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Abstract. This study employs molecular simulation techniques, particularly the Brownian 

motion model, to investigate the influence of temperature on diffusion coefficients. Leveraging 

Einstein’s relationship for calculating diffusion coefficients and a one-dimensional random walk 

model, we systematically explore the impact of simulation direction, particle quantity, and 

simulation duration on diffusion behavior. The research extends its scope to three-dimensional 

Brownian motion simulations, offering insights into the stochastic motion of particles in a fluid. 

The primary objective is to analyze the relationship between temperature and diffusion 

coefficients. Through rigorous linear regression analysis, a significant and strong linear 

association is identified, demonstrating that an increase in temperature correlates with an 

increase in the diffusion coefficient. The research not only contributes to the fundamental 

understanding of molecular motion but also provides practical recommendations for simulation 

parameters, especially in resource-constrained computational environments. The study 

acknowledges certain limitations in the current Brownian motion algorithm and proposes 

avenues for future research to enhance computational efficiency and precision. This abstract 

encapsulates the key methodologies, findings, and implications of the research, laying the 

foundation for a comprehensive exploration of temperature-dependent diffusion coefficients in 

molecular systems. 

Keywords: Brownian motion, Diffusion coefficient, Temperature-dependent dynamics, 
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1.  Introduction 

In the realm of contemporary scientific research, molecular simulation has emerged as a powerful tool 

for understanding and predicting molecular interactions and their motion under various conditions. 

Molecular simulation provides scientists with a means to simulate the molecular world, delving deep 

into how atoms and molecules influence one another in diverse environments, offering valuable insights 

into various chemical and biological processes [1]. 

The motion of molecules within a solution plays a pivotal role in many chemical reactions and 

biological processes, with diffusion being a crucial phenomenon. The diffusion coefficient, often 

denoted as D, quantitative measurements of the rate at which a diffusion process occurs, which 

quantifies the random motion of molecules under specific conditions [2]. This random molecular motion 

is attributed to collisions and thermal movement among molecules, a behavior elucidated by statistical 

[3]. The random walk of molecules in a thermodynamic equilibrium state leads to the occurrence of 
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diffusion, a phenomenon that holds significant importance in numerous natural phenomena and 

technological applications. Einstein’s mean square displacement (MSD) method, an integral component 

of statistical mechanics, further illuminates the calculation of the diffusion coefficient, providing a 

comprehensive understanding of molecular motion in various environments [4]. 

The methodology of simulating Brownian motion through computer simulations has been a reliable 

avenue for investigating the motion of particles [5]. Unlike traditional particle simulations, conducting 

large-scale simulations poses significant computational challenges [6]. However, the use of Brownian 

motion simulation programs offers an effective means to streamline computations while maintaining a 

certain level of accuracy. This paper is focused on employing this research methodology to thoroughly 

explore the influence of temperature on diffusion coefficients.  

In this research, we initiate our exploration by employing a one-dimensional random walk model, a 

versatile tool for investigating the impact of simulation direction, particle quantity, and simulation 

duration on the resulting diffusion coefficients [7]. 

By restricting the simulations to one dimension, we scrutinize the influence of the simulation 

direction on the computed diffusion coefficients. The choice of direction becomes pivotal, reflecting the 

particles’ response to an applied force and providing insights into how external factors shape diffusion 

dynamics. 

Furthermore, we address the influence of particle quantity on simulation outcomes. Iterating 

simulations with the same particle quantity reveals a characteristic normal distribution of results.  This 

statistical approach, rather than a simple averaging method, proves to be a more robust means of 

extracting meaningful information from multiple simulations.  The resulting distribution offers a 

nuanced perspective, capturing the inherent variability in the system and enhancing the reliability of our 

simulated results. 

Additionally, we investigate the temporal aspect by considering the impact of simulation duration on 

the observed diffusion coefficients.  Short-term simulations may be susceptible to the “cave effect,” 

where transient fluctuations dominate the results.  In contrast, longer simulations tend to stabilize the 

outcomes, allowing for a more comprehensive understanding of the diffusion process.  Recognizing the 

temporal dynamics contributes to refining the accuracy and reliability of our simulated diffusion 

coefficients. 

In summary, our approach integrates the one-dimensional random walk model to systematically 

examine the intricate interplay of simulation direction, particle quantity, and simulation duration on the 

derived diffusion coefficients. This multifaceted exploration lays the groundwork for a comprehensive 

understanding of the factors influencing molecular diffusion in our simulated systems. With these 

concepts, this research will focus on the effect of temperature on diffusion.  

