. An odd number
of elements, every one of which are either −1 or 1, cannot add up to zero, so odd dimensional Hadamard
matrices do not exist.

Lemma 2.4. Besides H1 and H2, all real Hadamard matrices have dimension of multiple of 4.

Proof. As every Hadamard matrices can be derived through equivalence (a special case of complex
equivalence), if the dephased real Hadamard matrix does not exist, then there is no real Hadamard matrix
for the dimension.

To make the rows orthonormal, every row (except the first row) in such matrix of dimension n should
contain n

2 ones and n
2 negative ones. Let a and b be distinct row indices such that a, b ̸= 1 in a given

matrix H . Let r be the number of columns k for which Ha,k = Hb,k = 1. Then, it follows that there
are also r columns k where Ha,k = Hb,k = −1. The dot product of row a and row b can then be
mathematically expressed as:

r(1)2 + r(−1)2 + (n− 2r)(−1) = 4r − n = 0. (7)

So we conclude that n has to be the multiple of 4.

Yet, it is still unsolved whether there is a real Hadamard matrix for every dimension of multiple of 4.
This is known as the Hadamard Conjecture, which is still open today.

2.3. H-2 Reducible Matrix

If there exist a order 2 Hadamard submatrix
[
hij hik
hlj hlk

]
in a order 6 Hadamard matrix H , such that

1 ≤ i, j ≤ l, k ≤ 6, then H is a H-2 reducible Hadamard matrix [7].

Lemma 2.5. H-2 reducible 6 × 6 Hadamard matrices can be fully characterized under a three-
parameter family [8].
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2.4. Schmidt Rank
Separate a m×m matrix in to k2 n× n matrices such that kn = m. For example, a 6× 6 matrix can be
separated into four 3× 3 matrices. As shown below, U6 is separated into the 3× 3 matrices A,B,C,D.

U6 =

[
A B
C D

]
. (8)

The Schmidt rank of a matrix is defined as the number of linearly independent matrices between the
separated small matrices. For example, if ABCD are all linearly independent, then the Schmidt rank of
U6 is four.

Consider if U6 is separated into nine 2× 2 matrices, the maximum Schmidt rank is 4, as there can be
only at maximum four linearly independent 2× 2 matrices.

Lemma 2.6. If A,B,C, and D are invertible matrices, Sr((A⊗B)H(C ⊗D)) = Sr(H) for any matrix
H.

Proof. Let K = (A⊗B)H(C ⊗D).
Matrix H can be written as

H =

1∑
i,j=0

|i⟩ ⟨j| ⊗Mi,j =

[
M00 M01

M10 M11

]
, (9)

and

K = (A⊗B)H(C ⊗D) =
1∑

i,j=0

(A(|i⟩ ⟨j|)C)⊗ (BMi,jD), (10)

which decompose the four blocks of K as a linear combination of Mi,j . Thus, Sr(K) ≤ Sr(H).
As A,B,C, and D are reversible,

H = (A−1 ⊗B−1)K(C−1 ⊗D−1). (11)

By the same token, Sr(H) ≤ Sr(K), so Sr(H) = Sr(K).

2.5. Partial Transpose
Partial transpose of a matrix takes only the transpose of blocks and leaves the rest unchanged. The partial
transpose operator is defined as follow:

HΓ = Ta ⊗ Ib. (12)

Applying partial transpose to 6× 6 Hadamard matrix U6, where a = 2 b = 3, we get

U6 =

[
A B
C D

]
, (13)

UΓ
6 =

[
A C
B D

]
, (14)

where A, B, C, and D are three by three blocks.
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2.6. Unitary Matrix Decomposition
We begin by introducing the so-called CS-decomposition.

