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Abstract. Exotic options are options with special properties. The holder of an exotic option may 

have some unusual rights, for example decide the time to start the contract or the decision to 

become a call or a put. The payoff of an exotic option may have unique characteristic, for 

example it may depend on the max or min of the underlying price in the history. Based on Black-

Schole’s Model, these options can be viewed from two different perspectives. One is to specify 

the distribution and compute the expectation. The other is using replicating portfolio. The former 

is related to martingale theory, while the latter involves solving a PDE. In this essay, we’ll look 

at how to value various kinds of options and contrast analytical and Monte Carlo simulation 

pricing approaches. Chooser, Barrier, Look-back, and Asian choices are the exotic alternatives 

discussed in our article. 
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1.  Introduction 

Black-Scholes model has gained much significance in the academic field of financial mathematics. 

Mathematical concepts have been used in the financial market since 1202 when Fibonacci started to 

calculate the present value of a cash-flow when he was trying to solve a number theory problem. 

According to Akyıldırım and Soner [1], Louis Bachelier first apply Brownian motion trajectories to 

simulate the fluctuation in stock price and to compute price of some options in 1900s before Norbert 

Wiener provides the rigorous proof. Kiyoshi Ito invented the famed Ito formula in 1951, which was one 

of the fundamentals of stochastic calculus and is still widely used in mathematical finance. After the 

breakthrough of Black-Scholes Formula in 1973, Mathematicians and financial engineers further 

investigated the features of special types of options based under Black-Scholes Market assumptions. It 

could be very hard to derive the analytic solution to options which depends on the path of the stock price. 

In these cases, using a numerical method is more efficient. In this article, we explore three approaches 

to pricing options: the martingale theory, related PDEs, and numerical simulations. We start from 

introducing the concept of continuous time Black-Scholes Model together with Monte-Carlo simulation. 

Then we go over the steps to derive pricing formula for several exotic options, including Chooser’s 

option, Barrier option, Look-back option and Asian option. For each one, we included the analytic 

solutions, juxtaposed by the corresponding Monte Carlo simulation and also change the value of some 

parameters to observe the consequences on option price. We will compare the Monte Carlo estimations 
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to the corresponding analytic solutions. The Roger and Shi’s study was thoroughly examined in the 

Asian option part since we heavily rely on their findings because the embedded PDE is very difficult to 

solve or to find a numerical solution. As a consequence, we provide the comparison of several valid 

techniques. 

1.1.  Mathematical Background 

Consider the probability space (Ω, 𝔽, ℙ) . In this triple, Ω  is the set of all possible outcomes of a 

underlying pricing. 𝔽 = {ℱ𝑡}𝑡<=𝑇 is a collection of 𝜎-field ℱ𝑡 can be interpreted as the “Information 

Stream”, given ℱ𝑡 means we are access to all the history before time 𝑡. ℙ measures how an event (or 

many events) is likely to happens. Therefore, the cost of a derivative written on an underlying may be 

determined using the probability distribution of that underlying. The following is a reformulation of the 

results in Yan and Evans [2,3]. 

Theorem 1.1. (Ito Chain Rule)For stochastic process 𝑋𝑡 s.t: 

𝑑𝑋𝑡 = 𝜇(𝑡, 𝑋𝑡)𝑑𝑡 + 𝜎(𝑡, 𝑋𝑡)𝑑𝑊𝑡                                                                 (1) 

Where 𝜇 ∈ ℒ1(0, 𝑇) and 𝜎 ∈ ℒ2(0, 𝑇). Let 𝑌𝑡 = 𝑓(𝑡, 𝑋𝑡), then: 

𝑑𝑌𝑡 = (
𝑑𝑓

𝑑𝑡
+
𝑑𝑓

𝑑𝑥
𝜇 +

1

2

𝑑2𝑓

𝑑𝑥2
𝜎2)𝑑𝑡 + 𝜎

𝑑𝑓

𝑑𝑥
𝑑𝑊                                                (2) 

Theorem 1.2. (Ito Product Rule) Suppose the system of SDEs is : 

𝑑𝑋1 = 𝜇1𝑑𝑡 + 𝜎1𝑑𝑊𝑡

𝑑𝑋2 = 𝜇2𝑑𝑡 + 𝜎2𝑑𝑊𝑡
                                                                      (3) 

over 𝑡 ∈  [0, 𝑇], where 𝜇1, 𝜇2 ∈ ℒ
1(0, 𝑇) and 𝜎1, 𝜎2 ∈ ℒ

2(0, 𝑇) then : 

𝑑(𝑋1𝑋2) = 𝑋1𝑑𝑋2 + 𝑋2𝑑𝑋1 + 𝑑𝑋1𝑑𝑋2                                                     (4) 

1.2.  Continuous Time Model 

In continuous time setting, it is assume that there only exists two financial instruments in the market, 

they are Stock 𝑆 and saving account 𝐵. The stock price is stochastic and returns are risky, while saving 

in the bank is risk-free. It was also assumed that the stock pays no dividends, traders are free to make 

transactions, volatility 𝜎  is an invariable parameter in the short run and the stock price’s dynamic 

follows: 

𝑆𝑡 = 𝑆0𝑒
𝜎𝑊𝑡+(𝜇−

𝜎2

2
)𝑡
                                                     (5) 

where 𝑊𝑡 denotes a Brownian motion and 𝜇 represents mean-return rate, which is included in Black 

and Scholes [4]. The stochastic differential equation (SDE) of stock can then be easily extracted using 

Ito’s formula. : 

𝑑𝑆𝑡 = 𝑑𝑓(𝑡,𝑊𝑡)  = 𝑆𝑡 (𝜇 −
𝜎2

2
+
𝜎2

2
)𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡

 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡

                                          (6) 

This SDE is known as the Geometric Brownian Motion. On the other hand, bank savings is 

continuously accelerated by a short-term constant interest rate. Hence this gives the SDE for risk-free 

asset : 

𝑑𝐵𝑡 = 𝑟𝐵𝑡𝑑𝑡  and  𝐵𝑡 = 𝑒
𝑟𝑡                                                             (7) 

Let’s examine the discounted stock price procedure in more detail, i.e. {
𝑆𝑡

𝐵𝑡
}
{𝑡∈𝑇}

 . Let ℱ𝑡  be the 

smallest 𝜎-field generated by random variable 𝑊𝑡. Similar to the discrete-time model, we would like to 

determine a risk-neutral measure which will enable us to swap out the mean-return rate with a fixed 
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interest rate in the model. Such a measure is guaranteed to exist under the BS model assumption. 

Precisely, it is stated in the following theorem : 

Theorem 1.3. A unique equivalent martingale measure(EMM) is obtainable when a market is 

complete and there is no chance for arbitrage. Completeness indicates that for any contingent claim, 

there is a portfolio replicating it. Arbitrage means making money without taking any risks. This theorem 

is known as the Fundamental theorem of option pricing. 