2.  Method 

2.1.  Method: Einstein’s Relationship for Calculating Diffusion Coefficient (D)[4] 

Einstein’s relationship, developed by Albert Einstein in the early 20th century, provides a powerful and 

fundamental method for calculating the diffusion coefficient (D) in various systems. This relationship 

is based on the concept of mean square displacement (MSD) and offers valuable insights into the random 

motion of particles, facilitating a quantitative understanding of their diffusion behavior.  

Mathematically, Einstein’s relationship can be expressed as [8]: 

𝐷 =
𝑀𝑆𝐷

6𝑡
(1) 

Where: 

D represents the diffusion coefficient. 

𝑀𝑆𝐷(𝑡) =  ⟨|𝑟(𝑡) −  𝑟(0)|2⟩ (2) 
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MSD is the mean square displacement, which characterizes the average squared distance a particle 

travels from its initial position. t is the time elapsed. 

This relationship demonstrates that the diffusion coefficient is directly proportional to the mean 

square displacement and inversely proportional to both the time elapsed and the dimensionality of the 

system. 

Einstein’s relationship is a cornerstone in the study of diffusion, as it allows for the determination of 

D from experimental or simulated data involving the motion of particles [8]. By employing this 

relationship in our study, we can quantitatively evaluate how factors such as time, the number of 

particles, and directionality influence the diffusion coefficient, providing a rigorous foundation for our 

research and insights into particle motion in the one-dimensional random walk model. 

2.2.  One-Dimensional Random Walk Model: 

A random walk model is a mathematical concept used to describe a sequence of random steps taken by 

an entity in a certain space [9]. In this model, the entity’s movement at each step is determined by 

random factors, making it a stochastic or probabilistic process. In a random walk, the entity’s path 

unfolds through a series of discrete steps, and the direction of each step is randomly chosen. The 

randomness in the process reflects the inherent unpredictability associated with each move, creating a 

dynamic and evolving trajectory for the entity [10]. The random walk model is versatile and finds 

applications in various fields such as physics, finance, and biology, providing insights into the behavior 

of dynamic systems influenced by chance [11]. The simplicity of the model makes it a fundamental tool 

for understanding stochastic processes in diverse contexts. 

In this study, we have employed a one-dimensional random walk model to investigate the random 

motion of particles in one-dimensional space. This model enables us to systematically explore how the 

following factors influence the simulation results: 

Direction: In the model, particles choose to move either left or right at each time step in a random 

manner. This effectively simulates the random motion of molecules, where changes in direction are 

stochastic. 

Number of Particles: We have the ability to control the quantity of particles in the simulation, 

thereby studying the influence of different numbers of particles on the results. This allows us to observe 

how the results change when introducing more or fewer particles in the simulation. 

Simulation Time: Time is represented in the model in discrete time steps. We can extend or shorten 

the total simulation time to investigate the impact of time on the results. This helps us understand how 

the distribution of particles evolves over time. 

By using this model, we are able to systematically study how these key factors in molecular 

simulations affect the ultimate results. This approach facilitates a deeper understanding of the random 

motion behavior of molecules in one-dimensional space and provides us with a framework for insights 

into the results, better explaining the dynamic behavior of molecules under specific conditions.  

2.2.1.  The influence of direction. In this part, we discuss the behavior of one-dimensional random walk 

model under the condition of unidirectional movement. Instead of the traditional two-way random walk 

model, we modify the model to only allow particles to move in the same direction at each time step. 

With this method, we can model the behavior of particles under external forces or situations where there 

is a potential energy gradient in a particular direction. We use computer simulations to track the 

displacement of particles over a fixed period of time and analyze the statistical properties of their 

displacement to understand the effects of one-way movement on particle behavior.  

Proceedings of  the 2nd International  Conference on Mathematical  Physics and Computational  Simulation 
DOI:  10.54254/2753-8818/36/20240511 

50 



 

Figure 1. Comparison of MSD of different directions. The blue line is the regular result of MSD change 

with time. According to Einstein’s Relationship, the blue line can be approximated seen as a linear 

relationship, which the slope would be six times the diffusion coefficient. The red line is the result when 

particles could only move towards one direction, which indicates MSD and time have a quadratic 

function relationship. 

