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Abstract. The Fourier transform was proposed by Fourier in 1807. Fourier transform is a 

method of analyzing signals, which can analyze the components of the signal or synthesize the 

signal using these components. Many waveforms can be used as signal components, such as sine 

waves, square waves, sawtooth waves, etc. The Fourier transform uses sine waves as 

components of the signal. Due to its excellent properties, the Fourier transform has a wide range 

of applications in physics, number theory, combinatorial mathematics, signal processing, 

probability, statistics, cryptography, acoustics, optics, and other fields. This paper focuses on the 

study of fractional-order Fourier transform in the engineering field, for the equipment of the tiny 

fault diagnosis method, and according to some existing diagnostic methods, put forward the idea 

of diagnostic method enhancement. 
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1.  Introduction 

The traditional Fourier transform is suitable for smooth signals. However, it still has limitations and is 

not so effective in solving all problems in practical applications. For example, the analysis of systems 

that consist of non-smooth signals is very insufficient, which is due to the Fourier transform using the 

global basis function decided. Therefore, the fractional order Fourier is proposed, and the fractional 

order Fourier can show good characteristics in analyzing certain non-smooth signal transforms. 

The mathematical definition of the Fourier series states that a non-sinusoidal function (signal) can be 

stated by an infinite number of sums of sinusoidal with frequencies that are integer (including zero) 

multiples of its fundamental frequency. The Fourier transform expands the period of integration to the 

infinity of the formation.  

Fractional Fourier transform can be defined from the perspective of integration, from the perspective 

of eigenvalues and feature functions, and from the perspective of time-frequency surface rotation, and 

the three definitions are equivalent to each other. The following will introduce the definition and 

properties of FRFT from the above three: 

From the perspective of integration, the Fourier transform of function f(𝑥)is represented by {𝐹𝑓}(𝑥) 

and the integral power 𝐹𝑗 of operator F ≡ F1 can be defined as its continuous application. Then, there 

are {𝐹2𝑓}(𝑥) = 𝑓(−𝑥) and {𝐹4𝑓}(𝑥) = 𝑓(𝑥). The a-order fractional Fourier transform of function 

{𝐹𝑎𝑓}(𝑥)(0 < |𝑎| < 2) can be defined as: 

𝐹𝑎[𝑓(𝑥)] ≡ {𝐹𝑎𝑓}(𝑥) ≡ ∫ 𝐵𝑎(𝑥, 𝑥′)𝑓(𝑥′)𝑑𝑥′
+∞
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𝐵𝑎(𝑥, 𝑥′) ≡ 𝐴𝜑𝑒𝑖𝜋(𝑥2𝑐𝑜𝑡𝜑−2𝑥𝑥′𝑐𝑠𝑐𝜑+𝑥′2𝑐𝑜𝑡𝜑) 

𝐴𝜑 =
𝑒−𝑖𝜋 𝑠𝑔𝑛(𝑠𝑖𝑛𝜑)/4+𝑖𝜑/2

|𝑠𝑖𝑛𝜑|
1
2

 

Among them, 𝜑 is the rotation angle of the fractional Fourier transform, 𝜑 =
𝑎𝜋

2
, i is the imaginary 

unit, x is a variable in the time domain, x’ is a variable in the a-order fractional domain, 𝐵𝑎(𝑥, 𝑥′) is the 

kernel function of the fractional Fourier transform, 𝐴𝜑  is the amplitude of the fractional Fourier 

transform. For a=0 and 𝑎 = ±2, there is a kernel function 

𝐵0(𝑥, 𝑥′) ≡ 𝛿(𝑥 − 𝑥′) 

𝐵±2(𝑥, 𝑥′) ≡ 𝛿(𝑥 + 𝑥′) 

Where 𝛿(𝑥) is the Dirac function. 

