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Abstract. The scholarly paper conducts a thorough examination and evaluation of five primary 

derivatives of the Miura-Ori fold, a fundamental structure in the art of origami. Each derivative 

is meticulously studied through the creation of a tangible model, bringing the theoretical 

concepts to life. The space occupied by each model is precisely measured, providing a practical 

perspective to the study. These measurements are then compared and contrasted with the 

outcomes predicted by theoretical deductions, offering a comprehensive understanding of the 

accuracy of the theoretical models. The paper then transitions to encapsulate the most recent 

advancements and developments in the intriguing field of Miura-Ori folds. The potential 

applications of these primary derivatives are not limited to single-layered structures. The paper 

explores and deliberates on the exciting possibilities of utilizing these derivatives in multi-

layered structures, opening up new avenues for practical applications. The paper concludes by 

charting the course for future research in this field.  
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1.  Introduction 

Origami refers to the art of folding paper. It is of Japanese origin, a combination of the Japanese words 

‘ori’, meaning folding and ‘kami’, meaning paper [1]. Origami works are widely appreciated in the fields 

of art and handicraft. The structures of origami patterns can also be applied in the design of deployable 

structures, as the process of folding up a paper into a product can be applied to the deployment of 

structures. 

One of the most basic and widely used structures is the ‘miura-ori’, named after its inventor Kōryō 

Miura [2]. The fold is widely applied as it provides a path to fold a flat sheet of material into its compact 

form completely through motion in one direction, along the diagonal direction in the plane of the fully 

deployed plane. The folding pattern and the physical representation are shown in Fig. 1.a and Fig. 1.b, 

respectively.  
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(a)                             (b) 

Figure 1. Pattern for Miura-ori (a) Crease pattern of Miura-ori [2]; (b) Semi-folded Miura-ori model 

The folding pattern of the miura-ori can be approximated as a combination of rotational joints and 

rigid planes, as the paper pieces only rotate about the creases and the paper neither stretches nor 

compresses in the entire process of the motion. This pattern is used for the compression of antennas and 

solar panels of satellites [3], as the plane of antennas and solar panels needs to be folded and stored into 

the body of the rocket, which has a much smaller diameter and could be easily deployed while sent into 

its position. 

Although the Miura-ori can fulfil this task, there are some circumstances under which some 

properties that may be ideal in other applications need to be removed. In the case of the miura-ori, these 

include the five properties that the mechanism obtains: crease orientation, crease alignment, 

developability, flat-foldability, and rectilinearity [4]. By removing one characteristic at a time, the 

structure of the mechanism is altered slightly, and the resulting design can be applied for a greater range 

of various demands. 

By ridding each one of the five design characteristics of the miura-ori, the corresponding parameters 

that are needed to determine each specific design are also altered. There are also some methods to 

combine designs of different kinds of miura-ori in order to obtain more general designs and further limit 

or eliminate the motion features of the mechanism through piecewise incorporation [4]. 

In Section 2, the quantitative parameters of the five derivatives are validated by the construction of 

physical models and comparing the measured data with the theoretical values. In Section 3, studies on 

multi-layered miura-ori structures as well as general curved structures, are summarized, as they could 

provide various practical uses [5]. The limitations of current studies as well as the possibilities of multi-

layered derivatives, are discussed. In Section 4, the validity of the parameters and possible future 

extensions are concluded. 

2.  Theoretic Review and Analysis 

In the paper by You et al., five derivatives of the miura-ori were proposed, each removing one geometric 

characteristic of the original fold to form a three-dimensional structure [4]. Based on the altered 

geometrical characteristics and layout, the relationship between the parameters can be calculated. The 

equations of each design are all given in the paper. Although the paper mentioned that the parameters 

are proven through a specific model and the process of calculation is also listed and explained, by using 

models with different parameters, the equations can be further validated or falsified.  

2.1.  Arc Pattern 

The arc pattern is formed by reversing the crease orientation alternately. Therefore, the basic pattern of 

the model is no longer parallelograms but isosceles trapezoids, as shown in Fig. 2.  