2.2.2.  The impact of time. Random Walk Simulation Algorithm: The code likely encompasses a random 

walk simulation algorithm to model the movement of particles over time. This algorithm would generate 

random steps or movements, mimicking the stochastic nature of particle motion in confined spatial 

conditions [8]. 

Calculation of Mean Squared Displacement: Within the code, there is a segment dedicated to 

calculating the Mean Squared Displacement at each time step. This involves tracking the position of 

particles over time, computing the squared distance from the initial position, and averaging these squared 

distances across all particles. 

𝑀𝑆𝐷(𝑡) =  ⟨|𝑟(𝑡) −  𝑟(0)|2⟩ (3) 

Dynamic Diffusion Coefficient Calculation: The diffusion coefficient is not a static value but 

dynamically calculated at each time step. The code likely involves dividing the MSD by a factor related 

to time (commonly 6 times the time elapsed) to obtain the diffusion coefficient at each time point. [4] 

Iterative Simulations for Robust Results: The program may involve running multiple simulations 

iteratively, each with different random processes or initial conditions. This iterative approach aims to 

provide statistically robust results, capturing variations in diffusion behavior inherent in stochastic 

systems.   
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Figure 2. The diffusion coefficient convergence with time. The blue line shows how the diffusion 

coefficient change with time. At the beginning of the simulation, the diffusion coefficient dropped 

sharply and eventually oscillating back and forth at a fixed value. 

The figure shows a curve of the diffusion coefficient (Y-axis) over the simulation time (X-axis), with 

special emphasis on the effect of the cave effect. At the beginning of the simulation, the diffusion 

coefficient dropped sharply, and this change reflect the spatial limitations and nonlinear interactions 

encountered by the particles at smaller scales, which we call ‘cave effect’ here. With the increase of 

simulation time, this effect weakens, the particles gradually explore a larger space, and the decline of 

the diffusion coefficient tends to stabilize. This process may indicate that in the early stages of the 

simulation, the system is more constrained by initial conditions and local structure, while the diffusion 

behavior on long time scales is more reflective of macroscopic physical properties. Therefore, in order 

to ensure that the calculation of the diffusion coefficient can accurately capture the dynamic changes 

caused by the cave effect, it is recommended to conduct a simulation time long enough to enable the 

system to reach thermodynamic equilibrium and move beyond the initial nonlinear response phase. This 

provides guidance on how to time simulations in order to capture and understand the complex behavior 

of molecular diffusion under confined spatial conditions. 

Through numerical simulations, we investigated the relationship between the measured diffusion 

coefficient and time at different time intervals. Specifically, we conducted multiple random walk 

simulations to model the diffusion process of particles in one-dimensional space. For each time point, 

we computed the average Mean Squared Displacement (MSD) from multiple simulations and the 

corresponding diffusion coefficient. The diffusion coefficient represents the slope of the relationship 

between mean squared displacement and time, reflecting the average diffusion behavior of particles per 

unit time. 

To better understand the stability of our measurements, we performed multiple simulations at each 

time point and calculated the standard deviation of the diffusion coefficient [12]. 

𝑠 = √
∑ (𝑋𝑖 − �̅�)2𝑛

𝑖=1

𝑛 − 1
(4) 

By conducting 100 simulations, we obtained the standard deviation at each time point, allowing us 

to estimate the uncertainty in our measurements. The variation of the standard deviation over time serves 

as an indicator of the measurement’s stability, helping us assess the reliability of our results. 

The trend of the standard deviation over time, shown on the right side of the figure, provides an 

intuitive understanding of the precision and stability of our measurements. This approach offers a 
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comprehensive and reliable means to evaluate the accuracy of diffusion coefficient measurements, 

providing robust support for subsequent data interpretation and experimental design. 

 

Figure 3. Standard Error convergence with time It shows that the standard error is very low at the first, 

and then sharply increase with time. Eventually the value oscillates back and forth at a fixed value. 

The figure shows how the standard error (Y-axis) changes over simulation time (X-axis) in a one-

dimensional random walk simulation. As can be seen from the graph, the standard error drops rapidly 

in the initial phase and then stabilizes over time. This trend reflects the significant influence of 

randomness on the estimation of the diffusion coefficient over a short period of time, while the standard 

error gradually decreases and tends to a constant value over a long period of time due to statistical effects. 