Lemma 2.7. Let N be an even integer. Every N ×N unitary matrix U can be decomposed as

U =

[
L0 0
0 L1

] [
Dc −Ds

Ds Dc

] [
R0 0
0 R1

]
. (15)

L0, L1, R0 and R1 are (N/2)× (N/2) unitary matrices. Dc and Ds are diagonal matrices such that

Dc = diag(cosϕ1, cosϕ2, · · · , cosϕN/2),

Ds = diag(sinϕ1, sinϕ2, · · · , sinϕN/2).
(16)

where 0 ≤ ϕ1 ≤ ϕ2 ≤ · · · ≤ ϕN/2 ≤ π
2 .

Next, we introduce a canonical decomposition for 4× 4 unitary matrices [9].

Lemma 2.8. Any 4× 4 unitary matrix W can be decomposed as

W = (UA ⊗ UB)U(VA ⊗ VB), (17)

where UA, UB , VA and VB are 2× 2 unitary matrices, and

U =


c0 + c3 0 0 c1 − c2

0 c0 − c3 c1 + c2 0
0 c1 + c2 c0 − c3 0

c1 − c2 0 0 c0 + c3

 , (18)

where the coefficients are
c0 = cosx cos y cos z + i sinx sin y sin z, (19)

c1 = cosx sin y sin z + i sinx cos y cos z, (20)

c2 = sinx cos y sin z + i cosx sin y cos z, (21)

c3 = sinx sin y cos z + i cosx cos y sin z, (22)

and x, y, and z are on the interval [−π
4 ,

π
4 ].

3. 6 × 6 Complex Hadamard matrix
It was proven that for dimension one to five, there exist a family of dephased Hadamard matrices to which
all Hadamard matrices of the same dimension are complex equivalent to. [5] However, for dimension six,
the first natural number that is neither prime nor prime power, such dephased matrix is not discovered.

If the Schmidt rank of a 6 × 6 Hadamard Matrix is 1, 2, or 3, the partial transpose is still a Hadamard
matrix as follows.

H =

[
A B
C D

]
= (U ⊗ V )

[
F1 F2

F3 F4

]
(W ⊗X), (23)

HΓ = (W T ⊗ V )

[
F1 F3

F2 F4

]
(UT ⊗X). (24)

The above decomposition holds due to the fact that every qubit-qutrit unitary matrix of Schmidt rank
at most three is a controlled unitary matrix [10].

In this section, we present the following result. This is also the main contribution of this paper.

Theorem 3.1. The partial transpose of a 6×6 Hadamard matrix of Schmidt rank four is not a Hadamard
matrix.
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To study the conjecture, we consider a 6 × 6 Hadamard matrix H6 and its partial transpose K6 as
follows.

H6 =

[
A B
C D

]
, (25)

H†
6 =

[
A† C†

B† D†

]
, (26)

K6 = HΓ
6 =

[
A C
B D

]
, (27)

K†
6 =

[
A† B†

C† D†

]
. (28)

By definition of Hadamard matrix,

H6H
†
6 = I6 =

[
AA† +BB† AC† +BD†

CA† +DB† CC† +DD†

]
, (29)

K6K
†
6 = I6 =

[
AA† + CC† AB† + CD†

BA† +DC† BB† +DD†

]
, (30)

The 5 conditions we can conclude are

AA† +BB† = I3,

AA† = DD†,

BB† = CC†,

AC† +BD† = 0,

AB† + CD† = 0.

(31)

Another crucial condition is every element of the matrices A,B,C, and D have modulus of 1√
6
. Also

note ABCD are linearly independent.

Proof of Theorem 3.1 We can rewrite a Hadamard matrix with CS Decomposition (2.7).

H =

[
A B
C D

]
=

[
L0DcR0 −L0DsR1

L1DsR0 L1DcR1

]
. (32)

By equation (31), we can derive the following equations if H remains a Hadamard matrix after partial
transpose.

AA† +BB† = L0DcDcL
†
0 + L0DsDsL

†
0,

AA† = L0DcDcL
†
0 = L1DcDcL

†
1 = DD†,

BB† = L0DsDsL
†
0 = L1DsDsL

†
1 = CC†,

AC† +BD† = L0DcDsL
†
1 − L0DcDsL

†
1 = 0,

AB† + CD† = −L0DcR0R
†
1DsL

†
0 + L1DsR0R

†
1DcL

†
1 = 0.