 

Figure 2. Arc pattern geometry [4] 
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When the model is completely folded, the angles: 

𝜃𝐴 = 𝜃𝑧 = 𝜂𝑧 = 0, 

the angles have the determined relationship [4]: 

𝜂𝐴 = 𝑐𝑜𝑠−1(𝑠𝑖𝑛2𝜑𝑐𝑜𝑠𝜃𝑧 − 𝑐𝑜𝑠2𝜑) = 𝑐𝑜𝑠−1(𝑠𝑖𝑛2𝜑 − 𝑐𝑜𝑠2𝜑) 

The model is designed such that: 

𝜑 =
𝜋

3
 

Hence there is: 

𝜂𝐴 = 𝑐𝑜𝑠−1 (𝑠𝑖𝑛2
𝜋

3
− 𝑐𝑜𝑠2

𝜋

3
) =

𝜋

3
 

The above parameters can be proven to be consistent with any one of the three following equations 

[4]: 

𝜂𝑍 = 𝑐𝑜𝑠−1(𝑠𝑖𝑛2𝜑 + 𝑐𝑜𝑠2𝜑) 

𝐿. 𝐻. 𝑆. = 0, 𝑅. 𝐻. 𝑆. = 𝑐𝑜𝑠−1(1) = 0 = 𝐿. 𝐻. 𝑆. 

𝑜𝑟: (1 + 𝑐𝑜𝑠𝜂𝑍)(1 − 𝑐𝑜𝑠𝜂𝐴) = 4𝑐𝑜𝑠2𝜑 

𝐿. 𝐻. 𝑆. = (1 + 𝑐𝑜𝑠0) (1 − 𝑐𝑜𝑠
𝜋

3
) = 2 ×

1

2
= 1, 𝑅. 𝐻. 𝑆. = 4𝑐𝑜𝑠2

𝜋

3
= 1 = 𝐿. 𝐻. 𝑆. 

𝑜𝑟: �̅� = 𝑏 ∙ 𝑠𝑖𝑛
𝜂𝑧

2
=

𝑤 ∙ 𝑠𝑖𝑛
𝜂𝑍
2

𝑠𝑖𝑛𝜑
  

𝑆𝑖𝑛𝑐𝑒 �̅� = 0, 𝑅. 𝐻. 𝑆. = 0 = 𝐿. 𝐻. 𝑆. 

Further calculations can lead to the final validation data: 

𝜉1 + 𝜉2 = 2(𝜋 − 𝜂𝛢)  = 2 ×
2𝜋

3
 

∴ 𝑤ℎ𝑒𝑛 𝜉1 =
2𝜋

9
, 𝜉2 =

10𝜋

9
, 𝜉1 + 𝜉2 =

4𝜋

3
 

𝐿𝑒𝑡 𝑎1 = 2.1, 

𝑎2 = 6.0, 

𝑅1 =
2.1

2 ∙ 𝑠𝑖𝑛
40°

2

= 3.1 

𝑅𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 =
2.1

2 ∙ 𝑠𝑖𝑛
40°

2

= 3.1 

By making a physical model, the value that was measured was also 3.1 centimetres. This proves the 

theory to be coherent with the reality. The complete folding pattern is shown in Fig. 3. 

  

(a)                                 (b) 

Figure 3. Arc model folding pattern, from developed to folded 

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/43/20241067

122



2.2.  Arc-Miura Pattern 

Similar to the previous pattern, the Arc-Miura pattern is formed by altering the zigzag side of the 

parallelograms alternately. Instead of inversing the orientation, the Arc-Miura pattern id formed by 

altering the alignment of the creases. That is to say, the parallel sides are no longer parallel with all of 

the others, rather alternately, as shown in Fig. 4. 

