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Abstract. Investigation of the properties of Quark-Gluon Plasma (QGP) is conducted mainly 

through heavy ion collisions at high energy levels. In this article, we studied simulated collision 

data via open data from CERN, constructed a geometric model of particle colliders with both 

Cartesian and spherical coordinates representing the collider, devised a transformation formula 

between the two coordinate systems, and determined the vertex of separate events through the 

Hough transform. After the determination of the vertex, we also classified events according to 

the centrality constant v_0 which described the mode of collision. It is worth noting that the 

significant noise in the data cannot be sufficiently cancelled using our processing algorithms, 

thus impacting the overall accuracy of results. Though the accuracy of the vertex location does 

not meet expectations, future optimizations in coding would improve the calculation process. 

With the quantitative model accurately constructed, coupled with sufficiently clear data, the 

results of this study would be more evident. 
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1.  Introduction 

1.1.  Quark-Gluon Plasma 

Believed to be the most fundamental states of matter, the Quark-Gluon Plasma (QGP) consists only of 

individual quarks and gluons. Current theory suggests that QGP is the state of matter that exists 

immediately after the Big Bang and can be replicated under certain conditions in particle colliders, in 

which extreme temperatures and pressures are reached. Under such conditions the quarks and gluons, 

normally confined within hadrons, are released by the weakening of the strong force.  The properties of 

QGP are similar to a perfect fluid, exhibiting low viscosity and strong collective behavior. As these 

conditions are most often reproduced in heavy ion collisions, instrumental studies of QGP are conducted 

largely at the Relativistic Heavy Ion Collider (RHIC), and the Large Hadron Collider (LHC) at CERN. 
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Also widely believed to be the state of matter that existed shortly after the Big Bang, the study of QGP 

can give insight into the strong force, the fundamental state of matter, and the early state of the cosmos. 

Particle colliders and detectors use simulation and instrumental experiments as ways of studying the 

various properties of QGP. In this article, we examine a set of simulated data with Au-Au heavy ion 

collisions and the detected results. 

1.2.  Particle Detectors 

As particle detectors cannot directly detect the position of particles, determination of the positions of 

energy fluctuations on multiple layers of cylindrical detectors is an alternate way. From this data of 

positions, the detector calculates the path of particles. For the reconstruction of events, the detector 

adopts a variant of spherical coordinates instead of Cartesian coordinates, with the polar axis (also the 

“beam axis”) perpendicular to the collision plane [1, 2], and the origin set at the geometric center of the 

cylindrical detectors. Through the collected data and a transformation function to be calculated in section 

2.1, the events are reconstructed.  

1.3.  Pseudorapidity 

The distribution of 𝜃  with respect to the beam axis is not uniform, which means that generating 

histogram of 𝜃 would not yield a flat distribution, resulting in difficulties for further analysis. Thus, the 

transformation for pseudorapidity (𝜂) is introduced: 

 

Figure 1. z-axis view of particle collider. 

𝜂 =  −ln (tan (
𝜃

2
)) 

Of which the reverse formula, used when the given values of the simulated ROOT data are in 

pseudorapidity form: 

θ =  2  ⋅ arctan(exp(−η)) 

And the preliminary conversion formulas are complete. Note that for this particular simulated 

experiment, η ranges from −1 to 1, limited by the dimensions of the detectors. 

1.4.  The Centrality 𝒗𝟎 

During collisions, the ions exhibit different modes [3-6]. One of the parameters separating the modes is 

the impact parameter 𝑣0, describing the centrality. Its value is measured as the distance between the 

center of the two colliding nuclei [2], which implies that a smaller value of 𝑣0 means a more head-on 

collision, while a larger value would mean that the collision is more peripheral. The number of particle 

hits can be drastically different depending on the value of 𝑣0, thus separation of data in the order of 𝑣0 

is needed. 
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2.  Method for Research 

2.1.  Mathematical Model 

 

Figure 2. 𝑥-axis view of particle collider. 

To construct a clear model of the collider, we first need to construct a coordinate system. Defining A as 

a detected point of energy fluctuation, a hypothetical cube with OA as the body diagonal is constructed, 

and edges parallel or perpendicular to the z-axis. Thus, the Cartesian coordinate (𝑥, 𝑦, 𝑧)  can be 

geometrically interpreted, as shown in fig. 2, determining the position mentioned above. And with 

further calculations in trigonometry, we can produce the transformation vector function as follows: 

[
𝑥
𝑦
𝑧
] = 𝑅 ⋅ [

sin(𝜑)

√cos2(𝜑) ⋅ sec2(𝜃) − 1

cos(𝜑)

]. 

