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Abstract. The Navier-Stocks equation (NSE) was derived based on Newton’s second law and 

Euler’s equation with the viscosity effect. The continuity of mass, conservation of momentum 

and energy contribute to the motion of fluid. This paper discusses the hypothesis and theories of 

the solution of the 3D NSE corresponding to the boundary and initial conditions from previous 

research. Meanwhile, this paper focuses on the study of solutions and turbulence models of NSE 

contributed to the applications of aerodynamics. Machine Learning and Neural Networks are 

applied to the solution of the NSE to improve the accuracy of prediction of fluid motion. 

Aerodynamics applications on airfoil, turbulence model, design of propeller and ejection seats 

are discussed with analysis of solutions of Navier-Stocks equation. With the contribution of 

Machine learning, accurate and global solutions are expected to be computed for the NSE in the 

future. 

Keywords: Navier-Stokes equation, laminar-turbulent transition, incompressible/compressible 

fluids, friction, Reynolds number 

1.  Introduction  

Navier-Stokes equation (NSE) was derived based on Euler’s equation with viscosity effect by Claude 

Navier in 1822. The NSE was extended to a series of continuous derivations on a combination of 

parameters of stress and strain, incompressible and compressible flow by Poisson, De Saint-Venant and 

George Stokes. From Newton’s second law, the NSE describes the relations between velocity, density, 

pressure and temperature of flow motion with a general equation of continuity of mass, conservation of 

momentum and conservation of energy [1]. The general equation of NSE illustrates the relations of 

change of velocity, convection of flow, pressure change, and external body force such as gravity, 

electromagnetic, and viscosity effects. The flow diffusion and energy dissipation are crucial to the 

analysis of NSE in fluid dynamics [2]. 
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Figure 1. Element of NSE [3] 

NSE: 
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Conservation of energy:  
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In three dimensions, the NSE has a formula of continuity, conservation of momentum and energy 

concerning the coordinates of (x,y,z) , velocity u(u,v,w), Renold number Re, pressure P, density ρ, energy 

E, heat flux q, the strain σ and stress 𝜏 of element in Figure 1, and Prandtl number Pr of viscosity [2].  

This paper analyzes the perspectives of previous research on solutions of NSE and their relative 

applications. limitations such as boundary and initial conditions are applied to the demonstration of the 

hypothesis and theories of the solution of the 3D NSE from previous research. The solutions of NSE 

imply the energy dissipate and vorticity properties. Meanwhile this paper focuses on the study of 

solutions and turbulence models of NSE contributed to the applications on aerodynamics. Machine 

Learning and Neural Networks are applied to the solution of the NSE to improve the accuracy of 

prediction of fluid motion. Aerodynamics applications on airfoil, turbulence model, design of propeller 

and ejection seats are discussed with analysis of solutions of NSE.  

Because of the wild use of NSE in fluid dynamics, turbulence study and applications of aerodynamics, 

solutions of NSE concerning the incompressible/compressible flow with models of boundary and initial 

conditions are developed in mathematical and numerical methods. The motivation of this paper is 

focusing on the brief study of solutions of NSE and models, the applications of NSE on aerodynamics 

are also discussed. With the contribution of Machine learning, accurate and global solutions are expected 

to be computed for the NSE in the future. 
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2.  Solutions of NSE  

Because of the influence of the viscosity of the fluid, the solutions of NSE depend on the structure of 

the fluid. The NSEs have unique solutions only for the laminar flow, low Renold number given by the 

Dirac-like initial condition U(x,0) and physical Stokes hypothesis of linear fluids [4]. The nonlinear 

differential operator, such as Korteweg-de Vries (KdV) equation type, constitutes the momentum and 

kinetic energy flow. At high Renold numbers, the hybrid models of Renold averaged Navier-Stokes 

equation (RANS) are applied to turbulent kinetic energy and shear stress prediction [5]. The viscous 

fluid with sufficiently small viscosity is due to the boundary layer [6]. The limitation of thin layer of 

fluid near boundary leads to the instability and turbulence structure compared with Euler’s equation [5].  