(33)

From AA† = DD†, we can derive

L0DcDcL
†
0 = L1DcDcL

†
1,

L†
1L0D

2
c = D2

cL
†
1L0.

(34)

We write Dc = diag(cosϕ0, cosϕ1, cosϕ2). We analyze by 4 cases.
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3.1. Case 1: ϕ0 < ϕ1 < ϕ2.
As Dc is diagonal, we can see L†

1L0 is also diagonal such that

L†
1L0 =

eib0 0 0
0 eib1 0
0 0 eib2

 = F0,

L0 = L1F0.

(35)

Then similarly from A†A = D†D, we can derive R0 = F1R1 where F1 is also a diagonal matrix. We
can rewrite the Hadamard matrix as

H =

[
L1F0DcF1R1 −L1F0DsR1

L1DsF1R1 L1F0DcR1

]
=

[
L1 0
0 L1

] [
F0DcF1 F0Ds

DsF1 Dc

] [
R1 0
0 R1

]
. (36)

By Lemma (2.6) the Schmidt rank of H is same as the matrix in the middle. As the four blocks in
the middle matrix are all diagonal matrices, the Schmidt rank of this case is at most 3, which satisfy
statement (3.1).

3.2. Case 2: ϕ0 = ϕ1 < ϕ2.
In this case, we can derive from AA† = DD† that

L0 = L1G0 = L1

[
G00 0
0 x00

]
, (37)

where G00 represents a two by two block. Similarly, we can derive from A†A = D†D that

R0 = G1R1 =

[
G11 0
0 x11

]
R1, (38)

where G11 represents a two by two block.
Then we rewrite the Hadamard matrix as

H =

[
L1G0DcG1R1 −L1G0DsR1

L1DsG1R1 L1DcR1

]
=

[
L1 0
0 L1

] [
G0DcG1 −G0Ds

DsG1 Dc

] [
R1 0
0 R1

]
. (39)

By Lemma (2.6), the rank of H is equal to the matrix in the middle.
Name the middle matrix K. This matrix is unitary and can be written in the form

K =


K0 0 K1 0
0 m0 0 m1

K2 0 K3 0
0 m2 0 m3

 , (40)

where K0, K1, K2,and K3 are all two by two blocks.
As K is unitary, the following 4× 4 matrix W is also unitary.

W =

[
K0 K1

K2 K3

]
. (41)

By Lemma (2.8), W can be decomposed as

W = (UA ⊗ UB)U(VA ⊗ VB), (42)
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where UA, UB , VA and VB are 2× 2 unitary matrices. By Lemma (2.6), Sr(W ) = Sr(U), so we then
investigate the rank of U .

U =


c0 + c3 0 0 c1 − c2

0 c0 − c3 c1 + c2 0
0 c1 + c2 c0 − c3 0

c1 − c2 0 0 c0 + c3

 . (43)

The partial transpose of U is

UΓ =


c0 + c3 0 0 c1 + c2

0 c0 − c3 c1 − c2 0
0 c1 − c2 c0 − c3 0

c1 + c2 0 0 c0 + c3

 . (44)

Both U and its UΓ should be unitary, which means they need to satisfy: First, the square of the
modulus of each entry in a row or column sums to one; Second, Every pair of rows and columns are
orthogonal.

By property 1, we can see from the first column of U and UΓ that

|c0 + c3|2 + |c1 + c2|2 = |c0 + c3|2 + |c1 − c2|2 = 1,

(c1 + c2)(c
∗
1 + c∗2) = (c1 − c2)(c

∗
1 − c∗2),

c1c
∗
2 + c2c

∗
1 = 0.