The fluctuations in the figure show that the estimation of the diffusion coefficient is still affected by 

random fluctuations even in the long-time simulation. This graph provides us with an intuitive 

understanding of simulation accuracy and time-scale dependence, highlighting the importance of 

sufficient simulation time to obtain stable and reliable diffusion data. 

2.2.3.  The influence from the number of the particles. 

 

Figure 4. Comparison of MSD of different 

particle numbers This diagram shows the change 

in the mean square displacement (Y-axis) of 10 

particles (blue curve group) and 1000 particles 

(red curve group) over time (X-axis) in a one-

dimensional random walk simulation. Each red 

curve represents the change in the mean square 

displacement of a system instance of 10 particles 

over 1000 time steps, while the blue curve 

represents a system instance of 1000 particles 

over the same time step. 

As can be seen from the figure, systems with larger particle numbers show a higher degree of statistical 

consistency, i.e., the blue curve has less fluctuation, while systems with smaller particle numbers (the 

red curve) show more fluctuation, indicating that the effect of statistical fluctuations is more significant 
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in smaller systems. These results indicate that increasing the number of particles in the system can 

effectively reduce random errors, thus providing more stable and reliable predictions of diffusion 

behavior at the macro scale. 

 

Figure 5. The negative correlation between 

Standard Error and Numbers of particles. 

This diagram depicts how the standard error 

(Y-axis) varies with the number of particles 

(X-axis) in a one-dimensional random walk 

simulation. It can be observed that with the 

increase of the number of particles, the 

overall trend of the standard error decreases, 

indicating that more particles help to reduce 

the random fluctuation and uncertainty of the 

diffusion coefficient estimation.  

At the beginning, the standard error dropped rapidly, then gradually flattened out, but there were 

slight fluctuations at some points. These fluctuations may be due to statistical fluctuations in specific 

particle numbers. The data in the figure shows that when conducting particle diffusion simulations, 

choosing an appropriate number of particles is crucial to obtain a stable and reliable diffusion coefficient. 

In addition, the chart hints at potential caving effects to consider when designing experiments and 

interpreting data, that is, possible nonlinear relationships between particle numbers and simulation 

results. In order to accurately reflect the diffusion properties of macroscopic systems, simulations on 

long time scales are recommended when the number of particles is large enough to cover a wide 

statistical distribution. 

From this, we infer that this motion is normally distributed for the same number of particles, and the 

Shapiro-Wilk method is used to test it [13]. 

  

Figure 6. Distribution of Diffusion Coefficient The 

diagram shows the distribution of Diffusion 

coefficient for simulating 1000 times. Shapiro-

Wilk Test Statistic: 0.99908, P-value: 0.91217. 

Figure 7. The verification of normal distribution 

The Quantile-Quantile Plot of the distribution of 

Diffusion coefficient. The blue dots are from our 

data and the red line represents the normal 

distribution. 

From the result of Shapiro-Wilk method, the P-value is 0.91, which shows that the simulation 

followed normal distributions. In order to see this relationship further intuitively, we draw the Quantile-

Quantile Plot, which shows most of the data is close to the normal distribution [14]. 
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2.3.  Brownian motion simulation 

Brownian motion, named after the 19th-century botanist Robert Brown who first observed it, is a random 

motion phenomenon exhibited by particles suspended in a fluid. This seemingly erratic movement is a 

result of continuous and random collisions with surrounding molecules. In a Brownian motion scenario, 

the particles experience a constant bombardment from surrounding solvent molecules, leading to abrupt 

and unpredictable changes in their positions [15]. This motion is a fundamental manifestation of the 

kinetic nature of matter, providing insights into the dynamic interactions at the molecular level. The 

mathematical description of Brownian motion involves modeling the particle’s position as a stochastic 

process, typically described by the Wiener process or the Langevin equation [16]. Brownian motion has 

played a pivotal role in scientific advancements, contributing to our understanding of diffusion processes, 

molecular dynamics, and stochastic phenomena. 

The differential equation describing Brownian motion, specifically in the overdamped (or strongly 

damped) regime, can be expressed using the Langevin equation [16]. Overdamped motion typically 

occurs in situations with significant viscous forces, such as slow movement in a viscous fluid. 

The general form of the Langevin equation is [17]: 

𝑚
𝑑𝑣

𝑑𝑡
= −γ𝑣 + √2γ𝑘𝐵𝑇𝑅(𝑡) (5) 

m is the mass of the particle, 

v is the velocity of the particle, 

γ is the viscous damping coefficient, 

kB is the Boltzmann constant, 

T is the temperature, 

R(t) is a random force obeying a normal distribution. 

