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Abstract. In case of train delays, centralized traffic control system become disabled, and the 

workload of dispatchers increases dramatically. Based on genetic algorithm, the author designs 

a program to appropriately reschedule trains in terms of delays, minimizing the total delay time 

and changes of gate. The author transformed the initial problem to a compromised combinatorial 

optimization model, with total delay time, changes of gate and conflicting routes as objectives. 

The high weighting in conflicting routes ensures efficiency and high probability of obtaining a 

feasible solution. With discreate variants, the author designs special coding and evolving method 

suitable for this problem. Using a special treatment for conflicts and initializing chromosomes, 

the program can construct new timetable quickly given the scheduled timetable, predicted arrival 

time and order of trains (optional), which promotes the efficiency and security of dispatching in 

high-speed railway stations. The method was tested with a synthetic data of Shanghai-Kunming 

section of Hangzhou East Railway Station. 
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1.  Introduction 

Large high-speed railway stations usually have a large scale of tracks and platforms and are often 

adjacent to the EMU depot. With a variety of types of trains such as origination, termination, entering 

and leaving the depot, and passing through, those stations possess a large number of conflicting and 

opposing train routes, increasing great difficulty in the safety and efficiency of train dispatching. 

Especially during peak hours of the station, once a train is delayed, it would have a consequential impact 

on the station’s operational plans and adjacent operating trains. In severe cases, it may fully disrupt the 

existing timetable. When there is a large-scale train delays, the difficulty of manual adjustments become 

relatively high. Dispatchers need to comprehensively consider the nature and level of trains, as well as 

various factors such as water supply, waste disposal, track switching operations and EMU depot 

operations, thus difficult to make the optimal decision in a short period purely relying on manual 

experiences. 

Kroon used Amsterdam Central Station and Utrecht Station in the Netherlands as examples to study 

the compilation of train routes [1]. However, the calculated results cannot effectively solve the problem. 

Subsequently, in 2001, the model was optimized, dividing the train routes into three types: arrival, 

departure, and origination-termination routes. The aim was to optimize the selection of preferred routes 

for trains [2]. 
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Liu abstracted the arrangement of throat section turnouts as a network graph with multiple starting 

points and multiple junctions [3]. By establishing an optimization model and using computational 

programming methods, they conducted calculations on existing passenger stations. Conclusions were 

drawn regarding the reconstruction of throat sections of Liuzhou Station and Guiyang Station. Zhou 

optimized the issue of technical station turnout occupation [4]. Employing a method similar to Liu, after 

determining a fixed usage plan for station tracks, the author focused on selecting arrival and departure 

routes. Shi, with the optimization objective of ensuring the priority of high-level trains and maximizing 

the efficiency of station tracks, utilized modern simulated annealing algorithm to solve the problem [5]. 

In Li’s work, a detailed analysis of the technical tasks and workflow of train stations was conducted 

[6]. With the background, an in-depth study of optimizing route selection for trains was carried out. 

Firstly, based on the description method of establishing station networks, a refined model covering 

various station elements was constructed. Secondly, train routes were described from both mathematical 

and formal perspectives, leading to the development of methods for generating train route tables. Thirdly, 

through an information model, the construction of station train operations and shunting operations was 

carried out. By avoiding train crossings on station routes based on completed planned operations, a train 

route selection model was established, resulting in optimal reductions in train travel time and delay rates. 

By analyzing the temporal correlations of route selection and route arrangement, the route selection 

problem was analogized to a 0-1 integer programming problem. Research results showed that the 

immune evolutionary algorithm could compute route selections satisfying constraints with good 

convergence. Addressing nonlinear models, new optimization algorithms were proposed by Long based 

on modern optimization algorithms [7]. With calculations it was demonstrated that the new optimization 

algorithms have higher solving speeds than modern optimization algorithms. 

Chen conducted a comprehensive study on the route selection problem of train stations [8]. Firstly, 

comprehensive optimization was conducted for the utilization of station tracks and the selection of 

arrival-departure routes in a throat section. Secondly, the extension of arrival-departure routes from one 

end of the throat area to both ends of the station throat section, combined with arrival-departure lines, 

was termed as the “through-station route”. Thirdly, aiming for the comprehensive optimization of 

through-station routes and shunting locomotive utilization, a 0-1 programming model for route selection 

was constructed, with compatibility between arrival-departure lines and turnouts as constraints, and the 

algorithm approach of Long was adopted to solve the model. 