 

Figure 4. Arc-miura pattern geometry [4] 

Therefore, the following equations can be established: 

(1 + 𝑐𝑜𝑠𝜂𝑚𝛧)(1 − 𝑐𝑜𝑠𝜂𝑚𝐴) = 4𝑐𝑜𝑠2𝜑1 

𝑐𝑜𝑠𝜂𝑚𝐴 = 𝑠𝑖𝑛2𝜑1𝑐𝑜𝑠𝜃𝑚𝛧 − 𝑐𝑜𝑠2𝜑1 

𝑐𝑜𝑠𝜂𝑚𝑍 = 𝑠𝑖𝑛2𝜑1𝑐𝑜𝑠𝜃𝐴 + 𝑐𝑜𝑠2𝜑1 

(1 + 𝑐𝑜𝑠𝜂𝑣𝛧)(1 − 𝑐𝑜𝑠𝜂𝑣𝐴) = 4𝑐𝑜𝑠2𝜑2 

𝑐𝑜𝑠𝜂𝑣𝐴 = 𝑠𝑖𝑛2𝜑2𝑐𝑜𝑠𝜃𝑣𝛧 − 𝑐𝑜𝑠2𝜑2  

𝑐𝑜𝑠𝜂𝑣𝑍 = 𝑠𝑖𝑛2𝜑2𝑐𝑜𝑠𝜃𝐴 + 𝑐𝑜𝑠2𝜑2  

Where η and θ refer to the angle subtended by the edges and surfaces respectively. m and v refer to 

the surfaces with the angles φ and (π-φ) as angles respectively. 

First, the parameters that determine the size and shape of the shape are calculated. 

Let 𝜑1 =
𝜋

3
, 𝜑2 =

𝜋

6
, 

Since 𝑏1𝑠𝑖𝑛𝜑1 = 𝑏2𝑠𝑖𝑛𝜑2, 

√3 ∙ 𝑏1 = 𝑏2 

Since 𝑎2 + 𝑏1𝑐𝑜𝑠𝜑1 = 𝑎1 + 𝑏2𝑐𝑜𝑠𝜑2 

∴  𝑎2 − 𝑏1 = 𝑎1 

For ease of calculation and construction, 

Let 𝑏1 = 1, 𝑏2 = √3, 𝑎1 = 1, 𝑎2 = 2 

When the structure is fully deployed, it can be obtained that: 

𝜂𝑚𝛧 = 𝜂𝑣𝛧 = 0 

Substituting the values into the equations above:  

(1 + 1)(1 − 𝑐𝑜𝑠𝜂𝑚𝐴) = 4 ∙
1

4
  

𝜂𝑚𝐴 =
𝜋

3
 

1

2
=

3

4
𝑐𝑜𝑠𝜃𝑚𝛧 −

1

4
  

𝜃𝑚𝛧 = 0 
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1 =
3

4
𝑐𝑜𝑠𝜃𝐴 +

1

4
  

𝜃𝐴 = 0 

(1 + 1)(1 − 𝑐𝑜𝑠𝜂𝑣𝐴) = 4 ∙
3

4
 

𝜂𝑣𝐴 =
2𝜋

3
 

−
1

2
=

1

4
𝑐𝑜𝑠𝜃𝑣𝛧 −

3

4
  

𝜃𝑣𝛧 = 0 

Finally, using the sixth equation, the validity of the above calculations can be examined: 

𝑐𝑜𝑠𝜂𝑣𝑍 = 𝑠𝑖𝑛2𝜑2𝑐𝑜𝑠𝜃𝐴 + 𝑐𝑜𝑠2𝜑2  

𝐿. 𝐻. 𝑆. = 1, 𝑅. 𝐻. 𝑆. =
1

4
∙ 1 +

3

4
 

𝐿. 𝐻. 𝑆 = 𝑅. 𝐻. 𝑆, the calculations are consistent with each other. 
The final parameters are calculated from the side view, when a circular shape is formed: 

𝜉 = 𝜂𝑣𝐴 − 𝜂𝑚𝐴  [4] =
2𝜋

3
−

𝜋

3
=

𝜋

3
 

𝑅1 = √
𝑎1

2 + 𝑎2
2 − 2𝑎1𝑎2𝑐𝑜𝑠𝜂𝑣𝐴

2(1 − 𝑐𝑜𝑠𝜉)
= √7 

𝑅2 = √
𝑎1

2 + 𝑎2
2 − 2𝑎1𝑎2𝑐𝑜𝑠𝜂𝑚𝐴

2(1 − 𝑐𝑜𝑠𝜉)
= √3 

The value chosen for validation is 𝜂𝑣𝐴, which in the model made is taken to be 
29𝜋

45
. The divergence 

is about 3.3%, which is less than 5% and within the acceptable range of random error incurred by 

uncertainties in the folding process of the model as well as the thickness and deformation of a real piece 

of paper instead of an ideal material. The model and its folding pattern are shown in Fig. 5. 