 

Figure 2. Plot of magnitude of vorticity of NSE at Re = 874 [7] 

Three-dimensional incompressible NSE:   

𝑢𝑡 − ∆𝑢 + (𝑢 ∙  𝛻)𝑢 +  𝛻𝑝 =  0  
𝑑𝑖𝑣 𝑢 =  0 (5) 

Strong solutions of NSE have local time and global in time existence and uniqueness in small initial 

data at equilibrium. The cauchy problem of NSE considers the heat conductivity as boundary condition 

[8]. The Cauchy problem transforms the NSE system to local existence and uniqueness of solutions with 

bounded domain and initial data [9]. When the initial data is large or with arbitrary energy, the weak 

solution is used to analyse the energy balance and dissipation with Navier boundary condition which 

allows for no-slip and slips for compressible and incompressible flow [10]. 

Leray–Hopf weak solutions for the forced NSE can be expressed in time-averaged form with Sobolev 

norms [11]. The energy inequality estimates the smooth bounded domain and boundary layer to model 

the energy dissipation of fluid with small viscosity [12]. The Leray solutions that satisfy the energy 

inequality in the boundary domain can also be applied to the multifractal set with energy dissipation 

combined with the multifractal theory of Parisi and Frisch [13]. 
𝜕𝑡𝑢𝜈  +  𝑢𝜈   ·  𝛻𝑢𝜈  +  𝛻𝑃𝜈  =  𝜈∆𝑢𝜈  +  𝑓𝜈              𝑑𝑖𝑣 𝑢𝜈  =  0 𝑖𝑛 𝛺 

∫ 𝑢(𝑇, 𝑥)2𝑑𝑥 + 2𝜈 ∫ ∫ |∇𝑢(𝑡, 𝑥)|2𝑑𝑥𝑑𝑡 ≤ ∫ 𝑢0(𝑥)2𝑑𝑥
𝑅𝑑𝑅𝑑

𝑇

0𝑅𝑑
(6)

 

Fujita-Kato theory of mild solution for equation (6) provides semigroup proof of the NSE with norm 

of initial data in 𝐿3, heat energy and regularization of the initial data [14]. The unique global solution is 

derived from the small differentiation operator [15].   
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    (7) 

A study on the axially symmetric NSE provides smooth solutions on the small initial data of global 

regularity conditions. The energy identity and vorticity can be computed following the maximum 

principle of L∞ norm [16]. By study the vorticity around symmetry axis form burgers vortex exact 

solution of NSE, the stretched vorticity filed with nonzero radial and azimuthal components can sustain 

vortex sheet type of solutions around axial direction [17].  

Machine learning model is developed to improve the efficient and accuracy of RANS solutions with 

complex flow regimes, boundary layers and conditions. With the neural network and Direct Numerical 
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Simulation (DNS), the enhanced Lager Eddy Simulation (LES) model of RANS performed accurate 

prediction of turbulent kinetic energy and shear stress [18].  

 

Figure 3. Schematic diagram of RANS solutions process and coupling with machine learned turbulence 

model [6] 

The Physics-informed Neural Networks combines the turbulence model of eddy viscosity and 

fractional derivative based diffusion models of RANS [19]. The Neutral Networks led fractional RANS 

solution analyzes the motion form DNS with complex boundary conditions of turbulent Couette, channel, 

and pipe flow. In the research of hyper reduced-order modeling [20], The Neural Networks quantify the 

incompressible NSE solutions on the discrete finite dimensions. On the spaces explicated by finite 

volume method, finite element method, and spatial element methods, the Neural Networks trains the 

snapshots to update the NSE solutions. 

Quantum computing and algorithms are developed rapidly to simulate the fluid dynamics. The NSE 

solutions update to hydro-dynamics Schrodinger equation such as incompressible Schrodinger flow 

(ISF), with local quantum-gravity ponderomotive force [21]. When DNS transfer measurement to 

simulation and quantities, the vorticities in turbulence can be plot in magnitudes.    

 

Figure 4. strategy of quantum computing [10] 

 

Figure 5. Isosurface of vortices in the ISF [10] 

3.  Applications on Aerodynamics 

Because of the crucial illustration of fluid motion, the NS equations are applied to the aerodynamics 

analysis. In the simulation and test of the NACA airfoil with changing Mach number [9], the NS 

equations are developed to combine with the neural network to present linear projection-based 
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reduction-order model. NACA airfoil test case with computational domain in compressible NS equation 

system was operated to represent the manifold of velocity field corresponding to the Mach number. 