In Li’s work, the focus was on the utilization of station tracks at large passenger stations during peak 

hours, considering the dual objectives of minimizing delay time for station tracks and maximizing 

passenger service quality [9]. The author proposed a multi-objective optimization model. Xia considered 

various uncertainties in station track utilization and established a stochastic planning model to improve 

efficiency and facilitate passengers [10]. 

With the contribution of previous scholars, the study focuses on researching computational methods 

for dealing with train delays at large high-speed stations. In case of train delays, the author aims to 

generate efficient auxiliary decision-making suggestions for track utilization adjustments at the station 

within a short time, thereby reducing the operational burden and enhancing the work efficiency of 

dispatchers. 

2.  Methodology 

2.1.  Problem statement 

The information given for the problem, or the input data for the program are as follows: trains entering 

the station at the Shanghai-Kunming section of Hangzhou East Railway Station, and the order of trains 

entering or leaving each direction of the section. Information of trains includes the unique number of 

trains, scheduled arrival and departure time, predicted arrival time, direction of entry and exit, and the 

station track occupied by the train. 

After processing the inputs, the program will provide the final decision of the arrival and departure 

time, and station track of trains, fulfilling the goal that the total delay and changes of gate are as small 
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as possible. The author makes several assumptions to reduce problem complexity while maintaining the 

effect of analysis. The first assumption is for the minimum dwell time and available tracks as follows 

(Table 1, 2). 

Table 1. Assumption of minimum dwell time and available track. 

Assignment type minimum dwell time Available tracks 

Station stops 2min All 

Water supply 5min Except XIXG, XXG 

Suction of dirt 10min 17G, 18G, 21G, 22G 

Reversing/ starting and ending 15min Except XIXG, XXG 

The second assumption is for train intervals. 

Table 2. Assumption of train intervals. 

Type Interval 

Occupying the same route for Shanghai or Kunming 3min 

Occupying the same EMU depot route 5min 

Occupying the same platform 3min 

The third assumption is that the route selection of each train from each direction to each platform is 

unique. According to analysis for the topology structure of this case, which is the Shanghai-Kunming 

section of Hangzhou East Railway Station, for any situation with parallel routes, there is always a route 

that minimizes its conflict with all other routes, so the author selects a unique route for each train. If this 

model is adopted to other stations it required to satisfy this assumption. 

Moreover, the writer assumes that the actual departure time cannot be earlier than the scheduled 

departure time as a requirement for transportation organization. And the writer intends to research on 

discreate variables, so the given arrival and departure time is only accurate to the minute. 

2.2.  Symbol table and index description 

First, the number of trains are indexed 𝑖 ∈ 1,2, … 𝑛, where 𝑛 is the total number of trains. Second, the 

writer indexed tracks and routes uniformly, where the track index are their original numbers from 14 to 

25, and the route is indexed in a certain order starting from 31 to 87. About the direction 𝑑 of entering 

and leaving the station, the meaning of each 𝑑 is (Table 3), 

Table 3. The meaning of numbering 𝑑. 

𝑑  direction of entry and exit 

1 Shanghai end of Shanghai-Kunming Expressway upward line 

2 Shanghai end of Shanghai-Kunming Expressway downward line 

3 Kunming end of Shanghai-Kunming Expressway upward line 

4 Kunming end of Shanghai-Kunming Expressway downward line 

5 EMU depot line A 

6 EMU depot line B 

Last the assignment type 𝑡𝑦𝑝𝑒 (Table 4) is as follows. 

Table 4. The meaning of 𝑡𝑦𝑝𝑒. 

𝑡𝑦𝑝𝑒  Assignment type 

1 Station stops 

2 Water supply 

3 Suction of dirt 

4 Reversing/ Starting and ending 
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2.3.  Problem analysis 

The author has transformed the train dispatching problem in the Shanghai-Kunming section of 

Hangzhou East Railway Station into a compromised optimization model and has solved it using a 

modified genetic algorithm. 

