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Abstract. The Hurwitz enumeration problem studies how to determine the Hurwitz number for 

a branch profile, which counts the number of ways a per mutation can be factored into 

transpositions. In this paper, we consider the length of strictly monotone factorization from the 

perspective of Cayley graph theory. We represent the factorization problem using a Cayley graph, 

where vertices are permutations and edges are transpositions. Our focus is proving the unique 

monotone factorization theorem, which states that for a given permutation, there is only one 

monotone factorization of minimal length. To prove this, we employ inductive arguments on the 

structure of the Cayley graph. The key insight is using the connectivity of the graph and 

properties of shortest paths to characterize the uniqueness of the minimal factorization. This 

inductive approach allows us to rigorously connect the combinatorial Hurwitz problem to 

foundational graph concepts. Overall, this paper makes important theoretical advances in 

enumerating Hurwitz numbers by using Cayley graphs and induction to prove the novel unique 

monotone factorization theorem. The connections drawn between combinatorics, graphs, and 

inductive proofs are technically innovative. This theoretical foundation will hopefully stimulate 

further research into the deep links between the Hurwitz problem and other branches of 

mathematics. 
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1.  Introduction  

Hurwitz number has been a well-known problem studied from different perspectives [1,2]. These 

perspectives include matrix models, Gro mov–Witten invariants, topological recursion, and classical and 

quantum integrable systems [1-3]. The Hurwitz number problem has connections to many areas of 

mathematics, as evidenced by the diverse approaches taken to study it [4-7]. The problem of simple 

Hurwitz numbers is solved [8]. Overall, Hurwitz numbers have various underlying geometric structures 

that connect them to diverse areas of mathematics [9,10]. One specific area of research considers how 

many transpositions in strictly monotone factorizations of a permutation in the symmetric group Sn. 

Trans positions are one of the simplest types of permutations. Strictly monotone factorizations 

decompose a permutation into adjacent transpositions while preserving the permuted order. The number 

of such factorizations gives the Hurwitz number in this case. Understanding monotonic factorizations 

reveals combinatorial aspects of Hurwitz numbers. More broadly, continuing research on Hurwitz 

numbers, such as exploring their connections to moduli spaces and integrable systems, can provide 
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insight into complex geometrical objects like higher genus Riemann surfaces. Advancing knowledge of 

enumerative problems like the Hurwitz enumeration remains an active area of mathematical inquiry. 

This paper considers the number of transpositions of strictly monotone factorization of a permutation in 

symmetry group 𝑆𝑛. 

2.  Definitions and Preliminaries 

Definition 1. A symmetry group is a subgroup of the group of isometries or rigid motions of a geometric 

object that maps the object onto itself.  

Theorem 1. Every permutation σ can be decomposed into products of dis joint cyclic permutations 

Let 𝑇 ⊂ 𝑆𝑛 is the set of transpositions, i.e. 𝑇 contains 2-cycles s.t. (𝑖, 𝑗), 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛. 𝑇 can 

generate 𝑆𝑛 according to Theorem 1. Obviously, there are many ways to factorize a permutation 𝜎. 

Definition 2. For each permutation 𝜎, there is a minimal value of r such that the factorization exists, 

and r is called word norm of σ and denoted |𝜎|. 
Proposition 1. For every permutation 𝜎, all factorizations have the same parity. 

Proof. If 𝜎  is even, the sign of permutations is +1   if 𝜎  is odd, the sign of permutations is −1 . 

Therefore, the sign of a permutation 𝜎 is 

𝑠𝑔𝑛(𝜎) = (−1)𝑚 (1) 

where 𝑚 is the number of transpositions in the decomposition. Such decom positions are not unique. If 

we can prove that ∀𝜎 is permutation, the sign of 𝜎, 𝑠𝑔𝑛(𝜎), will not change, Proposition 1 has been 

proved. Since for all 𝜏 ∈ 𝑇, 𝜏2 = 𝑖, identity element, the parity of 𝑚 will not change  the sign of a 

permutation 𝜎 will not change. Therefore, for every permutation 𝜎, all factorizations have the same 

parity. 

Theorem 2. |𝜎| = 𝑛 − 𝑐(𝜎), where 𝑛 is the order of the symmetric group and 𝑐(𝜎) is the number of 

factors in the unique decomposition of 𝜎.  

Remark. 𝑐(𝜎) includes 1-cycles (fixed numbers)  

Definition 3. The metric function  

𝑑 ∶ 𝑆𝑛 × 𝑆𝑛 → ℕ (2) 

is defined by 𝑑(𝜌, 𝜎)  = |𝜌−1𝜎|,  

Then, we can define the radius set 𝐵𝑟(𝜌) = {𝜌 ∈ 𝑆𝑛|𝑑(𝜌, 𝜎) < 𝑟} centered at permutation 𝜌. 

Definition 4. A Cayley graph is a graph that represents the elements of a group as vertices, with edges 

connecting vertices corresponding to the action of generators of the group on the elements.  

Remark. A group might have different Cayley graphs depend on different generating sets.  

