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Abstract. The role of moment for inertia in rotational dynamics is equivalent to mass in linear 

dynamics and can be understood as an object's resistance to rotational motion. It establishes the 

relationship between several quantities such as angular momentum, angular velocity, torque, and 

angular acceleration. Accurately calculating the moment of inertia is crucial for designing 

various rotating systems and mechanical devices in engineering. For example, when dealing with 

rotating mechanical parts or machines, their moment of inertia ensures stability and performance 

in design needs to be considered. In physics and engineering, the analysis of rotational motion 

for rigid bodies relies on the concept of moment of inertia. It allows us to understand the dynamic 

behavior of a rigid body around an axis, including applications such as rotational stability, 

gyroscopic motion, and conservation of angular momentum. In this paper, the rotational inertia 

of a rigid body is studied by different method. Calculating the moment of inertia helps us gain a 

deeper understanding of an object's inertial properties during rotational motion while providing 

an important foundation for engineering design, scientific research, and material analysis.  
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1.  Introduction 

The moment of inertia is a physical quantity that describes an object's resistance to rotational motion. It 

is crucial for understanding and analyzing the rotational motion of rigid bodies. Accurately measuring 

and comprehending an object's moment of inertia is indispensable in many engineering and scientific 

fields. In the past, various methods were used to measure moment of inertia, including simple geometric 

measurements, rotating test benches, as well as more complex devices and techniques. However, with 

the development of science and technology, there is an increasing demand for more precise measurement 

of moment of inertia. Particularly in the micro-worlds and high-precision engineering fields, there are 

stricter requirements for measuring moment of inertia.  

Recently, much attention has been paid to measuring moments of inertia with new methods and 

technologies to improve measurement accuracy while reducing sources of error during experiments. 

These studies have important implications for advancing developments in science and engineering fields. 

In 2004, Sheng et al. discussed on the impact of approximations employed in formulating the 

rotational inertia measurement equation, and proposed strategies to mitigate their influence on 

measurement outcomes [1]. In 2006, Zhang and Hou conducted a study on the measurement of rotational 

inertia in three-line pendulums considering the stretching effect of trochoids. With a comprehensive 

differential equation, it was possible to quantitatively investigate the impact of small angle 

approximation and absence of elastic deformation assumption on the accuracy of actual measurements 
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[2]. In 2003, Song et al. by conducting experimental tests and comparing them with the theoretical exact 

values, the author revealed that the length of the cycloid is a major influencing factor in determining the 

accuracy of measuring an object's moment of inertia using the three-wire pendulum method [3]. In 2019, 

Bin et al. discussed the research significance and current status of the three-line method in measuring 

rotational inertia [4]. More interesting moments of inertia for irregular objects can be seen in [5-8]. 

Moments of inertia have numerous applications in disciplines such as physics [9,10]. 

The purpose of this article is to explore the measurement methods of rotational inertia and its 

applications in the fields of science and engineering. Some common methods for measuring rotational 

inertia are introduced. By delving into the measurement methods and techniques of rotational inertia, 

the nature of rotational motion can be better understood and more reliable data and approaches for 

engineering design and scientific research can be provided. 

2.  Method 

2.1.  Method for calculating the moment of inertia of a simple model 

The moment of inertia is also called the mass moment of inertia, or the moment of inertia. The moment 

of inertia is a measure of the inertia for an object when it rotates around an axis. The moment of inertia 

describes the inertia of an object during its motion around a certain axis. For an object whose mass is 

distributed in space, the moment of inertia is defined as 

                                                                               I = ∫ r2 dm                                                                 (1) 

I represents the moment of inertia, r signifies the distance from a single particle to the axis of rotation 

and dm denotes the volumetric microelement in calculating moment of inertia. Formula (1) is only 

applicable to relatively simple objects with regular shapes, such as the moment of inertia for a rigid rod 

rotating about one end and for a rigid sphere rotating about its diameter.  

Here is an example of calculating the moment of inertia for a rigid rod rotating about one end in 

Figure 1. Suppose there is a uniform rigid rod with length R and line density λ. The moment of inertia 

can be calculated using a formula. For a uniform rigid rod, its moment of inertia is determined by 

                                             I = ∫ dm ∙ r2R

0
= ∫ λr2dr

R

0
=

1

3
λR ∙ R2 =

1

3
MR2                                       (2) 

When rotating around the vertical axis and passing through the midpoint of this slender rod leads to 

that: 

                 I = ∫ λ ∙ dr ∙ r2R/2

−R/2
= ∫ dm ∙ r2R/2

−R/2
= [

1

3
λr3] R/2

−R/2
=

1

3
λ (

R3

8
+

R3

8
) =

1

12
MR2                (3) 

 

 

Figure 1. A rigid rod rotates around its midpoint 
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Now, the moment of inertia of a thin spherical shell rotating around its diameter is considered in 

Figure 2. Consider a uniform thin spherical shell with radius R and mass M rotating about its diameter 

axis. In this case, the shell can be viewed as a stack of countless circular rings. Let the thickness of the 

shell be ω, width of each ring be dθ ∙ R, and distance from a point on the ring to the axis of rotation be 

r, r = R ∙ sin θ. The rotational inertia of a homogeneous thin spherical shell can then be calculated using 

a formula. First, the rotational inertia for each individual circular ring needs to be calculated. 