2.3.1.  Variants. The variants of this genetic algorithms are as follows: 𝑡1⃗⃗⃗  = (𝑡1,1, 𝑡1,2, . . . , 𝑡1,𝑛), which 

represents the actual arrival time vector of all trains. 𝑡2⃗⃗⃗  = (𝑡2,1, 𝑡2,2, . . . , 𝑡2,𝑛)  represents the actual 

departure time vector of all trains. 𝑟 = (𝑟1, 𝑟2, … , 𝑟𝑛) represents the station track number vector of all 

trains. The total decision vector is synthesized in the following way: 𝑥𝑖 = (𝑡1,𝑖, 𝑡2,𝑖, 𝑟𝑖)  and 𝑉⃗ =

(𝑥1, 𝑥2, … , 𝑥n) , where, 𝑡1,𝑖 = 𝑉⃗ (3𝑖 − 2), 𝑡2,𝑖 = 𝑉⃗ (3𝑖 − 1), 𝑟𝑖 = 𝑉⃗ (3𝑖)  and 𝑉⃗ (𝑡)  represents the 𝑡 -th 

component of vector 𝑉⃗ . 

2.3.2.  Constraints. The first constraint is the ingress and egress direction order constraint. Since high-

speed railway stations may do not have the right to change the order of trains thus require a higher-level 

dispatcher to decide the order of trains entering and leaving the station, the author considers this as an 

optional constraint. 

Suppose direction 𝑑 has an order 𝑖1, 𝑖2, … , 𝑖𝑙, indicating that train 𝑖𝑘 needs to pass this direction ahead 

of train𝑖𝑘+1. Let δk be the access symbol of train 𝑖𝑘 (δk = 1 as enter, δk = 2 as exit), then the direction 

order constraint is: 

𝑡δk+1,𝑖𝑘+1
− 𝑡δk,𝑖𝑘 ≥ ∆𝑡𝑑

𝑜𝑐𝑝 (1) 

Where ∆𝑡𝑑
𝑜𝑐𝑝

 indicates the minimum time interval of direction 𝑑, which is: 

∆𝑡𝑑
𝑜𝑐𝑝

= {
3𝑚𝑖𝑛, 𝑑 = 1,2,3,4

5𝑚𝑖𝑛, 𝑑 = 5,6
(2) 

The second constraint is the arrival time constraint. The actual arrival time of the train must not be 

earlier than the predicted arrival time, that is: 

𝑡1,𝑖 ≥ 𝑡𝑖
𝑝𝑟𝑒 (3) 

The third constraint is the departure time constraint. The actual departure time of the train can neither 

be earlier than the scheduled departure time nor the theoretical earliest departure time. The theoretical 

earliest departure time means, the time train finishes its assignment after it arrives the station. 

𝑡2,𝑖 ≥ 𝑚𝑎𝑥{ 𝑡2,𝑖
𝑠𝑐ℎ, 𝑡1,𝑖 + ∆𝑡𝑡𝑦𝑝𝑒𝑖

𝑤𝑜𝑟𝑘} (4) 

The fourth constraint is the station track constraint. 

Table 5. Available station tracks based on assignment type. 

𝑡𝑦𝑝𝑒𝑖  Selectable station track 𝑟 

1 14G, 15G, . . . ,25G 

2 14G, 15G, … ,18G, 21G, . . . ,25G 

3 17G, 18G, 21G, 22G 

4 14G, 15G, … ,18G, 21G, . . . ,25G 

At the same time, the ingress and egress direction of each train also affects the station tracks it can 

occupy. The final available station tracks for the train are the intersection of both constraints (Table 5).  