2.  Application of Fractional Order Fourier Transform to Detection of Minor Faults in Industrial 

Equipment 

2.1.  Related Research 

The fractional order Fourier transform can be regarded as a generalized form of the ordinary Fourier 

transform. Compared with the ordinary Fourier transform, it is more capable of reflecting the joint 

characteristics of time and frequency of the signal. And it has the advantages of stronger noise 

suppression, high time-frequency resolution, and absence of cross terms [6]. Because most of the data 

signals in industrial processes are non-stationary signals, ordinary Fourier transform is not enough to 

analyze their significant features. Fractional order Fourier transform can be used to analyze the problem 

from the perspective of the most concentrated information, that is, to select the result with the largest 

amplitude among the results obtained by different fractional orders, and then the fractional order of this 

result is the optimal order. Moreover, the fractional order Fourier transform can reduce the estimation 

distortion and the mean square deviation of the noise signal, which is more advantageous for dealing 

with multi-component industrial process fault data. Wiener [10] firstly proposed the concept of 

Fractional Order Fourier Transform (FRFT) in 1929. He proposed a new transform kernel, whose 

eigenfunction is a Hilbert-Gaussian function but whose eigenvalue form is more complete than that of 

the common. In 1937, Condon independently studied some basic definitions of the FRFT, and in 1939, 

Kober defined the FRFT as a fractional power of the Fourier transform. 1980, Namias reintroduced the 

concept of the FRFT in a purely mathematical way and applied it to the solution of partial differential 

equations. In 1992, Mendlovic and Ozaktas introduced the FRFT from Wigner’s work. Ozaktas 

redefined the FRFT in terms of the Wigner distribution, interpreted its physical meaning as the rotation 

of the signal’s representation axis in the time-frequency plane, and successfully applied it to the field of 

optics. In 1996, Ozaktas et al. [11] proposed the discrete fractional Fourier transform (DFRFT), which is 

a method for solving partial differential equations. It decomposes FRFT into convolutional form and 

realizes DFRFT by Fast Fourier Transform. 2007, Xinghao Zhao [12] proposed a new fast algorithm for 

fractional order Fourier transform. Fractional order Fourier transform has been gradually utilized in 

feature extraction and fault detection because it can transform from a time domain to a frequency 

domain step by step, decompose the conversion process in detail, and show all the features of the signal 

from the time domain to the frequency domain completely. 

With the increasing complexity of modern industrial production systems, large industrial systems are 

more prone to major safety accidents. To ensure that the industrial production process can operate stably 

for a long period of time, the timely detection of early failures or minor failures has become a problem. 

When monitoring industrial processes, if the occurrence of faults is caused by very small changes, it is 

difficult to be noticed in the early stage of occurrence, and often causes a series of reactions in the later 

stage, and eventually leads to accidents, which poses a challenge for detecting these tiny faults. Because 

of the small deviation from normal values and low amplitude of minor faults at the early stage of 

occurrence, and the slow process of change compared to obvious faults, the impact on the system is 
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almost imperceptible. However, the accumulation of these glitches over a long period of time can have 

serious consequences for the system. If the fault information can be detected in the early stage of the 

failure, timely intervention and adjustment, a series of unnecessary losses can be avoided. Therefore, the 

detection of minor faults is particularly important in industrial systems. 

Most of the micro-fault data signals in modern industrial processes are non-stationary signals, and 

the ordinary Fourier transform is not enough to analyze their significant features. Using the 

fractional-order Fourier transform, the time domain amplitude characteristics of the micro-fault signal 

are not obvious to transform the fractional-order domain, in the amplitude characteristics of the obvious 

fractional-order domain to analyze the information of the micro-fault and detection can effectively 

improve the detection rate of the micro-fault. Moreover, the fractional-order Fourier transform can 

reduce the estimation distortion and the mean square deviation of the noise signal, which is more 

advantageous for processing multi-component industrial process fault data. 

Let the original data matrix be 𝑋, 𝑋 ∈ 𝑅𝑚∗𝑁. Among them, m is the number of control variables and 

N is the number of observation samples. The covariance matrix corresponding to 𝐶 =
1

𝑁−1
𝑋𝑋𝑇 . 