 

 

Figure 6. Computational domain and snapshots of the velocity field of NACA airfoil [9] 

The model of Ahmed’s body with an eddy model of turbulence was simulated and tested based on 

the extended NS equations [9]. The study trained the NS system with reduced-order Modelling 

concerning changing of slant angle. the NSE system presented the manifold of velocity and pressure of 

Ahmed body from predicted simulation and test.  

 

 

Figure 7. Ahmed body simulation and test [9] 

The nonlinearities of NSE give coupled set of equations of coarse-graining approach with 

interpretation and rigorous analysis, hence, the basis of large-eddy simulation (LES) [18]. The energy 

dissipation transfer can be analyzed with a scale-decomposition of the velocity into band-passed 

contribution. The eddy-viscosity model and hypothesis derive the solution of the closure problem for 

RANS equations [18]. The model of eddy-viscosity forms the strain-stress relationship in turbulence. 

 

Figure 8. Visualizations of the amplitude of velocity of different scales in turbulence [8] 

Aerodynamic Simulation on ejection seat can be performed with NSE with extended parameters such 

as aerodynamic force coefficient and aerodynamics moment coefficient. NSE system in 3D coordinate 

represents the continuity, conservation of momentum and energy of the ejection seat corresponding to 

changing angles and Mach numbers. 
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Figure 9. Simulation model of seat [14] 

 

Figure 10. Vorticity contour of the model at α = −15° and Ma = 0.75. [14] 

The RANS equation can be applied to the analysis of the turbulent nature of flow with the k-ω SST 

model and Gamma Re Theta laminar-turbulent transition model. In real engineering applications, the 

RANS equations are used to describe the turbulent motion of viscous liquid/gas around the propeller 

flow [21]. The numerical simulation results obtained correspond to the velocity manifold representing 

the distribution of cavitation. Hence, the RANS system developed the design of the propeller.   

 

Figure 11. Propeller domain and velocity manifold [15] 

4.  Conclusion  

This paper studies the 3D NSE and solutions corresponding to the Cauchy problem with initial data, 

boundary conditions of Larey’s solution and advanced mild solutions from research of Fujita & Kota. 

The axial asymmetry model of NSE and stretched vorticity fields can be analyzed by computing the 

smooth solutions of NSE with regularity conditions. The ML and Neural Networks are applied to iterate 

the process of predictive regulation of the NSE system. Applications on aerodynamics are discussed on 

the NACA airfoil simulation and test, eddy-model of turbulence analysis and design of propeller and 

ejection seats. This paper can have improvement on the collection of computational and experimental 

data and research on turbulence models. the computational simulations and experiments contribute to 

the study of fluid dynamics of NSE since the properties of vorticity discussed in this paper performed a 

crucial role in the analysis of hypotheses and theories of solutions of NSE. Machine learning provides 

an efficient method to compute and simulate the NSE concerning the type of turbulent model, hence, 

the trend of exploration of solutions of NSE concentrates on the complicated combination of NSE with 

a quantic nature such as ISF discussed in this paper. The properties of energy and vorticity are also the 

consideration of applications of NSE in fluid dynamics. With the development of Machine learning and 

Neural Networks, the analysis of models of exact and hybrid solutions such as RANS can perform 

accurate simulations and regularity of conditions of existence and uniqueness of solutions of NSE. 

Proceedings of  the 2nd International  Conference on Mathematical  Physics and Computational  Simulation 
DOI:  10.54254/2753-8818/36/20240502 

6 



References 

[1] V. B. Nguyen, Q. V. Do, V. S. Pham, An OpenFOAM solver for multiphase and turbulent flow[J]. 

Physics of Fluids, 2020, 32(4):043303.DOI:10.1063/1.5145051. 