Before moving to next section, there are some explanations for why conflicting routes are not 

considered as a constraint. To ensure the effectiveness of the algorithm and prevent the feasible region 

from possessing a bad topological structure, the author places the number of route conflicts in the 

optimization function and assign it a large weight. The purpose enabling the algorithm to quickly obtain 

an acceptable solution that is unlikely to contain conflicts. 
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2.3.3.  Objective function. Denote 𝑓(𝑉⃗ ) = λ1𝑍1 + λ2𝑍2 + λ3𝑍3, where λ1 , λ2 , λ3  are the weighting 

coefficient, 𝑍1 is the total delay minutes, 𝑍2 is the changes of track, and 𝑍3 is number of conflicting 

routes. In practical application, the author takes λ1 = 1, λ2 = 10, and λ3 = 100. Ratio 
λ2

λ1
 can be viewed 

that in practice, the impact of changing one station track approximates the impact of  
λ2

λ1
= 10 minutes 

of total delay. It can be deduced that,  

𝑍1 = ∑(𝑡1,𝑖 − 𝑡1,𝑖
𝑠𝑐ℎ)

𝑛

𝑖=1

+ ∑(𝑡2,𝑖 − 𝑡2,𝑖
𝑠𝑐ℎ)

𝑛

𝑖=1

(5) 

and 

𝑍2 = ∑(𝑟𝑖 ≠ 𝑟𝑖
𝑠𝑐ℎ)

𝑛

𝑖=1

(6) 

where (𝑟𝑖 ≠ 𝑟𝑖
𝑠𝑐ℎ) represents the Boolean value of the difference between the actual station track and 

the scheduled station track of train 𝑖, that is, 

(𝑟𝑖 ≠ 𝑟𝑖
𝑠𝑐ℎ) = {

1, 𝑟𝑖 ≠ 𝑟𝑖
𝑠𝑐ℎ

0, 𝑟𝑖 = 𝑟𝑖
𝑠𝑐ℎ

(7) 

To calculate 𝒁𝟑, the number of conflict routes, let 𝑐𝑜𝑛𝑓𝑟1,𝑟2
 indicate the conflicting Boolean value of 

𝑟1 , 𝑟2 , where 𝑐𝑜𝑛𝑓𝑟1,𝑟2
= 1  when 𝑟1 , 𝑟2  conflict and 𝑐𝑜𝑛𝑓𝑟1,𝑟2

= 0  when they do not. Notice that 

𝑐𝑜𝑛𝑓𝑟,𝑟 = 1. 

Define occupation function 𝑜𝑐𝑝𝑟,𝑡 indicating the number of trains occupying route or track 𝑟 during 

[𝑡, 𝑡 + 1). Then the program marks the time each train occupies the route or track in 𝑜𝑐𝑝𝑟,𝑡. Then it can 

be deduced that, 

𝑍3 = ∑ 𝑜𝑐𝑝𝑟1,𝑡𝑜𝑐𝑝𝑟2,𝑡𝑐𝑜𝑛𝑓𝑟1,𝑟2

𝑟1,𝑟2,𝑡

− ∑𝑚𝑖𝑛{ 𝑜𝑐𝑝𝑟,𝑡 , 1}

𝑟,𝑡

(8) 

The first sum represents the number of conflicts for all routes and tracks, but it includes an overcount 

of 𝑟1 = 𝑟2, which means self-conflict. Because any route or track can afford occupation up to 1, the 

second sum needs to subtract the maximum of 1 occupation. 

2.4.  Algorithm design 

2.4.1.  Initializing chromosomes. The goal is to generate random vectors satisfying the constraints in 

2.3.2. as quickly. The initial idea was to first randomly generate random vectors in a large enough 

hyperrectangle and repeat the process until the vectors satisfy all constraints. But after testing the writer 

found that its efficiency is far from satisfactory, costing 10 times longer time than other steps. Then the 

author transformed this step into a graph theory problem and solved it with topological sorting, which 

was proved effective.  

It can be observed that any time constraint in 2.3.2. have a format of either 𝑡𝑖 ≥ 𝑎𝑖 or 𝑡𝑖 − 𝑡𝑗 ≥ 𝑎𝑖,𝑗. 

The former can be transformed to the latter by adding a virtual time 𝑡0 which is set to 0, thus 𝑡𝑖 ≥ 𝑎𝑖 

becomes 𝑡𝑖 − 𝑡0 ≥ 𝑎𝑖,0. All the time variants 𝑡𝑖 and the virtual time 𝑡0 can be viewed as nodes of a graph, 

and constraint 𝑡𝑖 − 𝑡𝑗 ≥ 𝑎𝑖,𝑗 represents an edge from 𝑡𝑗 to 𝑡𝑖 with weight 𝑎𝑖,𝑗. 