In the case of overdamped motion, where the viscous damping is large (γ is very large), the 

acceleration time scale is much smaller than the velocity time scale. This allows us to assume dv/dt≈0. 

The Langevin equation then simplifies to: 

[0 = −γ𝑣 + √2γ𝑘𝐵𝑇𝑅(𝑡)] (6) 

Methodology Introduction: Simulating Brownian Motion for Three-Dimensional Trajectory 

Analysis 

In the context of this study, the simulation of Brownian motion serves as a pivotal technique to model 

the stochastic behavior of particles in a three-dimensional space. Brownian motion, characterized by the 

random movement of particles suspended in a fluid, is central to understanding various physical 

phenomena. The employed methodology approximates this intricate process by discretizing time into 

steps and simulating random displacements at each interval. 

The fundamental principle underlying this approach lies in the mathematical representation of 

Brownian motion as a series of random steps. Each step is determined by a random variable drawn from 

a normal distribution, capturing the inherent uncertainty in the particle’s trajectory. The variance of these 

random steps is scaled by the square root of the time interval, aligning with the theoretical underpinnings 

of Brownian motion [18]. 

The simulation process unfolds in three dimensions, mirroring the spatial complexity of real-world 

scenarios. The accumulation of these simulated steps over time generates a trajectory that emulates the 

unpredictable and continuous nature of Brownian motion. Importantly, the simulation adheres to the 

physical essence of Brownian motion, where particles experience random forces akin to those exerted 

by surrounding fluid molecules. 

Through the 3-D diagrams of the motion of the single particles in the simulation, we can clearly 

conclude that this method makes the particle go different directions rather than the original four 

directions. And the scale of the movement of Brownian simulation is much smaller than that of random 

walk models. 
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Figure 8. The routes of a particle in 3-D random 

walk models. The diagram shows that the range of 

this route is about 15*25*10. And the angle of 

rotation is 90 degrees. 

Figure 9. The routes of a particle in Brownian 

motion simulation. The diagram shows that the 

range of the simulation is about 5*4*4. The angle 

of rotation is random degrees. 

2.4.  The effect of temperature on diffusion 

With the methods talked before, we can arrive to the final results. Linear regression can be used to 

analyze the result [19]. 

  

Figure 10. Effect of temperature The diagram 

shows the relationship between temperature and 

Diffusion coefficient. It seems to be a linear 

relationship. 

Figure 11. Linear relationship verification 

The diagram shows result the linear regression. 

Slope: The slope is 493.10, indicating the effect of a one-unit change in temperature on the diffusion 

coefficient. The relatively large absolute value of the slope suggests a significant influence of 

temperature on the diffusion coefficient. 

Intercept: The intercept is 77.47, representing the diffusion coefficient at a temperature of zero. 

However, in practical terms, this may not have a meaningful interpretation since temperatures are not 

typically zero. 

R-squared: The R-squared value is 0.988, very close to 1. This indicates a strong linear relationship 

between temperature and the diffusion coefficient, with approximately 98.8% of the variability in the 

diffusion coefficient explained by the linear regression model. 

P-value:   The P-value is very close to zero (9.72e-49), indicating a high level of significance for the 

slope. This means we can reject the null hypothesis that the slope is zero, implying a significant impact 

of temperature on the diffusion coefficient [20]. 

3.  Conclusion 

This research uses Brownian motion simulation to calculate the relationship between temperature and 

diffusion coefficient in limited computing resources. With the 1-D random walk model, it makes 
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recommendations for simulation timing, direction and particle numbers. The conclusion comes that the 

diffusion coefficient increases as the temperature increases, which follows a linear relationship. This 

research provides examples of using Brownian model to simulate multi particles system. It provides a 

solution for particle simulation with large volume or limited computing resources.  

However, it is important to acknowledge certain limitations in the current study. The Brownian 

motion algorithm, while effective, may still benefit from streamlining to enhance computational 

efficiency. Additionally, future research endeavors could focus on achieving more precise simulations 

while maintaining the same level of computational complexity. This would contribute to a more nuanced 

understanding of molecular dynamics, particularly in scenarios involving intricate interactions and 

diverse environmental conditions. These aspirations pave the way for continued advancements in the 

field, offering opportunities for refinement and innovation in Brownian motion simulations. 
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