For process 𝑆𝑡
∗ =

𝑆𝑡

𝐵𝑡
, the EMM ℚ is given by the Radon-Nikodym derivative : 

𝑑ℚ

𝑑ℙ
= exp (

𝑟 − 𝜇

𝜎
𝑊𝑇 −

1

2
(
𝜇 − 𝑟

𝜎
)
2

𝑇) ,   for  𝑡 ∈  [0, 𝑇]                                        (8) 

And 𝑆𝑡
∗ =

𝑆𝑡

𝐵𝑡
 is a martingale under measure ℚ : 

𝔼 [
𝑆𝑡
𝐵𝑡

𝑑ℚ

𝑑ℙ
∣ ℱ𝑢]  = 𝔼 [

𝑆𝑢𝑒
𝜎𝑊𝑡−𝑢+(𝜇−

𝜎2

2
)(𝑡−𝑢)

𝑒𝑟𝑢𝑒𝑟(𝑡−𝑢)
𝑒
𝑟−𝜇
𝜎
𝑊𝑡−𝑢−

1
2
(
𝜇−𝑟
𝜎
)
2
(𝑡−𝑢)

∣ ℱ𝑢]

 =
𝑆𝑢
𝐵𝑢
𝑒
(𝜇−𝑟−

𝜎2

2
−
1
2
(
𝜇−𝑟
𝜎
)
2
)(𝑡−𝑢)

𝔼 [𝑒
(𝜎+

𝑟−𝜇
𝜎
)𝑊𝑡−𝑢 ∣ ℱ𝑢]

 =
𝑆𝑢
𝐵𝑢
𝑒
(𝜇−𝑟−

𝜎2

2
−
1
2
(
𝜇−𝑟
𝜎
)
2
)(𝑡−𝑢)

𝑒
1
2
(𝜎+

𝑟−𝜇
𝜎
)
2
(𝑡−𝑢)

 =
𝑆𝑢
𝐵𝑢
= 𝔼ℚ [

𝑆𝑡
𝐵𝑡
∣ ℱ𝑢]

                      (9) 

Moreover, it also satisfies the SDE: 

𝑑𝑆𝑡
∗ = 𝜎𝑆𝑡

∗𝑑𝑊𝑡
ℚ,  Where 𝑊𝑡

ℚ = 𝑊𝑡 +
𝜇 − 𝑟

𝜎
  is a brownian motion under ℚ 

Thus: 

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡
ℚ
                                                                  (10) 

Intuitively, we are able to foresee the stock price in the future only given the price today. The rigorous 

proof of the above steps can be found in the books of Musiela and Rutkowski 7 and Bingham and Kiesel 

2. For simplicity, we will write 𝑊𝑡
ℚ

 as 𝑊𝑡 and use 𝑟 instead of 𝜇 imagining we are already in a risk-

neutral world. 

Returning to the subject of option pricing, there are two different approach. The first technique 

involves creating a partial differential equation using a replicating portfolio and defining the boundary 

based on the properties of a certain option to solve the PDE. Another method is using probability theory 

to compute the expectation. We will start from the first one by defining Wealth process and hedging 

portfolio. The following definition is taken from Musiela and Rutkowski [5]: 

Definition 1.1 (Wealth Process). The pair 𝜙𝑡 = (𝑎𝑡 , 𝑏𝑡)  is the portfolio consisting of 𝑎𝑡  and 𝑏𝑡 . 
Here 𝑎𝑡  represents the amount of shares holding at time 𝑡 , while 𝑏𝑡  represents number of money 

invested in risk-free asset at time 𝑡. Then the the value of portfolio 𝜙 at time 𝑡 is 𝑉𝑡(𝜙𝑡) = 𝑎𝑡𝑆𝑡 +
𝑏𝑡𝐵𝑡 . In consequence, the strategy relies on time and stock price. Hence, 𝑎𝑡 , 𝑏𝑡  are functions of 

variables 𝑡 and 𝑆𝑡. 
The central idea of option pricing is to construct portfolio to hedge the payoff of a particular 

contingent claim. Assume the price of the contingent claim relies on the time-to-maturity 𝑡 and price of 

the underlying 𝑆𝑡, i.e 𝑔(𝑡, 𝑆𝑡). Then we want to replicate its payoff using hedging portfolio 𝑉𝑡(𝜙𝑡) =
𝑔(𝑡, 𝑆𝑡) = 𝑎𝑡𝑆𝑡 + 𝑏𝑡𝐵𝑡. Assume at each time nodes, We first select how much money to deposit in the 

stock market, and then we invest the remainder in the bank. Therefore, 𝑏𝑡 =
𝑔−𝑎𝑡𝑆𝑡

𝐵𝑡
  and change in 

portfolio value 𝑑𝑉𝑡 satisfies : 
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𝑑𝑉𝑡  = 𝑎𝑡𝑑𝑆𝑡 + 𝑏𝑡𝑑𝐵𝑡
 = 𝑎𝑡𝜇𝑆𝑡𝑑𝑡 + 𝑎𝑡𝜎𝑆𝑡𝑑𝑊𝑡 + 𝑟𝑏𝑡𝐵𝑡𝑑𝑡

 = 𝑎𝑡𝜇𝑆𝑡𝑑𝑡 + 𝑎𝑡𝜎𝑆𝑡𝑑𝑊𝑡 + 𝑟(𝑔 − 𝑎𝑡𝑆𝑡)𝑑𝑡

 = 𝑎𝑡(𝜇 − 𝑟)𝑆𝑡𝑑𝑡 + 𝑎𝑡𝜎𝑆𝑡𝑑𝑊𝑡 + 𝑟𝑔𝑑𝑡

                                           (11) 

Furthermore, the Ito formula may readily be used to calculate 𝑑𝑔(𝑡, 𝑆𝑡) : 

𝑑𝑔(𝑡, 𝑆𝑡) = (
𝑑𝑔

𝑑𝑡
+ 𝜇𝑆

𝑑𝑔

𝑑𝑠
+
1

2
𝜎2𝑆2

𝑑2𝑔

𝑑𝑠2
)𝑑𝑡 + 𝜎𝑆

𝑑𝑔

𝑑𝑠
𝑑𝑊𝑡                                  (12) 

Since the wealth process is replicating payoff 𝑔(𝑡, 𝑆𝑡), we must have their time increment equals so 

𝑑(𝑉𝑡 − 𝑔(𝑡, 𝑆𝑡)) = 0, therefore: 

{
 
 

 
 (𝑎𝑡𝜎𝑆𝑡 − 𝜎𝑆𝑡

𝑑𝑔

𝑑𝑠
) 𝑑𝑊𝑡 = 0                                                                                  (13)

(𝑎𝑡(𝜇 − 𝑟)𝑆𝑡 + 𝑟𝑔 −
𝑑𝑔

𝑑𝑡
− 𝜇𝑆

𝑑𝑔

𝑑𝑠
−
1

2
𝜎2𝑆2

𝑑2𝑔

𝑑𝑠2
)𝑑𝑡 = 0                            (14)

 

Which implies : 

{
𝑎𝑡 =

𝑑𝑔

𝑑𝑠
                                                                                                        (15)

𝑑𝑔

𝑑𝑡
+ 𝑟𝑆𝑡

𝑑𝑔

𝑑𝑠
+
1

2
𝜎2𝑆𝑡

2
𝑑2𝑔

𝑑𝑠2
= 𝑟𝑔                                                            (16)

 

In order to make sure the hedging strategy exists, the investment 𝑎𝑡  must equal to the partial 

derivative of 𝑔 with respect to 𝑆𝑡. The celebrated Black Scholes Partial Differential Equation is the 

name given to equation (5). For different contingent claims, we have different boundary conditions to 

solve the PDE. For example, the European call option has payoff ℎ(𝑆𝑇) = (𝑆𝑇 − 𝐾)
+with boundary 

conditions: 