(45)

Similarly, we can derive from first column of U and second column of UΓ

(c0 + c3)(c
∗
0 + c∗3) = (c0 − c3)(c

∗
0 − c∗3),

c0c
∗
3 + c3c

∗
0 = 0.

(46)

Then by Property 2, we can derive

(c0 + c3)(c
∗
1 − c2∗) + (c1 − c2)(c

∗
0 + c∗3) = 0, (47)

(c0 + c3)(c
∗
1 + c2∗) + (c1 + c2)(c

∗
0 + c∗3) = 0, (48)

(c0 − c3)(c
∗
1 − c2∗) + (c1 − c2)(c

∗
0 − c∗3) = 0, (49)

(c0 − c3)(c
∗
1 + c2∗) + (c1 + c2)(c

∗
0 − c∗3) = 0. (50)

From the above four equations, we can derive the following.

(c0 + c3)c
∗
1 + c1(c

∗
0 + c∗3) = 0, (51)

(c0 + c3)c
∗
2 + c2(c

∗
0 + c∗3) = 0, (52)

(c0 − c3)c
∗
1 + c1(c

∗
0 − c∗3) = 0, (53)

(c0 − c3)c
∗
2 + c2(c

∗
0 − c∗3) = 0. (54)

We consider two subcases.

Subcase 1 : det(
[
c∗1 c1
c∗2 c2

]
) ̸= 0.

Neither c1 nor c2 is zero. From (51) and (53), we conclude c0 = c3 = 0, so Sr(U) = Sr(W ) ≤ 2.
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Subcase 2 : det(
[
c∗1 c1
c∗2 c2

]
) = 0.

We first assume c1 is zero. From (20), we conclude x must be zero and one of y and z must be zero.
Thus, either c2 or c3 is zero, so Sr(U) = Sr(W ) ≤ 2. We then assume c2 is zero. From (21), we conclude
y must be zero and one of x and z must be zero. Thus, either c1 or c3 is zero, so Sr(U) = Sr(W ) ≤ 2.
Since we have showed that the maximum rank of W is 2 such that Ki ∈ span{L,M} , Sr(K) =

Sr(H) ≤ 3 as
[
Kj 0
0 mj

]
∈ span{

[
L 0
0 0

]
,

[
M 0
0 0

]
,

[
0 0
0 1

]
}.

In conclusion, statement (3.1) is true for Case 2 (ϕ0 = ϕ1 ≤ ϕ2) because the maximum Schmidt rank is
three.

3.3. Case 3: ϕ0 < ϕ1 = ϕ2.

Case 3 is analogous to Case 2. Sr(K) = Sr(H) ≤ 3 as
[
mj 0
0 Kj

]
∈ span{

[
0 0
0 L

]
,

[
0 0
0 M

]
,

[
1 0
0 0

]
}.

Statement (3.1) is true for Case 3 (ϕ0 < ϕ1 = ϕ2) because the maximum Schmidt rank is three.

3.4. Case 4: ϕ0 = ϕ1 = ϕ2.
From the last equation of (33), we have

L0DcR0R
†
1DsL

†
0 = L1DsR0R

†
1DcL

†
1,

L0R0R
†
1L0 = L1R0R

†
1L1,

(L†
0L1)(R0R

†
1)(L0L

†
1) = R0R

†
1.

(55)

Setting X = L†
0L1 and Y = R0R

†
1, we have

XYX† = Y,

XY = Y X.
(56)

Two commutative unitary matrices are simultaneously diagonalizable, so

L†
0L1 = PD0P

†,

L1 = L0PD0P
†,

(57)

R0R
†
1 = PD1P

†,

R0 = PD1P
†R1.