The function 𝑑 is the distance on the Cayley garph 𝛤𝑛 = 𝐶𝑎𝑦(𝑆𝑛, 𝑇), the Cayley graph generated 

by the transposition subset 𝑇 . The vertex set of 𝛤𝑛  is 𝑆𝑛 , and two permutations 𝜌, 𝜎 ∈ 𝑆𝑛  are 

connected by the edge if and only if ∃𝜏 ∈ 𝑇  such that 𝜎 = 𝜌𝜏 . Besides, 𝛤𝑛  is an undirected graph 

because 𝜏2 = 𝑖, the identity permutation ∀𝜏 ∈ 𝑇 since all the elements in 𝑇 are transpositions. 

3.  Unique Monotone Factorization  

In this section, we will present Hurwitz enumeration problem in terms of Cayley graph, propose unique 

monotone factorization theorem, and prove the theorem. 

Problem. What is the number of strictly monotone walks from to 𝑖 to a permutation 𝜋 on the Cayley 

graph 𝛤𝑛?  

Given an 𝑟-step walks on 𝛤𝑛, we define its signature to be the corresponding sequence 𝑗1, . . . , 𝑗𝑟 of 

edge labels. If its signature is a strictly increasing sequence, a walk is strictly monotone. Thus, an 𝑟-

step strictly monotone walk from 𝑖 to 𝜎 is the same thing as a strictly monotone factorization of σ into 

r transpositions, i.e. 𝜎 = (𝑖1, 𝑗1). . . (𝑖𝑟 , 𝑗𝑟) such that 𝑗1 <. . . < 𝑗𝑟. 

Theorem 3 (Unique Monotone Factorization). Every permutation 𝜋 ∈ 𝑆𝑛  has a unique strictly 

monotone factorization, and the length of this factorization is equal to |𝜋|. That is, 
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�⃗⃗⃗� ⃗⃗  ⃗𝑟(𝜋) = {
1,   if 𝑟 = |𝜋|
0,   otherwise

(3) 

We will use induction hypothesis to prove Theorem 3. 

Proof. We first consider 𝑛 = 2. 𝑆2 = {𝑖, 𝜏} with 𝑖 = (1)(2) and 𝜏 = (12). The complete answer to the 

Hurwitz enumeration problem for 𝑛 = 2 is given by 

𝑊𝑟(𝑖) = {
1,   if 𝑟 is even
0,    if 𝑟 is odd

(4) 

and 

𝑊𝑟(𝜏) = {
1,    if 𝑟 is odd
0,   if 𝑟 is even

(5) 

If we want the factorization to be strictly monotone, the answer will be 

�⃗⃗⃗� ⃗⃗  ⃗𝑟(𝑖) = {
1,        if 𝑟 = 0
0,   otherwise

(6) 

and 

�⃗⃗⃗� ⃗⃗  ⃗𝑟(𝜏) = {
1,        if 𝑟 = 1
0,   otherwise

(7) 

Let 𝑛 > 2 and let 𝜋 in 𝑆𝑛 be any permutation. There are 2 cases to consider.  

Case 1. 𝑛 is fixed point in permutation 𝜋, i.e. 𝜋(𝑛) = 𝑛.  

The induction hypothesis is 𝜋 ∈ 𝑆𝑛−1 has a unique strictly monotone factorization. Therefore, 𝜋 ∈
𝑆𝑛 has a unique strictly monotone factorization since we suppose 𝜋 ∈ 𝑆𝑛. 

Case 2. 𝑛 is not fixed point in permutation 𝜋, i.e. 𝜋(𝑛) ≠ 𝑛.  

Thus, 

𝜋 = 𝜋 ′(𝑎𝑑) (8) 

where 𝜋′ ∈ 𝑆𝑛−1  and 𝑎 ∈ {1, . . . , 𝑑 − 1} . The induction hypothesis is 𝜋′  has a unique strictly 

monotone factorization of length equal to |𝜋′|𝑛−1 . Thus, for 𝜋 ∈ 𝑆𝑛 , the unique strictly monotone 

factorization of length equal to 

|𝜋 ′(𝑎𝑑)|
𝑛

= |𝜋 ′|
𝑛−1

+ 1 = |𝜋|𝑛 (9) 

We finally get the result. 

4.  Conclusion 

In conclusion, this paper makes an important contribution to the study of Hurwitz enumeration by using 

Cayley graph theory and induction to prove the unique monotone factorization theorem. This novel 

result characterizes the uniqueness of minimal-length monotone factorizations of permutations into 

transpositions. The core technical innovation is representing permutations as vertices in the Cayley 

graph, with transpositions as edges. Properties of connectivity and shortest paths in this graphical 

representation allowed an inductive proof of the theorem. Overall, this provides elegant new connections 

between the combinatorics of the Hurwitz problem, graph theory, and inductive arguments. Looking 

forward, the theoretical foundation established here could stimulate new research directions, like 

exploring links to moduli spaces and integrable systems. The inductive tools used in the proof may also 

find wider applications in analyzing other combinatorial enumeration problems. By uniting diverse 

fields including group theory, graphs, and induction, this paper exemplifies how bringing together 

perspectives from across mathematics can drive progress on deep open questions. 
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