Because covariance matrix C is an m-dimensional real symmetric matrix, m unit orthogonal vectors can 

be found to make covariance matrix C similar to diagonalization. Let m feature vectors be 𝑎1, 𝑎2,𝑎3,.. 

form a matrix 𝐷 = (𝑎1, 𝑎2, 𝑎3) in columns, then C =
1

N−1
𝑋𝑋𝑇 = 𝐷𝛬𝐷. Among them, 𝛬 is a diagonal 

matrix, and its diagonal elements are the corresponding eigenvalues of each eigenvector 𝜆, the variance 

of each variable. 

𝛬 = 𝐷𝑇𝐶𝐷 = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆2, . . . 𝜆𝑚) 

Enlarge the variance of all variables 𝜆  times which means amplifying the eigenvector of the 

covariance matrix C 𝜆 Times. Namely, 

𝛬1/2𝐷𝑇𝐶𝐷𝛬1/2=𝛬2 = 𝑑𝑖𝑎𝑔(𝜆1
2, 𝜆2

2, . . . 𝜆𝑚
2) 

Perform a base transformation on data X, where Y=PX, P is the base matrix, and Y is the data 

obtained after X performs the base transformation on P, so that the fault data after the base 

transformation is independent of each other and the eigenvectors are amplified 𝜆  times. Let the 

covariance matrix of Y be D: 

D=
1

𝑛
𝑌𝑌𝑇 =

1

𝑛
𝑃𝑋𝑋𝑇𝑃𝑇 = 𝑃(

1

𝑛
𝑋𝑋𝑇)𝑃𝑇 = 𝑃𝐶𝑃𝑇 

And from equation, it can be seen that D = 𝛬2 =𝛬1/2𝐷𝑇𝐶𝐷𝛬1/2 . From this, the base matrix 

P=𝛬1/2𝑄𝑇. Multiplying the base matrix P with the original data matrix X yields the data matrix Y after 

scaling the feature vector by 𝜆 times. 

At the same time, the main reason why it is difficult to detect small faults is that the amplitude 

characteristics are not obvious, the transformation rate is slow, and it is easily masked by interference 

signals. Fractional order Fourier transform can transform the digital signal with insignificant amplitude 

characteristics in the time domain to the fractional order domain with more obvious amplitude 

characteristics and filter part of the high-frequency interference signals and noise signals. Moreover, 

most of the modern industrial systems are nonlinear, which increases the difficulty of detecting small 

faults. Kernel Principal Component Analysis (KPCA) can map the nonlinear data into a linearly 

divisible high-dimensional space, extract the principal elements in the high-dimensional feature space, 

and complete the fault detection. 

In summary, compared to obvious faults, minor faults are characterized by low rate, low frequency, 

smaller amplitude, and easy to be overwhelmed by disturbances and noise [1]. One of them is a potential 

fault with a small deviation from the normal operating condition, but after a long-time accumulation, it 

can lead to a safety problem in the system. For example, in electric drive systems, failures are caused by 

the presence of ring defects within the bearing runners [2-3]. The other type of faults is early faults that 

have less impact on the system. Early faults have low amplitude in the pre-fault period. However, during 

the evolution of the fault, it develops into an obvious fault once it exceeds a defined maximum value, 
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such as faults in industrial systems due to wear and tear and normal aging of the devices [4], and faults in 

transformers of power supply system’s due to arc discharges [5]. Therefore, the study of detection of 

minor faults is of theoretical significance and practical value. Generally, a fault in an industrial process 

is defined as a deviation of at least one system indicator or variable beyond the tolerance range. The 

general process of fault detection and diagnosis is to analyze the production state of an industrial system, 

then determine whether an abnormality occurs in the system, and if a fault occurs, further determine the 

cause of the fault, and finally draw a conclusion. When a fault occurs in the production process, the task 

of fault detection is to be able to detect the fault in a timely and accurate manner. However, due to the 

limitations of the existing fault detection methods due to the level of technological development, there 

are usually false alarms and omissions, and we cannot make a completely accurate judgment on whether 

the fault occurs. Moreover, the process data of modern complex industrial systems are characterized by 

diversity, nonlinearity and sea quantization, and traditional fault detection methods are difficult to apply 

in modern industrial processes. Therefore, how to mine effective information based on these data and 

construct an efficient intelligent fault detection model, so as to realize the rapid and accurate judgment 

of the tiny faults occurring in the industrial process is the biggest challenge in the field of industrial fault 

detection. 