Since the existence of a solution is guaranteed by the problem itself, there is no ring in the graph thus 

a topological ordering exists. One can observe that the only node with indegree 0 is the virtual time node 

𝑡0, so 𝑡0 must be ordered first. Initialize all nodes with value 0 (noticing that 𝑡0 = 0), and visit all the 

nodes and their outgoing edges in the topological ordering. For each edge from 𝑡𝑗 to 𝑡𝑖, set the value of 
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𝑡𝑖 to the maximum of the current value and  𝑡𝑗 + 𝑎𝑖,𝑗. Then the smallest vector 𝑡  satisfying all constraints 

is obtained. 

To get random vectors to form the population of chromosomes, simply enlarge the weight on all 

edges randomly and execute the topological sorting method. After 𝑁 repeated processes the initial 

chromosomes are generated. 

2.4.2.  Crossover. Define the parameter 𝑃𝑐  the probability of crossover operation. This probability 

indicates that there are expected 𝑃𝑐 ∙ 𝑁 chromosomes subjected to crossover operations. 

To determine the parents of cross operation, repeat the following process for 𝑖 in 1~𝑁: generate a 

random number from [0,1] denoted 𝑟𝑎𝑛 . If 𝑟𝑎𝑛 < 𝑃𝑐 , select 𝑉𝑖⃗⃗  as a parent. Randomly permute the 

selected parents and combine them into the following: 

(𝑉
1

′⃗⃗ ⃗⃗ ⃗⃗ 
, 𝑉

2

′⃗⃗ ⃗⃗ ⃗⃗ 
) , (𝑉

3

′⃗⃗ ⃗⃗ ⃗⃗ 
, 𝑉

4

′⃗⃗ ⃗⃗ ⃗⃗ 
) , … , (𝑉𝑠−1

′⃗⃗ ⃗⃗ ⃗⃗  ⃗
, 𝑉𝑠
′⃗⃗ ⃗⃗ ⃗⃗ 

) (9) 

If the number of vectors is odd, the last one will be discarded. For each pair (𝑉𝑘
′⃗⃗ ⃗⃗ ⃗⃗  

, 𝑉𝑘+1

′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 
), generate a 

random number 𝑡  indicating the location of crossover. Assuming 𝑉𝑘
′⃗⃗ ⃗⃗ ⃗⃗ 

= (𝑥1, 𝑥2, … , 𝑥n) , 𝑉𝑘+1

′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 
=

(𝑦1, 𝑦2, … , 𝑦n) . After crossover, the two chromosomes become𝑉𝑘
′⃗⃗ ⃗⃗ ⃗⃗ 

= (𝑥1, 𝑥2, … , 𝑥𝑡 , 𝑦𝑡+1, … , 𝑦n)  and 

𝑉𝑘+1

′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 
= (𝑦1, 𝑦2, … , 𝑦𝑡 , 𝑥𝑡+1, … , 𝑥n). Intuitively, the two chromosomes exchanged strategies for the first 𝑡 

trains. If either chromosome is illegal after crossover, the crossover operation is abandoned. 

2.4.3.  Variation. Define the parameter 𝑃𝑚_𝑡  the probability of mutation of time. This probability 

indicates that there are expected 𝑃𝑚_𝑡 ∙ 𝑁 chromosomes subjected to variation operations. 

First, determine the parents of the time mutation operation like the crossover operation. For each 

selected mutant parent 𝑉⃗ , denote its variants of time as vector 𝑡 . For this mutation operation, Give the 

upper bound of time variance 𝑀 and randomly select the mutation position 𝑘, 𝑘 ∈ [1,2𝑛]. Generate a 

random integer from [−𝑀,𝑀] denoted ∆𝑡  and add it to the 𝑘-th dimension of 𝑡 , and call the modified 

vector 𝑡  𝑡 ′. If 𝑡 ′ is illegal, let 𝑀 be its half and mutate again until a feasible time vector is obtained 

(ultimately 𝑀 < 1 and 𝑡 ′ = 𝑡  must be legal). 