{

𝑔(𝑇, 𝑆𝑇) = ℎ(𝑆𝑇) = max{𝑆𝑇 − 𝐾, 0},  𝑡 = 𝑇

𝑔(𝑡, 0) = 0, ∀𝑡 ∈ [0, 𝑇]

𝑔(𝑡, 𝑆𝑡) → 𝑆𝑡  as  𝑆𝑡 → ∞

                                                (17) 

The above PDE (5) together with its boundary condition (6) provides the well-known Black Scholes 

Formula 

{

𝐶(𝑡) = 𝑆𝑡𝑁(𝑑1) − 𝐾𝑒
−𝑟(𝑇−𝑡)𝑁(𝑑2)

𝑑1 =
ln (𝑆𝑡/𝐾) + (𝑟 + 0.5𝜎

2)(𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
, 𝑑2 = 𝑑1 − 𝜎√𝑇 − 𝑡

                              (18) 

where N is the cumulative density function of a standard normal distribution. The detailed proof is 

based on solve a heat equation in Saari [6], but we can consider another approach. 

Theorem 1.4 (Risk-Neutral Valuation Formula). In Bingham and Kiesel, let’s 𝑋 be a European-type 

option with maturity 𝑇 and payoff function ℎ(𝑆𝑇), then in market using Black-Scholes model, the price 

it 𝛱𝑡(𝑋) is given by: 

Π𝑡(𝑋) = 𝑒
−𝑟(𝑇−𝑡)𝔼ℚ[ℎ(𝑆𝑇) ∣ ℱ𝑡],  ∀𝑡 ∈ [0, 𝑇] (20) 

For European Call option 𝐶, 

                Π𝑡(𝐶) = 𝑒
−𝑟(𝑇−𝑡)𝔼ℚ[(𝑆𝑇 − 𝐾)

+ ∣ ℱ𝑡]                                                     (21) 

Then we would end-up with the same equation as (7), according to Musiela and Rutkowski [7], we 

shall introduce the simplest numerical method, Monte Carlo simulation, in the upcoming sections. 
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1.3.  Monte Carlo Simulation 

Monte Carlo Simulations is a class of algorithms using randomly generated samplings to get a 

numerical result that is deterministic by principle. Nowadays, It is extensively used in financial 

industries because of its convenience and efficiency. In 2019, Bendob and Bentouir compared how 

Monte Carlo simulation performs on Nifty50 option index with Binominal tree model and BS model. 

They discovered that the MC technique will prevail where volatility is modest. Let 𝑋 be a random 

variable and 𝑀  is the number of random realization of 𝑋  and let 𝜇̂ =
1

𝑀
∑𝑖=1
𝑀  𝑋𝑖 . By Law of Large 

Numbers: 𝜇̂ = 𝔼(𝑋) as 𝑀 goes very large. The standard error of 𝜇̂ is 𝜎𝑋/√𝑀, because: 

  Var [
1

𝑀
∑  

𝑀

𝑖=1

 𝑋𝑖] =
1

𝑀2
∑ 

𝑀

𝑖=1

Var[𝑋] =
1

𝑀
Var[𝑋]                                            (22) 

The formula above shows how much we should increase our size of samplings if we want to increase 

our accuracy to a certain degree. For instance, we ‘ll turn our sampling size by 100 to reduce the standard 

error by a factor of 0.1. Moreover, we observed that when the number of iterations is fixed, if the random 

variable 𝑋 have small volatility, then MC method will give a better estimation. and this coincides with 

Bendob and Bentouir [8]. 

From the (1), we know the stock satisfies : 

𝑆𝑡+ℎ  = 𝑆𝑡𝑒
𝜎(𝑊𝑡+ℎ−𝑊𝑡)+(𝑟−

𝜎2

2
)ℎ

 = 𝑆𝑡𝑒
𝜎√Δ𝑡𝒩(0,1)+(𝑟−

𝜎2

2
)Δ𝑡

                                                          (23) 

where 𝒩(0,1)  is the standard Gaussian variable. Then by randomly generating samples 𝜖  from 

𝒩(0,1), we would obtain a discrete stock path by substituting all 𝜖 in to the above equation at each 

time points. We do these above steps 𝑀 times to get 𝑀 many stock paths. Then we specify the payoff 

function of the particular option, if it only depends on the final price(i.e Vanilla option) then only final 

price is needed, if it is a pathdependent option then we have to consider all the time points(i.e Asian 

option). Finally, we compute the payoffs and average over 𝑀 samples to get the MC estimator. A clear 

demonstration of MC simulation is showing in the Algorithm-1 below. Moreover, Figure 1 is a 

visualization of difference between BS price and MC price and Figure 2 is the stock paths we generated 

using MC Simulation given 𝑆0 = 𝐾 = 100, 𝑇 = 1, 𝑟 = 0.05. In the following section, we will use these 

parameters to price many Exotic options. 

Algorithm 1 Monte Carlo Simulation for Vanilla options 

Inputs: 

T:Time to maturity        N:Number of time periods 

M:Number of Iterations    r: Interest rate 

𝑆0:Initial Stock price      K:Strike Price 

Black Box: 

1. Discrete time interval [0, 𝑇] into 𝑁 equally time increments s.t: Δ𝑡 =
𝑇

𝑁
 

2. For each time increment 𝑡 ∈ {Δ𝑡, 2Δ𝑡, …𝑁Δ𝑡}, generate an error 𝜖 ∼ 𝒩(0,1) 

3. Compute 𝑆𝑡+Δ𝑡 = 𝑆𝑡𝑒
𝜎√Δ𝑡𝜖+(𝑟−

𝜎2

2
)Δ𝑡

 to get a stock path 

4. Repeat steps 2-3 for 𝑀 times, we get 𝑀, the number of distinct stock paths 

5. Specify the payoff function of an option 𝑔(𝑆𝑇)(⬚ or 𝑔({𝑆𝑡}𝑡≤𝑇) ) 

6. Compute 𝑔 with simulated stock paths 

Output: 

The Averaged payoff over 𝑀 iterations : 
1

𝑀
∑𝑖=1
𝑀  𝑔(𝑆𝑇) 
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Figure 1. MC vs BSM Figure 2. Stock paths generated by MC 

2.  Exotic Options 

Exotic options are unusual derivatives created by financial engineers. They may grant the holder specific 

rights, such as the choice to become put or call at any moment before to maturity(i.e Chooser). 

Additionally, the value of certain exotic options is reliant on the complete history of stock price, as is 

the case with Asian options, which are valued based on the “average” of stock prices prior to maturity, 

according to Hall [7]. In this chapter, we’ll introduce a variety of intriguing exotic options and 

demonstrate how to calculate their prices. To compare with the precise results, we will also find MC 

estimators. 