𝐼𝑟𝑖𝑛𝑔 = 𝜌 ∙ 𝑑𝜃 ∙ 𝑅 ∙ 𝜔 ∙ 2𝜋𝑟 ∙ 𝑟2 = 𝜌 ∙ 𝑑𝜃 ∙ 𝑅 ∙ 𝜔 ∙ 2𝜋 ∙ R ∙ sin θ ∙ (R ∙ sin θ)2 

                                                         V = R ∙ dθ ∙ ω ∙ 2πr                                                                    (4) 

Next, author will calculate the moment of inertia for the rotation of a spherical shell. 

𝐼𝑠ℎ𝑒𝑙𝑙 = ∫ 𝜌 ∙ 𝑅4𝜔2𝜋𝑠𝑖𝑛3𝜃𝑑𝜃
𝜋

0
= 𝜌𝑅4𝜔2𝜋 ∫ 𝑠𝑖𝑛3𝜃𝑑𝜃

𝜋

0
= 𝜌𝑅4𝜔2𝜋 ∫ (1 − 𝑐𝑜𝑠2𝜃)𝑠𝑖𝑛𝜃𝑑𝜃

𝜋

0
     (5) 

Set u = cosθ and du = −sinθdθ, when θ = 0, π, u = 1, −1. 

𝐼𝑠ℎ𝑒𝑙𝑙 = 𝜌𝑅4𝜔2𝜋 ∫ (1 − 𝑢2)𝑑𝑢
−1

1
= 𝜌𝑅4𝜔2𝜋 [𝑢 −

1

3
𝑢3] 1

−1
=

2

3
𝜌 ∙ 4𝜋𝑅2 ∙ 𝜔 ∙ 𝑅2 =

2

3
𝑚𝑅2      (6) 

The rotational inertia of a sphere will be Calculated in Figure 3. The sphere can be regarded as a 

stack of countless extremely thin (neglecting thickness) circular slices, in order to calculate the integral 

by layering these circular slices. Each circular slice can be seen as composed of numerous thin circular 

rings. Let the radius of the thin circular ring be x, its thickness be dx, and the radius of the circular slice 

be r. The mass density is denoted as ρ, and the distance from the center of the circle to each circular 

slice is represented by y. With a thickness of dy, and considering that the sphere has a radius of R, the 

radius of each circular slice is r = √R2 − y2. The expression for rotational inertia for each individual 

circular slice is:  

        𝐼𝑑𝑖𝑠𝑘 = ∫ 𝜌 ∙ 2𝜋𝑥 ∙ 𝑑𝑥 ∙ 𝑑𝑦 ∙ 𝑥2√R2−y2

0
= [

1

2
𝜌𝜋𝑥4𝑑𝑦] √𝑅2−𝑦2

0
=

1

2
𝜌𝜋(𝑅2 − 𝑦2)𝑑𝑦                 (7) 

Calculating the moment of inertia for the entire sphere leads to 

𝐼𝑠𝑝ℎ𝑒𝑟𝑒 = ∫
1

2
𝜌𝜋(𝑅2 − 𝑦2)2𝑑𝑦

𝑅

−𝑅

=
1

2
𝜌𝜋 ∫ (𝑅4 − 2𝑅2𝑦2 + 𝑦4)𝑑𝑦

𝑅

−𝑅

= 𝜌
8

15
𝜋𝑅5 

                                                                  =
2

5
∙ 𝜌 ∙

4

3
𝜋𝑅3 ∙ 𝑅2 =  

2

5
𝑚𝑅2                                                   (8) 

 

Figure 2. A rigid rod rotates around one of its ends 
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Figure 3. The sphere rotates around its diameter 

The moment of inertia of a sphere in Figure 4 will be calculated. Assume that the volume of the 

sphere is  V , the radius is r , and its body density is ρ = M/(4πR3/3) . Consider the sphere as a 

composition of countless thin spherical shells. Suppose the radius of the i  spherical shell is 𝑟𝑖 , the 

thickness is dr, the volume is 4π𝑟2dr, and its total moment of inertia is: 