Wiener first proposed the concept of Fractional Fourier Transform (FRFT) in 1929. The fractional 

Fourier Transform is the same time-frequency transform, reflecting the signal’s information in both time 

and frequency domains. As the order grows continuously from 0 to 1, the fractional-order Fourier 

transform shows all the characteristics of the signal that change gradually from the time domain to the 

frequency domain, which can provide a greater choice for the time-frequency analysis of the signal. 

Moreover, because it can transform from the time domain to the frequency domain step by step, 

decompose the conversion process in detail, and show all the features of the signal from the time domain 

to the frequency domain, it has gradually started to be utilized in feature extraction and fault detection. 

The main reason why it is difficult to detect micro faults is that the differentiation between micro 

fault data and normal data is not obvious. Suppose the eigenvectors of the glitch data are scaled, and the 

variance of the data is enlarged. In that case, the main features of the glitches can be emphasized, making 

the differentiation between the glitch data and the normal data obvious and thus improving the detection 

rate of glitches. The eigenvalues of the data, i.e., the variance, portray how much the data fluctuates with 

respect to its mathematical expectation. The data has different values projected in different directions in 

space, and the projection direction can be determined by a set of bases. So, the ultimate goal of 

eigenvector scaling of data is to find a set of bases such that the variance value of the data becomes large 

after the data is subjected to base transformation. So, the sampled values need to be computed by the 

discrete FRFT algorithm. Currently, the main ways to implement fast algorithms for DFRFT are 

weighting methods, decomposition methods, eigenvalue and eigenvector methods, and direct 

discretization of the FRFT [13]. a discrete algorithm introduced by Haldun M. Ozaktas and Orhan 

Arikan [11] et al. The decomposition method proposed by Ozaktas decomposes the expression of the 

FRFT into the signal’s convolutional the decomposition method proposed by Ozaktas decomposes 

expression of FRFT into the convolutional form of the signal, and utilizes the FFT to compute the FRFT, 

the computational speed is comparable to that of the FFT, and it is one of the faster methods. Zhao 

Huimin et al [6] proposed a fault diagnosis model based on fractional-order Fourier transform and long 

and short-term memory network, which solved the problem of weak fault features that are difficult to be 

extracted and recognized in the early fault diagnosis of transmission gears. Wu Xin [7] applied 

fractional-order Fourier transform to preprocess and feature extraction of the collected fault signals to 

obtain the feature vector suitable for subsequent fault classification, and effectively extracted the fault 

features in the inverter circuit. Peng Zhang [8] applied the fractional order Fourier transform to the fault 

diagnosis of rotating machines and achieved good innovative results. Luo Hui et al [9] proposed a fault 

feature extraction method for analog circuits based on optimal fractional-order Fourier transform 

(FRFT), which enhances the differentiability of different fault modes in analog circuits and improves the 

accuracy of diagnostic results. However, most of the above methods are researched for fault diagnosis. 

Moreover, most of the application scenarios are small industrial systems, and there are few studies on 
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the detection of tiny faults in large industrial systems. Therefore, this paper applies the fractional order 

Fourier transform to studying tiny fault detection in industrial processes, which has certain theoretical 

significance and practical value. 

In addition, fractional order Fourier transforms must be analyzed simultaneously in conjunction with 

PCA analysis methods. In the last decades, the need for effective quality monitoring and safe operation 

in the chemical industry has driven the research of statistically based methods for fault detection and 

diagnosis. Multivariate statistical methods such as Principal Component Analysis (PCA) [13-15], 

Partial Least Squares (PLS) [16-18], and Independent Component Analysis (ICA) [19-21] have been 

developed and applied to this process. Among them, PCA is the most popular one. However, these 

methods assume that the relationship between the variables is linear, and they are no longer applicable to 

nonlinear systems. To address the nonlinear challenges in industrial processes, Mika S [22] et al. 