2.1.  Chooser’s Option 

Here we name a buyer a chooser, because the buyer has the right to make the final decision whether to 

become a call option or a put option at a predetermined time, for example, 12 months. The final payoff 

of chooser option depends on how the holder’s expectation at the decision time. Now suppose 𝑇0 is the 

time to decide if the option should be the call option or the put option. The maturity of the option itself 

is 𝑇, while strike price at 𝑇 is 𝐾, then the payoff function 𝐶𝐻 of a choose option is: 

           𝐶𝐻(𝑇0) = max (𝐶(𝑇 − 𝑇0, 𝑆𝑇0 , 𝐾), 𝑃(𝑇 − 𝑇0, 𝑆𝑇0 , 𝐾))                                 (24)  

Recall “Put-Call Parity”, then we have: 

𝐶𝐻(𝑇0)  = max(𝐶, 𝐶 + 𝐾𝑒−𝑟(𝑇−𝑇0) − 𝑆𝑇0)

 = 𝐶 +max(0,𝐾𝑒−𝑟(𝑇−𝑇0) − 𝑆𝑇0)

 = 𝐶 + (𝐾𝑒−𝑟(𝑇−𝑇0) − 𝑆𝑇0)
+

 = 𝐶(𝑇 − 𝑇0, 𝑆𝑇0 , 𝐾) + 𝑃(𝑇0, 𝑆𝑇0 , 𝐾𝑒
−𝑟(𝑇−𝑇0))

                              (25) 

Thus we proved (11). Notice that chooser’s option is equivalent to the portfolio consisting of a call 

and a put option. 

Theorem 2.1 (Price of Chooser). The price of a chooser option at time 𝑡 = 0 with maturity 𝑇 and 

strike 𝐾 is given by:  

𝐶𝐻(0) = 𝑆0 (𝑁(𝑑1) − 𝑁(−𝑑̂1)) + 𝐾𝑒
−𝑟𝑇 (𝑁(−𝑑̂2) − 𝑁(𝑑2))

𝑑1 =
ln (𝑆0/𝐾) + (𝑟 +

1
2𝜎

2)𝑇

𝜎√𝑇
, 𝑑2 = 𝑑1 − 𝜎√𝑇

𝑑̂1 =
ln (𝑆0/𝐾) + 𝑟𝑇 +

1
2𝜎

2𝑇0

𝜎√𝑇0
, 𝑑2̂ = 𝑑̂1 − 𝜎√𝑇0

                          (26) 
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where 𝑇0 ∈  [0, 𝑇] is the time to make decision. 

We plot the pricing functions of the Chooser’s options, which we consider as the single-variable 

function of 𝑇0 with different 𝜎, current value 𝑆0, strike price 𝐾, interest rate 𝑟 and maturity 𝑇 (see 

Figure 3,4 ). If we look at the graph, it’s hard to tell if there’s any useful conclusion we could draw about 

the monotonicity. 

  

Figure 3. Price versus Decision Time 𝑇0 Figure 4. Price versus Decision Time 𝑇0 

Although it’s intuitive that the price increases in decision time 𝑇0, because the closer 𝑇0 is to 𝑇, the 

better prediction we might make. However, we should always remember the “discount factor”, which 

grows exponentially and can “drag down” a significant amount of the price. The following is a theorem 

including certain criteria for the function to be monotonous increasing: 

Theorem 2.2. Under the following conditions, 𝐶𝐻(0) is increasing: 

if 𝑆0 > 𝑒−𝑟𝑇𝐾, then for 𝑇0 ≥ 2(𝑙𝑛 𝑆0/𝐾 + 𝑟𝑇)/𝜎
2, 𝐶𝐻(0) is increasing in 𝑇0 

if 𝑆0 = 𝑒
−𝑟𝑇𝐾, then 𝐶𝐻(0) monotonously increases 

if 𝑆0 < 𝑒−𝑟𝑇𝐾, then for 𝑇0 ≤ 2(𝑙𝑛 𝑆0/𝐾 + 𝑟𝑇)/𝜎
2, 𝐶𝐻(0) is increasing in 𝑇0 

Proof. First, 𝑆0 = 𝑒
−𝑟𝑇𝐾 ⇔ ln 𝑆0/𝐾 + 𝑟𝑇 = 0. According to (12), in the second case 𝑑̂1 =

𝜎√𝑇0

2
 

and 𝑑̂2 = −
𝜎√𝑇0

2
. As error function increases on ℝ, if 𝑇0 increases, 𝑑̂1 increases, so 𝑁(𝑑̂1) decreases, 

and −𝑆0𝑁(𝑑̂1)  increases. Similarly, as 𝑑̂2  decreases in 𝑇0, 𝑒
−𝑟𝑇𝐾𝑁(−𝑑̂2)  increases. As a result 

𝐶𝐻(0) increases for all 0 ≤ 𝑇0 ≤ 𝑇. 

In the first case, 𝑆0 > 𝑒
−𝑟𝑇𝐾 ⇔ ln 𝑆0/𝐾 + 𝑟𝑇 > 0 . We can rewrite 𝑑̂1 =

ln 𝑆0/𝐾+𝑟𝑇

𝜎

1

√𝑇0
+
𝜎

2
√𝑇0 

and 𝑑̂2 =
ln 𝑆0/𝐾+𝑟𝑇

𝜎

1

√𝑇0
−
𝜎

2
√𝑇0. For 𝑑̂2, it’s decreasing because both terms are decreasing. For 𝑑̂1, we 

may know from the fact that the minimum was reached on √𝑇0 = √
ln 𝑆0/𝐾+𝑟𝑇

𝜎
/
𝜎

2
⇔ 𝑇0 =

2(ln 𝑆0/𝐾 + 𝑟𝑇)/𝜎
2. Thus 𝑇0 ≥ 2(ln 𝑆0/𝐾 + 𝑟𝑇)/𝜎

2, 𝐶𝐻(0) increases. Very similarly, we can prove 

the third case. 

Different price functions converge as the interest rate increases, and in fact we have the following 

corollary: 

Proposition 2.1. As 𝑟 → ∞, 𝐶𝐻(0) → 𝑆0. 

Proof. As 𝑟 → ∞, 𝑑1, 𝑑2 → ∞ , so 𝑁(𝑑1) → 1,𝑁(𝑑2) → 0 , so the term 𝑆0 (𝑁(𝑑1) − 𝑁(−𝑑̂1)) →

𝑆0. As for 𝐾𝑒−𝑟𝑇 (𝑁(−𝑑̂2) − 𝑁(𝑑2)) , |𝐾𝑒
−𝑟𝑇 (𝑁(−𝑑2̂) − 𝑁(𝑑2))| ≤ 2|𝐾𝑒

−𝑟𝑇| → 0 as 𝑟 → ∞ 

Although “𝑟 tending to infinity” only exists in theoretical discussion, from Figure 5 we can see that 

all three curves reach more than 90 when 𝑟 = 3. 
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Figure 5. Price versus Interest Rate 𝑟 Figure 6. Price versus Interest Rate 𝑟 

The Monte Carlo Simulation results for Chooser’s Option are demonstrated in Table 1 below, and we 

take` 𝑆0 = 𝐾 = 100, 𝑇 = 1, 𝑟 = 0.05, 𝑇0 = 0.5.  

Table 1. Chooser’s Option with 𝜎 = 0.5 

Interest Rate Monte Carlo Analytic Solution 

r=0.01 34.20 33.61 

r=0.02 33.12 33.47 

r=0.05 32.46 33.14 

r=0.1 32.91 32.92 

r=0.5 42.8 41.76 

From Figure 6, also from Table 1, we can also discover that when 𝑟 is small, the price of Chooser’s 

option is decreasing in 𝑟 but then increase as 𝑟 increases. 