                                    I = ∫
2

3
r2dm

R

0
=

2

3
ρ ∫ r2dV

R

0
=

2M

R3 ∫ r4dr
R

0
=

2

3
MR2                                        (9) 

The moment of inertia of a cylinder will be calculated in Figure 5. Before calculating the rotational 

inertia of the cylinder, first calculate the rotational inertia of the thin disk. Let a disk be The radius is r, 

the area is 2, and the total moment of inertia is 

                                 I = ∫ r2R

0
dm = ∫ r2R

0
σ ∙ 2πrdr=2πσ ∫ r3R

0
dr                                                   (10) 

The cylinder can be regarded as composed of countless thin disks, and the moment of inertia is 

                 I = ∫ ∫ σr2 ∙ r dr
R

0
dθ

2π

0
= 2πσ ∫ r3R

0
dr =

1

2
σπR2R2 =

1

2
MR2                                       (11) 

 

Figure 4. A sphere rotating around its diameter 
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Figure 5. The cylinder rotates around its axis 

2.2.  Calculation of Moment of Inertia using Multiple Integrals 

The moment of inertia for a uniformly dense annulus about an axis perpendicular to the central axis of 

the annular plane will be Calculated in Figure 6. Let the ring D be 𝑅1
2 ≤ 𝑥2 + 𝑦2 ≤ 𝑅2

2, with a density 

of ρand a mass of m = ρ ∙ (πR2
2 − πR1

2). Taking any point P(𝑥, 𝑦) on the ring, at a distance √𝑥2 + 𝑦2 

from its z-axis, its moment of inertia is: 

                   J = ∫ ∫ ρ ∙ (x2 + y2)
𝐷

dσ = ρ ∫ dθ
2π

0 ∫ r3dr
R2

R1
=

πρ

2
(R2

4 − R1
4) =

m

2
(R2

2 + R1
2)             (12) 

The rotational inertia of a uniform disk about its diameter will be calculated in Figure 7. Let the disk 

D be 𝑥2 + 𝑦2 ≤ 𝑅2, with a density of ρ and a mass of ρ = πR2. Calculate the moment of inertia for 

circular disk D rotating about its diameter. The moment of inertia for any point P(x, y) within the disk 

at a distance |𝑥| from the axis is: 

J = ∫ ∫ ρx2

𝐷

dσ = ρ ∫ dθ
2π

0

∫ (r cos θ)2 ∙ rdr
R

0

= ρ ∫ cos2 θ
2π

0

dθ ∙ ∫ r3dr ∙ rdr
R

0

=
ρπR4

4
 

                                                          J =
1

4
mR2                                                                                        (13) 

 

Figure 6. Rotate around the axis perpendicular to the central axis of the annular plane  
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Figure 7. A uniform disk rotates around its diameter 

A sphere in which the density is proportional to the distance from each point to the center, has a 

moment of inertia about its tangent plane. 

Let the sphere be represented by an inequality 𝑥2 + 𝑦2 + 𝑧2 ≤ 𝑅2 , where the relationship ρ =

k√x2 + y2 + z2 between the density at each point and its distance to the center of the sphere is defined. 

Let k be a proportional constant and the equation of the tangent plane is x = R. The moment of inertia 

of the sphere with respect to this plane is 

J = k ∭ √x2 + y2 + z2

⬚

V

∙ (R − x)2dxdydz                                                                 

= k ∫ dθ
2π

0

∫ dφ
π

0

∫ (R − rsinφcosθ)2 ∙ r ∙ r2sinφdr
R

0

= kR2 ∫ dθ
2π

0

∫ r3dr
R

0

∫ sinφ
π

0

dφ

− 2kR ∫ cosθdθ
2π

0

∫ r4
R

0

dr ∫ sin2φdφ +
π

0

k ∫ cos2θdθ
2π

0

∫ r5dr
R

0

∫ sin3φ
π

0

dφ 

                                                                      J =
11

9
kπR6                                                          (14) 

3.  Conclusion 

In conclusion, the measurement of moment for inertia is essential for understanding and analyzing the 

rotational motion of rigid bodies in various engineering and scientific fields. Over the years, significant 

efforts have been made to develop precise measurement methods and techniques to accurately determine 

moment of inertia while minimizing experimental errors. Several studies discussed in this article have 

shed light on the importance of considering various factors, such as approximations in equations, elastic 

deformations, and the length of cycloids, in measuring moment of inertia using different methods, 

particularly the three-line pendulum method. Researchers have proposed strategies and optimization 

schemes to mitigate the influence of these factors on measurement outcomes, thus enhancing the 

accuracy and reliability of experimental results. These efforts have advanced developments in science 

and engineering, providing valuable insights into the nature of rotational motion and contributing to the 

improvement of engineering design and scientific research. Moving forward, continued research and 

innovation in measurement techniques and error reduction methods will further enhance our 
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understanding of moment of inertia and its applications. By continually refining measurement methods 

and techniques, the accuracy and reliability of experimental data, facilitating advancements in science, 

engineering, and technology will be improved in the future. 
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