To mutate station track, define the parameter 𝑃𝑚_𝑟. Select parents as above and randomly select the 

mutation position 𝑘, 𝑘 ∈ [1, 𝑛]. For the 𝑘-th train, randomly select one of its available station tracks. 

2.4.4.  Evaluation and selection. The author uses an order-based evaluation function to evaluate and 

select chromosomes. For chromosome population 𝑉1
⃗⃗  ⃗, 𝑉2

⃗⃗  ⃗, … , 𝑉𝑁
⃗⃗ ⃗⃗ , calculate the objective function of each 

chromosome 𝑓(𝑉𝑖⃗⃗ ). Then, sort the chromosomes by objective function value from smallest to largest. 

Denote 𝑝𝑖 the position of 𝑉𝑖⃗⃗   after sorting. Thus, the evaluation function is defined as, 

𝑒𝑣𝑎𝑙(𝑉𝑖⃗⃗ ) = 𝑎(1 − 𝑎)𝑝𝑖−1, 𝑖 = 1,2, … , 𝑁 (10) 

where 𝑎 ∈ (0,1)  is a predetermined parameter, and the author takes 𝑎 = 0.05   hhen, select 

chromosomes based on this evaluation function  For each chromosome, calculate the cumulative 

probability: 

𝑞𝑖 = ∑𝑒𝑣𝑎𝑙(𝑉𝑗⃗⃗ )

𝑖

𝑗=1

, 𝑖 = 1,2, … , 𝑁 (11) 
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Generate a random number 𝑟𝑎𝑛 from interval (0, 𝑞𝑁]. If 𝑟𝑎𝑛 ∈ (𝑞𝑖−1, 𝑞𝑖], select the chromosome 𝑉𝑖⃗⃗ . 
Repeat the procedure 𝑁 times to get 𝑁 newly selected chromosomes. 

2.4.5.  Output. After each evaluation, update the chromosome 𝑉𝑏𝑒𝑠𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   with the minimum objective 

function at all times. Finally, the program outputs the optimal solution during the execution process. 

3.  Results and discussion 

3.1.  Case testing 

The author created a running schedule for 21 trains in the Shanghai-Kunming section of Hangzhou East 

Railway Station in one hour and set delays randomly. After several executions of the program, the 

optimal solution for this case is 149 minutes of delay with 1 change of gate. Both scheduled and adjusted 

train operation are drawn below, where each bar represents the time interval a train occupies a station 

track or direction (Figure 1, 2). 

 

Figure 1. Scheduled train operation diagram. 

 

Figure 2. Adjusted train operation diagram. 
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The author uses different color to represent different status of trains. Blue trains are on their schedule, 

purple trains are ahead of schedule, and red trains are delayed. The program slightly adjusted the dwell 

time of trains to minimize overall delay time, and the station track of G3 is changed from 22G to 17G 

to avoid conflicts with G12 and G13 to cause widespread delay. Intuitively the program is relatively 

effective and further analysis of the algorithm is conducted below. 

3.2.  Algorithm analysis 

3.2.1.  Overview. In terms of solving efficiency, genetic algorithms use natural selection and genetic 

mechanisms to find the optimal solution, which can usually find relatively good solutions in a relatively 

short period of time. In addition, the convergence speed of the algorithm is also affected by parameter 

settings, such as population size, crossover rate, and mutation rate. By reasonably adjusting and 

optimizing these parameters, the solving efficiency of the algorithm was improved. In testing the author 

adjusted 𝑃𝑐, 𝑃𝑚_𝑡 and 𝑃𝑚_𝑟, and the size of the chromosome population is reduced to shorten the time 

each loop without losing much accuracy. 

In terms of solution quality, genetic algorithm can find relatively good solutions, but in most cases, 

it may not be able to find the optimal solution or even feasible solution. To increase the solving accuracy, 

the writer tested the stability of this program and calculated the required execution times for high 

probability of success. 

3.2.2.  Efficiency analysis. The time complexity and space complexity of computer program are 

important indicators for measuring the efficiency of the algorithm. Time complexity focuses on the 

change in the running time as the problem size changes, while space complexity focuses on the storage 

space. 