2.2.  Barrier Option 

Barrier option is very similar to European option, but there are upper and lower bounds, which are called 

barriers. During the whole process, every time when the stock price “hit” the barriers in some ways, the 

option will be terminated before the maturity. 

Here we introduce the down-and-out barrier, and the analysis of other types of barrier option is quite 

similar. The pay-off function is exactly the European pay-off function, unless the stock price hit a lower 

bound, which results in the pay-off to be 0. Thus, to let the option reach the maturity. 𝑆𝑡 > 𝑋, ∀𝑡 ∈
 [0, 𝑇], where 𝑇 is the final time. If it goes to the end without hitting the bound, the value is equal to 

European option (𝑆𝑇 − 𝐾)
+, and price process 𝐵(𝑠, 𝑡) satisfies equation (5) : 

       𝐵𝑡(𝑠, 𝑡) + 𝑟𝑠𝐵𝑠(𝑡, 𝑠) +
1

2
𝜎2𝑠2𝐵𝑠𝑠(𝑡, 𝑠) − 𝑟𝐵(𝑡, 𝑠) = 0, for 𝑠 ∈ (𝑥,∞) and 𝑡 ∈  [0, 𝑇].           (27) 

However, in the setting of barrier option, the pde has different boundary conditions from European 

option: 

                                                           
𝐵(𝑠, 𝐾) = 𝑠 as 𝑠 → ∞

𝐵(𝑋, 𝑡) = 0
                                                                     (28) 

Now we consider the following series of change of variables: 

𝑠 = 𝐾𝑒𝑥 , 𝑡 = 𝑇 − 2𝜏/𝜎2, 𝐵 = 𝐾𝑒𝛼𝑥+𝛽𝜏𝑢(𝑥, 𝜏)                                           (29) 

with 𝛼 = −
1

2
(𝑘1 − 1), 𝛽 = −

1

4
(𝑘1 + 1)

2 and 𝑘1 = 2𝑟/𝜎
2. Suprisingly, the PDE becomes: 
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∂𝑢

∂𝜏
=
∂2𝑢

∂𝑥2
                                                                              (30) 

Following the method of images, in Wilmott and Dewynne [9], the final solution to 𝐵(𝑠, 𝑡) is 

                                      𝐵(𝑠, 𝑡) = 𝐶(𝑠, 𝑡) − (
𝑠

𝑋
)
−
2𝑟
𝜎2
+1

𝐶 (
𝑋2

𝑠
, 𝑡)                                    (31) 

Here 𝐶 is the solution to the normal European call option and: 

𝐶(𝑠, 𝑡) = 𝑠𝑁(𝑑1(𝑡, 𝑠)) − 𝑒
𝑟(𝑇−𝑠)𝑁(𝑑2(𝑡, 𝑠))

𝑑1 =
(𝑟 + 𝜎2/2)(𝑇 − 𝑡) + ln (𝑠/𝐾)

𝜎√𝑇 − 𝑡
, 𝑑2 =

(𝑟 − 𝜎2/2)(𝑇 − 𝑡) + ln (𝑠/𝐾)

𝜎√𝑇 − 𝑡

                 (32) 

Consider a down-and-out option and let 𝑆0 = 𝐾 = 100, 𝑋 = 80. 

With other parameters fixed, if we consider the price of Barrier’s option as a single-variable function 

of the barrier 𝑋 : We have an obvious observation: 

Proposition 2.2. For a down-and-out barrier option, if the barrier 𝑋 → 0, the limit of barrier option 

is, in fact, its corresponding European call option. 

Proof.  

1) If −
2𝑟

𝜎2
+ 1 < 0 , then we can re-write 𝐵(𝑠, 𝑡)  as 𝐵(𝑠, 𝑡) = 𝐶(𝑠, 𝑡) − (

𝑋

𝑠
)

2𝑟

𝜎2
−1
𝐶(𝑋2/𝑠, 𝑡) . 

Because 
2𝑟

𝜎2
− 1 > 0 , while both 

𝑋

𝑠
  and 𝐶(𝑋2/𝑠, 𝑡)  tend to zero at the same time, 𝐵(𝑠, 𝑡) →

𝐶(𝑠, 𝑡). 

2) If −
2𝑟

𝜎2
+ 1 = 0,𝐵(𝑠, 𝑡) = 𝐶(𝑠, 𝑡) − 𝐶(𝑋2/𝑠, 𝑡) → 𝐶(𝑠, 𝑡). 

3) If −
2𝑟

𝜎2
+ 1 > 0, then we can rewrite the second term in 𝐵(𝑠, 𝑡) as 

𝐶(
𝑋2

𝑠
,𝑡)

𝑋

𝑠
−
2𝑟

𝜎2
+1

. Because both 
𝑋

𝑠
 and 

𝐶 (
𝑋2

𝑠
, 𝑡) → 0 as 𝑥 → 0, by applying L’Hopital’s rule for adequate times, we can see 𝐵(𝑠, 𝑡) →

𝐶(𝑠, 𝑡). 
Although we didn’t include up-and-out option, it’s reasonable to expect that if the upper barrier 𝑋 →

∞, then 𝐵(𝑠, 𝑡) → 𝐶(𝑠, 𝑡). 
In Table 2 & Table 3, we demonstrated the results for Monte Carlo method, time steps = 1000 , 

simulations = 8000 and for Binomial model, time steps = 10000. The results of our simulation is 

very close to the corresponding analytic solution. In the table below, We compare the results of Monte 

Carlo with different simulations to the analytical solution. 

Table 2. σ=0.25 

Interest Rate Monte Carlo Binomial Model Analytic Solution 

r=0.02 10.55 10.49 10.48 

r=0.06 12.16 12.44 12.42 

r=0.1 14.22 14.55 14.54 

Table 3. σ=1 

Interest Rate Monte Carlo Binomial Model Analytic Solution 

r=0.02 18.84 18.88 18.44 

r=0.06 20.19 19.65 19.20 

r=0.1 21.86 20.42 19.96 

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/34/20240765

323



2.3.  Look-back option 

In this section, we give a gentle introduction of Look-back option. Similar to the cases introduced above, 

all three of them are not path independent. However notice that in the previous cases, the investors they 

can only view the price progression at maturity, according to Bingham and Kiesel [10]. The right to sell 

a stock at the highest point is provided by a lookback put option, while the ability to purchase a stock at 

the lowest point is provided by a lookback call option. Let 𝐿𝐶, 𝐿𝑃 denotes the payoff of lookback call 

and lookback put options respectively, then: 

                           
𝐿𝐶(𝑇) = (𝑆𝑇 − min

0≤𝑢≤𝑇
 𝑆𝑢)

+
= 𝑆𝑇 − min

0≤𝑢≤𝑇
 𝑆𝑢

𝐿𝑃(𝑇) = ( max
0≤𝑢≤𝑇

 𝑆𝑢 − 𝑆𝑇)
+
= max

0≤𝑢≤𝑇
 𝑆𝑢 − 𝑆𝑇

                                              (33) 

Note the payoff for a Lookback option is always non-negative. According to the risk-neutral 

valuation formula, the price of a Lookback option at time 𝑡 ∈  [0, 𝑇] is : 