[2] Abdelkader M, Ramsha S, Azmat UK N, Nuttapol P, Mdi B J, Kiran S. A study of the time 

fractional Navier-Stokes equations for vertical flow[J]. AIMS Mathematics, 2023, 8(4): 8702-

8730. doi: 10.3934/math.2023437 

[3] Philip J. Pritchard, John W. Mitchell & John C. Leylegian. Fox & McDonald’s Introduction to 

Fluid Mechanics 9th Edition 

[4] H Dumitrescu, V Cardos, R Bogateanu. The Physical vs. Mathematical Problem of Navier-Stokes 

Equations (NSE)[J]. INCAS BULLETIN,2023,15(1):21-34. 

[5] A. Vasseur, J Yang. Layer separation of the 3D incompressible Navier-Stokes equation in a 

bounded domain[Z]. arxiv,2023. 

[6] S Bhushan, G Burgreen, W Brewer. Assessment of Neural Network Augmented Reynolds 

Averaged Navier Stokes Turbulence Model in Extrapolation Modes[Z].arxiv,2023. 

[7] J Gibbon. Identifying the multifractal set on which energy dissipates in a turbulent Navier-Stokes 

fluid[Z]. arxiv, 2023. 

[8] P Mehta. Fractional and tempered fractional models for Reynolds-averaged Navier-Stokes 

equations[Z]. arxiv, 2023. 

[9] F Romor, G Stabile, G Rozza. Explicable hyper-reduced order models on nonlinearly 

approximated solution manifolds of compressible and incompressible Navier-Stokes 

equations[Z]. arxiv,2023. 

[10] T Drivas, P Johnson, C Lalescu. On the large-scale sweeping of small-scale eddies in turbulence 

-- A filtering approach[Z]. arxiv, 2023. 

[11] Z Meng, Y Yang. Quantum computing of fluid dynamics using the hydrodynamic Schr\”odinger 

equation[Z]. arxiv, 2023. 

[12] S Necasova, J Ogorzaly, J Scherz. The compressible Navier-Stokes equations with slip boundary 

conditions of friction type[Z]. arxiv, 2023. 

[13] A, J. D. Gibbon, A. S. Fokas, C. R. Doering. “Dynamically stretched vortices as solutions of the 

3D Navier–Stokes equations.” Physica D: Nonlinear Phenomena 132. 4(1999):497-510. 

[14] Md Mahbubur Rahman,Ved Prakash,Sunil Chandel,et al.Analysis of the aerodynamic 

characteristics of an ejection seat system using computational fluid dynamics[J].FRONTIERS 

IN MECHANICAL ENGINEERING,2023,9. 

[15] A Kozelkov, V Kurulin, A Kurkin, et al. Numerical Approach Based on Solving 3D Navier–

Stokes Equations for Simulation of the Marine Propeller Flow Problems[J]. 

FLUIDS,2023,8(11). 

[16] JeanYves Chemin, Isabelle Gallagher,Chlo Mullaert.The role of spectral anisotropy in the 

resolution of the three-dimensional Navier-Stokes equations[Z].arxiv,2012. 

[17] Robinson J, Sadowski W. A local smoothness criterion for solutions of the 3D Navier-Stokes 

equations[J].Rendiconti Del Seminario Matematico Della Universita Di Padova, 2014, 

131:159-178.DOI:10.4171/RSMUP/131-9. 

[18] Xiaomeng Chen,Shuai Li,Lili Wang,et al.Global existence of suitable weak solutions to the 3D 

chemotaxis-Navier-Stokes equations[Z].arxiv,2023. 

[19] V. T. Nguyen. 3D Navier-Stokes Equations with Nonvanishing Boundary Condition[Z]. arxiv, 

2023. 

[20] Alam M M, Dubey S .Mild solutions of time fractional Navier-Stokes equations driven by finite 

delayed external forces[J]. 2019.DOI:10.48550/arXiv.1905.13515. 

[21] Wei D. Regularity Criterion to the axially symmetric Navier-Stokes Equations[J].Journal of 

Mathematical Analysis & Applications, 2016, 435(1):402-

413.DOI:10.1016/j.jmaa.2015.09.088. 

Proceedings of  the 2nd International  Conference on Mathematical  Physics and Computational  Simulation 
DOI:  10.54254/2753-8818/36/20240502 

7 