(58)

Substitute equation (57) and (58) into (32),

H =

[
L0DcPD1P

†R1 −L0DsR1

L0PD0P
†DsPD1P

†R1 L0PD0P
†DcR1

]
=

[
L0 0
0 L0

] [
cos(ϕ)PD1P

† − sin(ϕ)PP †

sin(ϕ)PD0D1P
† cos(ϕ)PD0P

†

] [
R0 0
0 R0

]
=

[
L0 0
0 L0

] [
P 0
0 P

] [
cos(ϕ)D1 − sin(ϕ)I

sin(ϕ)D0D1 cos(ϕ)D0

] [
P † 0
0 P †

] [
R1 0
0 R1

]
.

(59)

By Lemma (2.6), the Schmidt rank of H is equal to the Schmidt rank of the matrix in the middle.
As the middle matrix is diagonal, its maximum Schmidt rank is 3. Thus, statement (3.1) is true for case
4.

The above proof does not rely on the modulus of entries in the Hadamard matrices, so we can extend
Theorem (3.1) to all 6× 6 unitary matrices and propose the following theorem.
Theorem 3.2. The partial transpose of a 6 × 6 unitary matrix of Schmidt-rank four is not a unitary
matrix.
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4. H-2 Reducible 6 × 6 Hadamard Matrix
4.1. Schmidt-rank-one
Lemma 4.1. Every 6 × 6 Hadamard with Schmidt-rank-one is H-2 reducible.

Proof. The 6 × 6 Hadamard matrix with Schmidt-rank-one can be decomposed as

H6 =
1√
6
(P1

[
1 1
1 −1

]
Q1)⊗ (P2

1 1 1
1 ω ω2

1 ω2 ω

Q2), (60)

where P1, P2, Q1, and Q2 are complex permutation matrices. The submatrix
[

hi,j hi+3,j

hi,j+3 hi+3,j+3

]
with

1 ≤ i, j ≤ 3 is always an order 2 Hadamard matrix, making H6 H-2 reducible.

4.2. Schmidt-rank-two
Any Schmidt-rank-two order six Hadamard matrix can be written as

H2(α, β, γ, V,W ) :=

[[
cosα sinα
sinα − cosα

]
⊗ I3

]
·
[
V 0
0 W

]
·
[[

cosβ sinβ
sinβ − cosβ

]
⊗ I3

]
, (61)

H2(α, β, γ, V,W ) =

[
(cosα cosβ)V + (sinα sinβ)W (cosα sinβ)V − (sinα cosβ)W
(sinα cosβ)V − (cosα sinβ)W (sinα sinβ)V + (cosα cosβ)W

]
, (62)

where V = [vjk] and W = [wjk] are linearly independent order-three unitary matrices and

α, β ∈ [0,
π

4
], α+ β ≥ π

4
, γ ∈ [0, 2π), (63)

cos 2α cos 2β +
3(vijw

∗
jk + vjk ∗ wjk)

2
sin 2α sin 2β = 0, (64)

|vjk|2 + |wjk|2 = 2/3, (65)

(|vjk|2 −
1

3
) cos 2α = 0, (66)

(|vjk|2 −
1

3
) cos 2β = 0. (67)

Hence we have two cases. (4.2.1) If (α, β) ̸= (π4 ,
π
4 ), then V and W are both Hadamard matrices, and

|vjk|2 = |wjk|2 = 1/3. (4.2.2) If (α, β) = (π4 ,
π
4 ), then v∗jkwjk + vjkw

∗
jk = 0, |vjk|2 + |wjk|2 = 2/3,

and V and W are order three unitary matrices [11].

4.2.1. Case 1: (α, β) ̸= (π4 ,
π
4 ) Taking the upper left entry of every block, we obtain the two by two

submatrix [
cosα cosβV11 + sinα sinβW11 cosα sinβV11 − sinα cosβW11

sinα cosβV11 − cosα sinβW11 sinα sinβV11 + cosα cosβW11

]
, (68)

where V11 and W11 are the upper left entry of V and W respectively.
We can see that this matrix has orthogonal rows and columns as

(cosα cosβV11 + sinα sinβW11)(sinα cosβV ∗
11 − cosα sinβW ∗

11)

+ (cosα sinβV11 − sinα cosβW11)(sinα sinβV ∗
11 + cosα cosβW ∗

11)

= cosα sinα(|V11|2 − |W11|2)
= 0.