𝐿𝐶(𝑡)  = 𝑒−𝑟(𝑇−𝑡)𝐸 [𝑆𝑇 − min
0≤𝑢≤𝑇

 𝑆𝑢 ∣ ℱ𝑡]

 = 𝑒−𝑟(𝑇−𝑡)𝐸[𝑆𝑇 ∣ ℱ𝑡] − 𝑒
−𝑟(𝑇−𝑡)𝐸 [ min

0≤𝑢≤𝑇
 𝑆𝑢 ∣ ℱ𝑡]                           (34)

 = 𝑆𝑡 − 𝑒
−𝑟(𝑇−𝑡)𝐸 [ min

0≤𝑢≤𝑇
 𝑆𝑢 ∣ ℱ𝑡]

 

Given the information ℱ𝑡, we know exactly the stock price evolution before time 𝑡. Therefore, let 

𝑚 = min(𝑆𝑢 : 0 ≤ 𝑢 ≤ 𝑡)  be the minimum point in the history of the stock. Then, min
0≤𝑢≤𝑇

 𝑆𝑢 =

min(𝑚, min
𝑡≤𝑢≤𝑇

 𝑆𝑢), where min
𝑡≤𝑢≤𝑇

 𝑆𝑢 is independent with ℱ𝑡. For convenience, let 𝜏 = 𝑇 − 𝑡, 𝜆± = 𝑟 ±

𝜎2

2
 and recall that for any 𝑢 ∈  [𝑡, 𝑇], we have: 

𝑆𝑢 = 𝑆𝑡𝑒
𝜎(𝑊𝑢−𝑊𝑡)+𝜆

−(𝑢−𝑡) = 𝑆𝑡𝑒
−(𝑋𝑢−𝑋𝑡)                                                 (35) 

where 𝑋𝑢 = −𝜎𝑊𝑢 − 𝜆
−𝑢, then: 

min
𝑡≤𝑢≤𝑇

 𝑆𝑢 = 𝑆𝑡𝑒
− max
𝑡≤𝑢≤𝑇

 (𝑋𝑢−𝑋𝑡) = 𝑆𝑡𝑒
− max
0≤𝑢≤𝜏

 𝑋𝑢                                               (36) 

Hence: 

𝐿𝐶(𝑡)  = 𝑆𝑡 − 𝑒
−𝑟(𝑇−𝑡)𝐸 [min(𝑚, min

𝑡≤𝑢≤𝑇
 𝑆𝑢)]

 = 𝑆𝑡 +𝑚 − 𝑒−𝑟(𝑇−𝑡)𝐸 [min (0, min
𝑡≤𝑢≤𝑇

 𝑆𝑢 −𝑚)]

 = 𝑆𝑡 +𝑚 − 𝑒−𝑟(𝑇−𝑡)𝐸 [(𝑆𝑡exp (−max
0≤𝑢≤𝜏

 𝑋𝑢) − 𝑚)𝟙
(max𝑋𝑢≥−ln (

𝑚
𝑆𝑡
))
]

 (37) 

Then we are left to compute ℙ((max𝑋𝑢 ≥ −ln (
𝑚

𝑆𝑡
)) . Musiela and Rutkowsk [7] solved this 

problem using reflection principle and their results are: 

𝐿𝐶(𝑡) = 𝑆𝑡𝐍(𝑑1) − 𝑚𝑒
−𝑟𝜏𝐍(𝑑2) −

𝑆𝑡𝜎
2

2𝑟
𝐍(−𝑑1) − 𝑒

−𝑟𝜏
𝑆𝑡𝜎

2

2𝑟
(
𝑚

𝑆𝑡
)
2𝑟𝜎−2

𝐍(𝑑3)          (38) 

where: 

𝑑1 =
ln (

𝑆𝑡
𝑚) + 𝜆

+𝜏

𝜎√𝜏
, 𝑑2 = 𝑑1 − 𝜎√𝜏, 𝑑3 =

2𝑟√𝜏

𝜎
− 𝑑1                                   (39) 

For Lookback put option: 
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𝐿𝑃(𝑡) = −𝑆𝑡𝐍(−𝑑1) + 𝑀𝑒
−𝑟𝜏𝐍(−𝑑2) +

𝑆𝑡𝜎
2

2𝑟
𝐍(𝑑1) − 𝑒

−𝑟𝜏
𝑆𝑡𝜎

2

2𝑟
(
𝑚

𝑆𝑡
)
2𝑟𝜎−2

𝐍(−𝑑3)   (40) 

where 𝑀 = max
0≤𝑢≤𝑇

 𝑆𝑢 is a fixed number under ℱ𝑡. The Monte Carlo results are shown in Table 4, with 

𝑆 = 𝐾 = 100 

Table 4. Lookback option with different σ 

σ N Solution MC(M=100) MC(M=104) MC(M=106) 

0.05 100 6.89 6.30 6.63 6.57 

 1000  6.29 6.77 6.80 

0.25 100 20.55 15.44 19.3 19.32 

 1000  18.1 19.96 20.16 

0.5 100 35.73 33.68 34.45 33.80 

 1000  32.89 35.13 35.58 

2.4.  Asian Option 

Different from the options we introduced above, Asian options take the value of the stock price 

throughout the period by taking the “average”. There are different ways to take the average, but in our 

context, we only introduce the arithmetic Asian option. For arithmetic Asian option, we also have the 

following two sub-categories, which is defined based on whether the strike price is fixed: 

𝐸 (
1

𝑇
∫  
𝑇

0

 𝑆𝑢𝑑𝑢 − 𝐾)

+

(Fixed Strike) 

𝐸 (
1

𝑇
∫  
𝑇

0

 𝑆𝑢𝑑𝑢 − 𝑆𝑇)

+

(Floating Strike) 

                                                (40) 

2.5.  Method of Rogers and Shi 

According to Rogers and Shi [11], for fixed Asian option, the definition of function 𝜙 is extremely 

helpful in the following derivation of the price function of Asian option. Define: 

𝜙(𝑡, 𝑥):= 𝐸 (
1

𝑇
∫  
𝑇

𝑡

 𝑆𝑢𝑑𝑢 − 𝑥)

+

                                                    (41) 

Notice that we can interpret 𝜙(𝑡, 𝑥) to be the function reflecting the payoff of the option at maturity 

with respect to its value at time 𝑡. In this paper, the significance of their work is the success to reduce 

the previous two space dimension pde corresponding to Asian fixed price to one space dimension pde. 