proposed a new kernel principal component analysis (KPCA) method, which has been rapidly 

developed since then. KPCA can efficiently compute principal elements in high-dimensional feature 

spaces by means of dot product operations and nonlinear kernel functions. The main advantage of 

KPCA over other nonlinear methods is that it does not involve nonlinear optimization and essentially 

requires only algebraic operations, making it as simple as the standard PCA process. The method only 

needs to solve the eigenvalue problem, and using different kernel functions allows it to handle many 

different nonlinear processes. In addition, KPCA does not require the number of principal elements to be 

specified prior to extracting features from the data. Due to these advantages, KPCA has shown better 

performance than linear PCA in feature extraction and classification of nonlinear systems. The basic 

idea of kernel principal element analysis (KPCA) is to first map the data space to the high-dimensional 

feature space through a nonlinear mapping. Then, principal elements are computed in the 

high-dimensional feature space. In general, principal element analysis can effectively handle 

observations that vary linearly. However, when the variation is nonlinear, the PCA method is no longer 

applicable. According to the Cover theorem, nonlinear data in a low-dimensional space can always be 

mapped to a higher-dimensional space with linear variation. That is, the nonlinear data structure in the 

input space is more likely to be linear after a high-dimensional nonlinear mapping, and this 

high-dimensional linear space is called the feature space. kPCA essentially constructs a nonlinear 

mapping from the low-dimensional input space to the high-dimensional feature space, and by 

introducing the kernel function, the agnostic nonlinear mapping function can be computed explicitly by 

the kernel function. kPCA can be regarded as a general-purpose nonlinear PCA extension that can utilize 

integral operators and nonlinear kernel functions to compute principal elements in high-dimensional 

feature spaces efficiently. Moreover, the fact that KPCA can contain different kernel functions allows 

KPCA to handle a wide range of nonlinear problems. In addition, KPCA does not need to predict the 

number of preserved principal elements (PCs), making it more efficient for nonlinear data processing. 

2.2.  Major problems 

(1) In industrial systems with complex backgrounds, micro-faults are difficult to extract due to their 

weak fault characteristics, and they are highly susceptible to being overwhelmed by noise signals and 

interference signals, which increases the difficulty of detecting micro-faults. 

(2) Currently, most fault detection methods have good results for fault detection of linear processes. 

However, for the detection of minor faults in nonlinear processes, most linear methods are not good at 

extracting the main features of minor faults. 

(3) Currently, most industrial systems are closed-loop systems. Closed-loop systems will have a 

certain degree of fault-tolerance due to the compensating effect of their feedback control, resulting in 

tiny faults that are more difficult to detect. 

3.  Conclusion 

For the problem that the amplitude of the glitches is small, the features are not obvious, and they are 

easily masked by interference and noise signals, the fractional-order Fourier transform glitch detection 

method based on the scaling of data feature vectors can be considered. Firstly, the feature vector of the 
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glitch data is scaled to amplify the variance of the glitch data, highlight the main features of the glitch, 

and increase the separability of the glitch data from the normal data. Then, fractional Fourier Transform 

(FRFT) is performed on the scaled data to transform the data signals with inconspicuous characteristics 

in the time domain to the fractional order domain and analyze the information of the glitches in the 

fractional order domain where the glitch amplitude changes are most obvious. Not only can it overcome 

the shortcomings of the inconspicuous characteristics of the amplitude of the glitches, but it also filters 

part of the perturbation signal and noise signal. Finally, the principal component analysis (PCA) is used 

in the fractional order domain to detect micro faults. 

In view of the nonlinearity, real-time problems, and small deviations generated by micro faults in 

industrial processes, the kernel principal element analysis method based on the sliding window 

technique fractional-order Fourier transform can be considered to detect micro faults. First, using the 

sliding window technique, the deviation generated by the tiny fault data within the window is 

accumulated by choosing the appropriate window width so as to realize the amplification of the tiny 

faults and achieve the degree of easy detection. Then, the processed data are transformed to the 

fractional order domain to amplify the amplitude of the tiny faults and make them easier to be detected. 

Finally, for the chemical process monitoring data characterized by high dimensionality and nonlinearity, 

the KPCA is used to complete the detection of tiny faults. 
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