In which 𝜑  and 𝜃  are defined in the introductory material. Through a reverse function with 

trigonometry, the ROOT data in (𝑅, 𝜂, 𝜑) mode can also be converted: 

[
𝑅
𝜃
𝜑
] =

[
 
 
 
 
 

𝑅

𝑎𝑟𝑐𝑡𝑎𝑛 (
√𝑥2 + 𝑦2

𝑧
)

𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑥

𝑦
)

]
 
 
 
 
 

 

Which leads to the completion of the mathematical model for the particle detector. Note that R is a 

determined constant, thus there is no need for conversion. 

2.2.  Vertex Determination 

To determine the vertices of events, we would need to calculate the differences between the 𝜑 and 𝜂 

values first. 

 

Figure 3. Geometric interpretations of 𝑣0 
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2.3.  Vertex With Centrality 

In order to investigate multiplicity for different types of Au+Au collisions, we inspected the centrality 

parameter 𝑣0 of all events, ranging from peripheral collision of 𝑣0 4406 to central collision with 

𝑣0410384.  

To give an overview, we plotted a histogram of 𝑣0values for all events, provided that we log scaled 

the frequency to obtain the impact parameter (see figure 4). The histogram meets our expectation such 

that there are a lot more events with smaller 𝑣0values comparing to those with bigger 𝑣0values. We then 

classified all collision events into 11 categories according to collision centrality, namely 0-5%, 5-10%, 

10-20%, 20-30%, 30-40%, 40-50%, 60-70%, 70-80%, 80-90% and 90-100%.  

In order to study Au+Au collisions in further detail, we chose to analyze the multiplicity of 10 events 

in each category of collision centrality. Multiplicity helps determine properties of the Au+Au collisions 

and is related to collision energy and number of participants in collisions. (In this case, the number of 

nucleons that are involved in the collision.) As shown in figure 3, one should note that the more central 

a collision is (high 𝑣0value), the larger number of participants would be created, thus less spectators, 

which are nucleons that aren’t involved and would just keep following the path of the beam. 

Prior to expanding on the analysis of multiplicity, please note that this specific set of data was 

generated from three layers of  

detectors, layer 0, 1 and 2; therefore, when analyzing the data, we used (delta eta) and (delta phi) 

values between layer 0 and 1, 0 and 2, 1 and 2 respectively to get three sets of results, which were then 

averaged out to show an overall trend. 

 

Figure 4. Histogram of 𝑣0 

The sideband method is introduced to study multiplicity. Procedures of the sideband method consists 

of choosing sideband and signal regions for Δ𝜑 according to a certain range of Δ𝜂 on our Δ𝜑- Δ𝜂 scatter 

diagram shown in figures 10-13. We defined the signal region as events that fall into the range -0.1≤
 Δ𝜂 ≤ 0.1, and sideband region as those satisfy -0.2≤  Δ𝜂 < -0.1 or 0.1<  Δ𝜂 ≤ 0.2, for which the 

sideband regions contain background signal particles, and the signal regions have signal and background 

particles. We subtracted the sideband region form the signal region to give an estimate of counts of 

participants. As shown in figures 10, 11, 13 and 14, we plotted histograms for Δ𝜑 in sideband region, 

signal region and of which after subtraction respectively for all 11 categories with 10 random sets of 

data. The triangular base represents background counts, whereas the peak at Δ𝜑 = 0  above the 

triangular base is considered to only contain the signal particles. Counts at Δ𝜑 = 0 inside the triangle 

was eliminated, the reason being there are other Standard Model processes going on in the background 

that are similar to those that produced the signal data we desire. The total count is obtained by adding 

up counts within the signal region of -0.1≤  Δ𝜑 ≤0.1. 
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Figure 5. A sample of the idea of Hough transform 

Figures 12 and 15 illustrate histograms of the sideband region, signal region and the peak of a 

different category in terms of centrality. As shown, a lower 𝑣0value results in a lower count and a flatter 

sideband region. We believe that since the collisions are getting more peripheral, not only the number 

of participants decreases, but also the proportion of background counts distributed around Δ𝜑 = 0 that 

confuse with the signal counts.  