(69)

Thus, this case of Schmidt-rank-two six by six Hadamard matrix are all H-2 reducible.
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4.2.2. Case 2: (α, β) = (π4 ,
π
4 )

Lemma 4.2. If at least one pair of corresponding entries vjk and wjk have the same modulus, then the
Schmidt-rank-two six by six Hadamard matrix is H-2 reducible.

Proof. We consider the submatrix
[
vjk + wjk vjk − wjk

vjk − wjk vjk + wjk

]
. The dot product of the two rows is

(vjk + wjk)(v
∗
jk − wjk∗) + (vjk − wjk)(v

∗
jk + wjk∗)

=2vjkv
∗
jk − 2wjkw

∗
jk

=2(|vjk|2 − |wjk|2).
(70)

Thus, if the at least one pair of corresponding entries of V and W have the same modulus, the
Schmidt-rank-two six by six Hadamard matrix is H-2 reducible .

Since the sum of square of modulus of corresponding elements in V and W is 2
3 , and the phase angle

differ by π
2 , we can parameterize V and W as

V =

√
2

3

cosα00e
iβ00 cosα01e

iβ01 cosα02e
iβ02

cosα10e
iβ10 cosα11e

iβ11 cosα12e
iβ12

cosα20e
iβ20 cosα21e

iβ21 cosα22e
iβ22

 , (71)

and

W =

√
2

3

c00 sinα00e
iβ00 c01 sinα01e

iβ01 c02 sinα02e
iβ02

c10 sinα10e
iβ10 c11 sinα11e

iβ11 c12 sinα12e
iβ12

c20 sinα20e
iβ20 c21 sinα21e

iβ21 c22 sinα22e
iβ22

 , (72)

where cij = ±i.
By the orthogonality of columns in V and W , we know

cosα00 cosα01e
i(β01−β00) + cosα10 cosα11e

i(β11−β10)

+ cosα20 cosα21e
i(β21−β20) = 0 (73)

and

c00c01 sinα00 sinα01e
i(β01−β00) + c10c11 sinα10 sinα11e

i(β11−β10)

+ c20c21 sinα20 sinα21e
i(β21−β20) = 0. (74)

From the above two equations, we can deduce the following vectors are orthogonal to each other:sinα00 sinα01

sinα10 sinα11

sinα20 sinα21

 ,

cosα00 cosα01

cosα10 cosα11

cosα20 cosα21

 ⊥

cos(β00 − β01)
cos(β10 − β11)
cos(β20 − β21)

 ,

c00c01 sin(β00 − β01)
c10c11 sin(β10 − β11)
c20c21 sin(β20 − β21)

 , (75)

sinα00 sinα02

sinα10 sinα12

sinα20 sinα22

 ,

cosα00 cosα02

cosα10 cosα12

cosα20 cosα22

 ⊥

cos(β00 − β02)
cos(β10 − β12)
cos(β20 − β22)

 ,

c00c02 sin(β00 − β02)
c10c12 sin(β10 − β12)
c20c22 sin(β20 − β22)

 , (76)

sinα01 sinα02

sinα11 sinα12

sinα21 sinα22

 ,

cosα01 cosα02

cosα11 cosα12

cosα21 cosα22

 ⊥

cos(β01 − β02)
cos(β11 − β12)
cos(β21 − β22)

 ,

c01c02 sin(β01 − β02)
c11c12 sin(β11 − β12)
c21c22 sin(β21 − β22)

 . (77)
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Linearly Independent If the two vectors on the right of (75), (76), and (77) are linearly independent,
then the vectors on the left are linearly dependent such that

tanα00 tanα01 = tanα10 tanα11 = tanα20 tanα21,

tanα00 tanα02 = tanα10 tanα12 = tanα20 tanα22,

tanα01 tanα02 = tanα11 tanα12 = tanα21 tanα22.