For to the genetic algorithm the author adopts, the complexity of calculating the objective function 

is 𝑂(𝑅3), where 𝑅 represents the sum of all routes, ports, and tracks, in the test case 𝑅 = 90. The 

determining factor is calculating conflicting routes ∑ 𝑜𝑐𝑝𝑟1,𝑡𝑜𝑐𝑝𝑟2,𝑡𝑐𝑜𝑛𝑓𝑟1,𝑟2𝑟1,𝑟2,𝑡  in 𝑍3 . The time 

complexity of crossover and mutation is both 𝑂(𝑁). Therefore, the time complexity of performing the 

genetic algorithm is 𝑂((𝑅3 + 𝑁)𝐺). 

The space complexity mainly depends on factors such as population size and encoding method. Let 

the population size be 𝑁, the space complexity of storing chromosomes is 𝑂(𝑁). When calculating the 

objective function, the program constructs an occupation matrix 𝑜𝑐𝑝, whose space occupation is 𝑂(𝑁𝑅). 

Since the chromosomes and occupation matrix is updated in every loop, the total space complexity is 

independent of the number of evolutions, which is 𝑂(𝑁𝑅). 

3.2.3.  Stability analysis. The stability of genetic algorithm refers to the ability of the algorithm to 

converge steadily to the optimal or feasible solution. To evaluate the stability of the program, the author 

used the method of repeated experiments. The author executed the program 200 times for the above case 

and analyzed the results and running time. For each execution of the genetic algorithm, if the optimal 

objective function value did not change after 50 evolutions, the execution was terminated. 

The 200 executions of the program took 791.26 seconds, with an average of 3.96 seconds per 

execution. Sorting all the results outputted, the writer obtained the following plot of the objective 

function values for the 200 executions: 
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Figure 3. The graph of objective function values running 200 times. 

From the figure 3, the running results have roughly 5 “ladders”, and only on the first ladder the 

objective function values are below 200, which is feasible. Analyzing the data in detail, the frequency 

of obtaining a feasible solution (𝑍3 = 0) is 39.5%. The frequency of optimal solution 159 is 10%, and 

the frequency of the objective function value below 170 is 20.5%. 

Suppose that obtaining feasible solution obeys a binomial distribution with success rate 𝑝 =  39.5%. 

If the success rate reaches 99.5% then it is necessary to execute the genetic algorithm at least 11 times, 

which takes about 43.52 seconds. The predicted running time is acceptable for practical situation. 

4.  Conclusion 

The problem aroused from the fact that centralized traffic control system is not capable of dispatching 

trains in terms of large-scale train delays. The program uses scheduled timetable, predicted arrival time 

and order of trains (optional) as inputs, and outputs an adjusted timetable minimizing the total delay 

time and changes of gate. The author innovatively treats the conflicting routes as an optimization goal 

rather than a constraint to increase the computational efficiency, and transformed all linear constraints 

to a graph to accelerate initializing chromosomes by topological sorting. 

With the arrival time, departure time and station track as discrete variants of genetic algorithm, the 

author modified the common operations of initialization, crossover, and mutation of genetic algorithm. 

Intuitively, crossover operation switches the strategies of the first half trains for each pair of parents, 

and mutation operation changes one time variant or one station track variant for selected chromosomes. 

Initialization operation requires to transform all constraints for the difference between two time variants 

to a graph and do topological sorting. Based on the hypothesis of unique train routes, the program 

pretreats a conflict matrix from each direction to each station track. Then it can calculate the conflicts 

in each chromosome by matrix multiplication. Combining this quality with the total delay time and 

changes in gate with different weights, the program can calculate the evaluation function and select 

better-performed chromosomes. 

The program is tested effective in the case the author synthetized. Then this paper further analyzed 

its efficiency and stability. By setting the weighting coefficient of conflicting routes relatively high, the 

program has a success rate of nearly  40%. Calculating by binomial distribution it is obtained that to get 

a success rate of  99.5% approximately requires a running time of 40 seconds. Considering the test case 

lasts for about one hour, the efficiency and accuracy of the program is generally acceptable.  
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