Theorem 2.3. Define: 

𝑀𝑡:= 𝐸 ((
1

𝑇
∫  
𝑇

0

 𝑆𝑢𝑑𝑢 − 𝐾)

+

∣ ℱ𝑡)                                                     (42) 

where ℱ𝑡 represents all the information about stock price until time 𝑡. Then 𝑀𝑡 is a martingale and 

𝑀𝑡 = 𝑆𝑡𝜙(𝑡, 𝜉𝑡),  𝜉𝑡 =
𝐾 −

1
𝑇 ∫  

𝑡

0
 𝑆𝑢𝑑𝑢

𝑆𝑡
                                                  (43) 

Proof. Let 𝑡 ≥ 𝑠, then it’s immediate that ℱ𝑠 ⊆ ℱ𝑡. Also we see that 
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𝐸(𝑀𝑡 ∣ ℱ𝑠)  = 𝐸 [(𝐸 ((
1

𝑇
∫  
𝑇

𝑡

 𝑆𝑢𝑑𝑢 − 𝐾)

+

∣ ℱ𝑡)) ∣ ℱ𝑠]

 = 𝐸 ((
1

𝑇
∫  
𝑇

𝑡

 𝑆𝑢𝑑𝑢 − 𝐾)

+

∣ ℱ𝑠)   (by Tower property) 

 = 𝑀𝑠

              (44) 

Thus by previous calculation, 𝑀𝑡 is a martingale. To see the second property holds: 

𝑀𝑡:  = 𝐸 ((
1

𝑇
∫  
𝑇

0

 𝑆𝑢𝑑𝑢 − 𝐾)

+

∣ ℱ𝑡)

 = 𝐸 [(
1

𝑇
∫  
𝑇

𝑡

 𝑆𝑢𝑑𝑢 − (𝐾 −
1

𝑇
∫  
𝑡

0

 𝑆𝑢𝑑𝑢))

+

∣ ℱ𝑡]

 = 𝑆𝑡𝐸 [(
1

𝑇
∫  
𝑇

𝑡

 
𝑆𝑢
𝑆𝑡
𝑑𝑢 −

𝐾 −
1
𝑇∫

 
𝑡

0
 𝑆𝑢𝑑𝑢

𝑆𝑡
)

+

∣ ℱ𝑡]

                                 (45) 

As 𝜉𝑡 is a deterministic function of 𝑆𝑢, ∀𝑢 ∈  [0, 𝑡], and 𝑆𝑢 is 𝐹𝑡−measurable by construction,  𝜉𝑡 
is ℱ𝑡− measurable. Thus 𝜉𝑡  is ℱ𝑡 -measurable. This means that given information of ℱ𝑡 , 𝜉𝑡  is fixed 

instead of a random variable, so we can let 𝑥 = 𝜉𝑡. 

In view of Black-Scholes’ model, it’s clear that 𝑆𝑢 = 𝑆𝑡exp {𝜎(𝑊𝑢 −𝑊𝑡)} + (𝑟 −
𝜎2

2
(𝑢 − 𝑡)}. If 𝑆𝑡 

is fixed, then 
𝑆𝑢

𝑆𝑡
 is independent of ℱ𝑡, as 𝑊𝑢 −𝑊𝑡 is independent of ℱ𝑡. Thus we have: 

𝑀𝑡 = 𝑆𝑡𝐸 (
1

𝑇
∫  
𝑇

𝑡

 
𝑆𝑢
𝑆𝑡
𝑑𝑢 − 𝜉𝑡)

+

∣ ℱ𝑡]

 = 𝑆𝑡𝐸 (
1

𝑇
∫  
𝑇

𝑡

 
𝑆𝑢
𝑆𝑡
𝑑𝑢 − 𝜉𝑡)

+

 = 𝑆𝑡𝜙(𝑡, 𝜉𝑡)

                                                     (46) 

Theorem 2.4 (A PDE approach). Let 𝑓 = 𝑒−𝑟(𝑇−𝑡)𝜙(𝑡, 𝑥) represents the price of Asian option. Then 

𝑓(𝑡, 𝑥) is determined by the following partial differential equation : 

                                                       
𝑑𝑓

𝑑𝑡
+
1

2
𝜎2𝑥2

𝑑2𝑓

𝑑𝑥2
= (

1

𝑇
+ 𝑟𝑥)

𝑑𝑓

𝑑𝑥
                                                      (48) 

With boundary conditions at 𝑡 = 𝑇 : 
𝑓(𝑇, 𝑥) = −max(𝑥, 0)( Fixed Strike )

𝑓(𝑇, 𝑥) = −max(1 + 𝑥, 0)( Floating Strike )
                                         (49) 

and when 𝑥 <= 0 : 

                          
𝑓(𝑡, 𝑥) =

(1 − 𝑒−𝑟(𝑇−𝑡))𝑆𝑡
𝑟𝑇

− 𝑥𝑒−𝑟(𝑇−𝑡)(Fixed Strike)

𝑓(𝑡, 𝑥) =
(1 − 𝑒−𝑟(𝑇−𝑡))𝑆𝑡

𝑟𝑇
− 𝑥𝑒−𝑟(𝑇−𝑡) − 𝑆𝑡(Floating Strike)

                               (50) 

Proof. (Sketch) The idea of the proof is to apply the Ito product rule to 𝑀𝑡. Since 𝑀𝑡 is a function 

of 𝑆𝑡 and 𝜙,𝜙 is also a function of 𝑡 and 𝜉. Therefore, we have to find the corresponding stochastic 

differential equation for each of them. Then according to the properties of martingale 𝑀𝑡, when obtain 

the PDE. We will only prove the case when strike price is fixed, the proof for floating strike is similar. 
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Recall 𝜉𝑡 =
1

𝑆𝑡
(𝐾 −

1

𝑇
∫  
𝑡

0
 𝑆𝑢𝑑𝑢) = −

1

𝑆𝑡
𝐴𝑡 where 

𝑑(𝐴𝑡) = 𝑑 (𝐾 −
1

𝑇
∫  
𝑡

0

 𝑆𝑢𝑑𝑢) =
1

𝑇
𝑆𝑡𝑑𝑡                                                   (51) 

Apply Ito chain rule to 𝑌𝑡 =
1

𝑆𝑡
 : 

𝑑𝑌𝑡 = 𝑑
1

𝑆𝑡
 = (0 −

1

𝑆𝑡
2 𝑟𝑆𝑡 +

1

2

2

𝑆𝑡
3 𝜎

2𝑆𝑡
2)𝑑𝑡 − 𝜎𝑆𝑡

1

𝑆𝑡
2 𝑑𝑊

 = −
1

𝑆𝑡
(𝑟 − 𝜎2)𝑑𝑡 −

1

𝑆𝑡
𝜎𝑑𝑊

                                (52) 

Then apply Ito product rule: 

𝑑𝜉𝑡  = 𝐴𝑡𝑑 (
1

𝑆𝑡
) +

1

𝑆𝑡
𝑑𝐴𝑡 + 𝑑 (

1

𝑆𝑡
)𝑑𝐴𝑡

 = (𝐾 −
1

𝑇
∫  
𝑡

0

 𝑆𝑢𝑑𝑢)(−
1

𝑆𝑡
(𝑟 − 𝜎2)𝑑𝑡 −

1

𝑆𝑡
𝜎𝑑𝑊) −

1

𝑆𝑡

1

𝑇
𝑆𝑡𝑑𝑡

 = −𝜉𝑡(𝑟 − 𝜎
2)𝑑𝑡 − 𝜉𝑡𝜎𝑑𝑊 −

1

𝑇
𝑑𝑡

 = (−
1

𝑇
− 𝜉𝑡𝑟 + 𝜉𝑡𝜎

2)𝑑𝑡 − 𝜎𝜉𝑡𝑑𝑊

              (53) 

Then apply Ito chain rule to 𝜙(𝑡, 𝜉) : 

𝑑𝜙 = (𝜙̇ + (−
1

𝑇
− 𝜉𝑟 + 𝜉𝜎2)𝜙′ +

1

2
𝜎2𝜉2𝜙′′)𝑑𝑡 − 𝜎𝜉𝜙′𝑑𝑊                           (54) 