(78)

By multiplying the three equations together and dividing the product by each equation, we get that

tanα00 = tanα10 = tanα20,

tanα01 = tanα11 = tanα21,

tanα02 = tanα12 = tanα22.

(79)

Since α ∈ (0, π2 ), the angles αjk and thus the modulus of entries in the same column are also the same.
We can further claim that matrices V and W are Hadamard matrices in this case, as every entry has the
same modulus. By lemma (4.2), the Schmidt-rank-two six by six Hadamard matrix is H-2 reducible if
the vectors on the right hand side of (75), (76), and (77) are linearly independent.

Linearly Dependent We attempted to solve this case through numerical computation on computer. First,
we use Scipy library’s unitary group.rvs(3) function to generate 3 by 3 unitary matrix V . We
then obtain the modulus of matrix W with the condition |vjk|2 + |wjk|2 = 2/3 (regenerate V if some

of its entries’ modulus already exceed
√

2
3 ). Next, we then assign entries in W with the phase angle of

corresponding entry in V , either add or subtract π
2 , which results in 29 possible cases of W for each V .

Finally, we check if the obtained W matrices are unitary and if the six by six Hadamard matrix is H-2
reducible.

However, after iteration over 100,000 generated V matrices, we were not be able to find any W that
is unitary. Based on this result, we guess non-Hadamard unitary V and W does not exist.

4.3. H-2 Reducible Matrix and Partial Transpose
Schmidt rank again emerged as a useful indicator for whether the partial transpose of six by six H-2
reducible matrices remain H-2 reducible.

Theorem 4.3. An H-2 reducible Schmidt-rank-one/two six by six Hadamard matrix remains H-2
reducible after partial transpose.

Proof. By lemma (4.1), all Schmidt-rank-one are H-2 reducible because the submatrix[
hi,j hi+3,j

hi,j+3 hi+3,j+3

]
with 1 ≤ i, j ≤ 3 is always an order 2 Hadamard matrix. The partial transpose

switches the position of the lower left and upper right entry of the submatrix, which would remain
Hadamard.

The same two by two submatrix of case one (α, β) ̸= (π4 ,
π
4 ) Schmidt-rank-two is also Hadamard, so

this case also remains H-2 reducible after partial transpose.
The six by six Hadamard matrix in Schmidt-rank-two case two (α, β) = (π4 ,

π
4 ) has the same lower

left and upper right block, so the entire matrix remain unchanged after partial transpose. Thus, this case
will also remain H-2 reducible after partial transpose.
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5. Conclusions
In the first part of the study, we thoroughly investigated the impact of partial transposition on the
properties of Hadamard matrices. We discovered the significance of the Schmidt rank as a key
determinant of the effect of partial transposition on a Hadamard matrix. Our analysis revealed that
for Hadamard matrices whose Schmidt rank is less than four, the resultant matrix following a partial
transpose remains a Hadamard matrix. However, as proven in Theorem 3.1, a Hadamard matrix with
Schmidt-rank-four no longer remains a Hadamard matrix after partial transpose.

This particular transformation is primarily due to the fact that any matrix with a Schmidt rank less
than four can be factored out of a Hadamard matrix with a Schmidt rank of four. This pivotal discovery
indicates a direct correlation between the Schmidt rank of a Hadamard matrix and partial transposition, a
relationship that has potential for further exploration and may yield additional insights into the properties
of Hadamard matrices and MUBs.

In the second part of the study, we explored the relationship between Schmidt rank and H-2
Reducibleness. Schmidt-rank-one matrices are all H-2 reducible. We failed to show one case of Schmidt-
rank-two matrices are H-2 reducible, but the subsequent computer numerical analysis implied such case
is rare (none found in 100,000 iterations). At the end, we further proved that the partial transpose of a
H-2 reducible six by six Hadamard matrix with Schmidt rank less than three remains H-2 reducible.
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