However, the sideband method only gives a rough estimation; to lower the uncertainty, we 

normalized the result to produce a much more precise estimation of multiplicity. For normalization, we 

introduced 𝛼, which is a constant that represents the ratio of background counts in signal region to that 

in sideband region. It is calculated via: 

𝛼 =
𝑠𝑢𝑚 𝑜𝑓 𝑐𝑜𝑢𝑛𝑡𝑠 𝑖𝑛 𝑠𝑖𝑔𝑛𝑎𝑙 𝑟𝑒𝑔𝑖𝑜𝑛

𝑠𝑢𝑚 𝑜𝑓 𝑐𝑜𝑢𝑛𝑡𝑠 𝑖𝑛 𝑠𝑖𝑑𝑒𝑏𝑎𝑛𝑑 𝑟𝑒𝑔𝑖𝑜𝑛
   , 

 
 

Figure 6. A sample of the idea of Hough 

transform 
Figure 7. Histogram with 𝑧 = 11 

with −2𝜋 ≤ Δ𝜑 < −1 or1 ≤ Δ𝜑 ≤ 2𝜋)). We then multiplied each individual count of (delta phi) from 

the sideband region by alpha to mimic the background count of which in the signal region. The 

subtraction of normalized sideband region from the original signal region is then carried out and a peak 

with less noise is produced as shown in figure15. The trend of signal counts with descending 𝑣0remains 

the same. 

In a particle collier, the two original particles that are about to hit lay on the same position of a cross 

section plane off the collider from the side, which means that the x and y axis of these two particles are 

irrelevant. Therefore, only the z axis needs to be analyzed in order to find the position of the collision 

point. The data set contains the positions of the hits on the layers of the collider by the released particles 

from the collision. This relative position of the hits is based on the midpoint of the collider. Since there 

are 3 layers on the collider that detects these hits, we choose to separate the 3 layers into 3 sets of 2 and 
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analyze the deltas separately. We tried to find all the combinations of the hits on the 2 layers, draw the 

line that pass through the 2 hits representing a possible particle that create these two hits, and find the 

point where an extreme large number of lines suddenly come to an interaction and that point should be 

the place where the collision took place. However, this strategy is too complicated with the amount of 

data we got from a collision, so we came up with another strategy based on the idea of Hough transform 

making the process more efficient and the result more reliable. In the strategy, a hypothesis point of 

collision called u is set on the z axis. If use E as a reference point for the position of the hits, the z axis 

of the hits changes to be relative to E and convert this new set of data into a simpler form to analyze—

eta and phi. We can then get all the combinations of delta eta and delta phi and since both eta and phi 

are angle values for the line that connects the hit and the origin, which is E in this case, the smaller the 

absolute value of delta eta and the absolute value of delta phi is the closer the line crossing the 2 hits is 

to u. Next, take out the delta etas and draw a histogram based on its values to make the results clearer. 

However, the look of the graphs turns out to be different from what was expected, so we encountered 

delta phi in the process. After getting all delta eta and delta phi, add in a process that removes all the 

combination of two hits with a delta phi outside the range of [-0.1, 0.1] since the 2 hits for these Δ𝜑 are 

not created by the same particle. We can then repeat the rest of the process again and find the E with an 

extreme peak in the histogram and that should be the correct collision point. On the basis, the other 2 

combinations of layers can be used to verify the E we got from 1 combination of layers. 

  

Figure 8. Histogram with 𝑧 = −2 Figure 9. Theoretical Distribution of Δ𝜑 

3.  Conclusion 

During the process of our research, we constructed a satisfactory quantitative model of a particle detector, 

and through the Hough transform and classification process with 𝑣0, determined that the vertex of events 

is relatively close to the geometric center of the detector. In the future, we wish to examine the events 

in groups corresponding to the 𝑣0 values, determining the correlation between the centrality value and 

the vertex position. Also, optimization of the algorithm calculating the vertex is needed, which would 

improve the accuracy of the measurements, helping more thorough investigations into the properties of 

QGP. 
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Appendix: Graphs for the Centrality value 

  

Figure 10. Distribution of Δ𝜑(1) Figure 11. Distribution of Δ𝜑(2) 

  

Figure 12. Results (1) Figure 13. Distribution of Δ𝜑(3) 

  

Figure 14. Distribution of Δ𝜑(2) Figure 15. Results (2) 
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