Since 𝑀𝑡 is a function of 𝑆𝑡 and 𝜙, so the Ito product rule gives the following : 
𝑑𝑀  = 𝜙𝑑𝑆 + 𝑆𝑑𝜙 + 𝑑𝑆𝑑𝜙

 = 𝜙(𝑟𝑆𝑑𝑡 + 𝜎𝑆𝑑𝑊) + 𝑆 ((𝜙 + (−
1

𝑇
− 𝜉𝑟 + 𝜉𝜎2)𝜙′ +

1

2
𝜎2𝜉2𝜙′′)𝑑𝑡 − 𝜎𝜉𝜙′𝑑𝑊)− 𝜎2𝑆𝑡𝜉𝜙

′𝑑𝑡

 = 𝑆 (𝑟𝜙 + 𝜙̇ + 𝜙′ (−
1

𝑇
− 𝑟𝜉) +

𝜎2

2
𝜉2𝜙′′)𝑑𝑡 + (𝜙𝜎𝑆 − 𝜙′𝜎𝜉𝑆)𝑑𝑊

       (55) 

We have shown that 𝑀𝑡 is a martingale, so the “ 𝑑𝑡 “ term in the corresponding SDE must be 0 , 

hence we get: 

𝑟𝜙 + 𝜙̇ + 𝜙′ (−
1

𝑇
− 𝑟𝜉) +

𝜎2

2
𝜉2𝜙′′ = 0

𝑟𝜙 + 𝜙̇ +
𝜎2

2
𝜉2𝜙′′ = 𝜙′ (

1

𝑇
+ 𝑟𝜉)

                                                (56) 

Recall 𝑓 = 𝑒−𝑟(𝑇−𝑡)𝜙(𝑡, 𝑥), so 
𝑑𝑓

𝑑𝑡
= 𝑟𝜙 + 𝜙̇, and hence: 

𝑑𝑓

𝑑𝑡
+
1

2
𝜎2𝑥2

𝑑2𝑓

𝑑𝑥2
= (

1

𝑇
+ 𝑟𝑥)

𝑑𝑓

𝑑𝑥
                                                       (57) 

Therefore, the price of Asian option is given by 𝑓(0, 𝐾𝑆0
−1). For boundary conditions: 

At 𝑡 = 𝑇:    𝑓(𝑇, 𝑥) = 𝜙(𝑇, 𝑥) = 𝐸 [(
1

𝑇
∫  
𝑇

𝑇
 𝑆𝑢𝑑𝑢 − 𝑥)

+
] = −(𝑥)+ = min(𝑥, 0)           (58) 

When 𝑥 ≤ 0 : 
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𝑓(𝑡, 𝑥)  = 𝑒−𝑟(𝑇−𝑡)𝐸 [(
1

𝑇
∫  
𝑇

𝑡

 𝑆𝑢𝑑𝑢 − 𝑥)

+

]

 = 𝑒−𝑟(𝑇−𝑡)
1

𝑇
∫  
𝑇

𝑡

 𝐸[𝑆𝑢]𝑑𝑢 − 𝑥𝑒
−𝑟(𝑇−𝑡)

 = 𝑒−𝑟(𝑇−𝑡)
1

𝑇
∫  
𝑇

𝑡

 𝑆𝑡𝑒
𝑟(𝑢−𝑡)𝑑𝑢 − 𝑥𝑒−𝑟(𝑇−𝑡)

 = 𝑒−𝑟(𝑇−𝑡)
𝑆𝑡
𝑇
(𝑒𝑟(𝑇−𝑡) − 1) − 𝑥𝑒−𝑟(𝑇−𝑡)

 =
(1 − 𝑒−𝑟(𝑇−𝑡))𝑆𝑡

𝑟𝑇
− 𝑥𝑒−𝑟(𝑇−𝑡)

                                    (59) 

Although, it’s very difficult to obtain a general expression of the price function using the PDE (for 

positive 𝑥 for example), Roger and Shi provided an effective way to check the lower bounds for price 

functions. 

Theorem 2.5 (Roger and Shi Lower Bound). 𝑋 is a random variable such that 𝑋 =
1

𝑇
∫0
𝑇
 𝑆𝑇 − 𝐾.𝑋 

can be split into a positive part 𝑋+and a negative part 𝑋−such that 𝑋 = 𝑋+ − 𝑋−and : 

𝔼(𝑋+) = 𝔼(𝔼(𝑋 ∣ 𝑍+)) ≥ 𝔼(𝔼(𝑋 ∣ 𝑍)+)

0 ≤ 𝔼(𝑋+) − 𝔼(𝔼(𝑋 ∣ 𝑍)+) ≤
1

2
𝔼(√Var (𝑋 ∣ 𝑍))

                                         (60) 

Therefore, we have the lower and upper bound for the payoff function of Asian option : 

                                         
𝐿𝐵 = 𝔼(𝔼(𝑋 ∣ 𝑍)+)

𝑈𝐵 = 𝔼(𝔼(𝑋 ∣ 𝑍)+) +
1

2
𝔼(√Var (𝑋 ∣ 𝑍))

                                                (61) 

where 𝑍 is a Gaussian process with mean 0. 

Table 5 demonstrates the results of Monte Carlo Simulations together with the numerical method 

data from Roger and Shi’s paper. In fact, we can see that Monte Carlo Simulation gets more accurate 

information than the numerical methods used by Roger and Shi. 

Table 5. Asian option with different σ 

σ N PDE LB UB MC(M=100) MC(M=104) 

0.05 100 2.621 2.716 2.722 2.606 2.762 

 1000    2.824 2.689 

0.10 100 3.624 3.641 3.663 3.848 3.671 

 1000    3.534 3.633 

0.20 100 5.760 5.762 5.854 5.237 5.798 

 1000    5.549 5.775 

3.  Conclusion 

This paper starts from introducing the built-up of Continuous time model to show two approaches to get 

an option pricing formula. One is using the Risk-Neutral Valuation formula directly compute the 

expectation of the payoff function under risk-neutral measure. The other is to use the replicating 

portfolio for an option, then by law of one price they must have the same initial values. In the second 

method, we will end up a PDE with some boundary conditions whose solution(may be analytic or 

numeric) is the price of that option. We start from a simple example, the chooser option. After discussing 

about its feature, we found that its payoff is just the sum of a call and a put option, thus the price formula 

is straightforward. For Barrier option, we found it is easy to solve the corresponding PDE. For Look-
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back option, the risk neutral valuation formula works nicely, it was easy to get a explicit solution using 

reflection principle. Asian option is the most complicated example in our paper. We reviewed Roger and 

Shi’s method to derive and solve the embedded PDE together with the lower bound method. 

For each exotic option, we also compute the MC estimator for their price and compare with the exact 

solution. Our results show that Monte Carlo is a very reliable approximation, especially when we have 

a strong machine. For example, in Table 4, when we take N=10000, with M=106, the errors of Monte 

Carlo Simulation never go above 2%. Also, for example, in Table 5, the Monte Carlo simulation is much 

more reliable than the numerical solution to the partial differential equation derived by Roger and Shi. 

Moreover, although as in Table 3, binomial model is already a very good approximation to the analytic 

solution of the Barrier Option, the program of binomial model is always one-dimensional but the Monte 

Carlo Simulation allows multi-dimensions. 
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