   

(a)                            (b)                               (c) 

Figure 5. Arc-miura model folding pattern, from developed to folded 

2.3.  Non-Developable Pattern 

The non developable pattern is formed by eliminating the developability of the folding pattern. That is 

to say, the pattern cannot be fully deployed to form a flat surface. Therefore, it cannot be folded from a 

flat piece of paper either. Instead, it is formed by connecting two pieces of paper using intermediate 

pieces that are glued onto the edges of the units. This makes the pattern fundamentally different from 

the original fold, as it is no longer origami, but kirigami. However, the pattern can still make connections 

to the original design, as shown in the diagram above in Fig. 6. 
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Figure 6. Non-developable pattern geometry [4] 

The shaded region is cut out, forming two symmetrical units, whose corresponding sides are 

connected together. The following equations can be established based on geometric and trigonometric 

deductions [4]: 

(1 + 𝑐𝑜𝑠𝜂𝑍)(1 − 𝑐𝑜𝑠𝜂𝐴) = 4𝑐𝑜𝑠2𝜙  
𝑐𝑜𝑠𝜂𝐴 = 𝑠𝑖𝑛2𝜙𝑐𝑜𝑠𝜃𝑍 − 𝑐𝑜𝑠2𝜙  

𝑡𝑎𝑛𝛾 =
∆𝑏𝑠𝑖𝑛

𝜂𝑍
2

𝑎𝑐𝑜𝑠
𝜂𝑍
2

  

𝑐𝑜𝑠𝜂𝑍𝑗 = 1 − 𝑠𝑖𝑛2
𝜂𝑍

2
(1 + 𝑐𝑜𝑠2𝛾)  

𝑐𝑜𝑠𝜃𝐴𝑙 =
𝑐𝑜𝑠𝜂𝑍𝑗 − 𝑐𝑜𝑠2𝜙𝑙

𝑠𝑖𝑛2𝜙𝑙
  

𝑐𝑜𝑠𝜃𝐴𝑠 =
𝑐𝑜𝑠𝜂𝑍𝑗 − 𝑐𝑜𝑠2𝜙𝑠

𝑠𝑖𝑛2𝜙𝑠
  

𝑅𝑖 =
𝑏𝑖𝑠𝑖𝑛

𝜂𝑍
2

2𝑠𝑖𝑛𝛾
  

𝑅𝑜 =
𝑏𝑜𝑠𝑖𝑛

𝜂𝑍
2

2𝑠𝑖𝑛𝛾
   

Where the quantities with footnote l and s are quantities corresponding to the longer side and shorter 

side of the cutout respectively, while the quantities with additional footnote j refer to the quantities 

formed by the “complete” units, and the quantities without are those formed by “half” units, or the 

reference lines that are parallel to each other. 

Just as in the previous layouts, a specific layout is used for both theoretical deduction and physical 

model validation. In this case, the specified parameters for the shape, and position of the model are as 

follows: 

Let 𝜙 =
𝜋

3
, ∆𝑏 = 𝑎, hence there are 𝜙1 =

𝜋

6
, 𝜙2 =

𝜋

3
 

When 𝑐𝑜𝑠𝜂𝐴 =
1

2
, or 𝜂𝐴 =

𝜋

3
 

By (1), 𝑐𝑜𝑠𝜂𝑍 = 1, 𝜂𝐴 = 𝜋 

Using the data obtained in the above equations, they are consequently substituted into the rest of the 

eight equations above: 
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𝑡𝑎𝑛𝛾 =
∆𝑏

𝑎
×

1

√2
2

=
2

√3
  

𝑐𝑜𝑠𝜂𝑍𝑗 = 1 − 12 × (1 + (−
1

7
)) =

1

7
  

𝑐𝑜𝑠𝜃𝐴𝑙 =

1
7

−
3
4

1
4

= −
17

7
  

𝑐𝑜𝑠𝜃𝐴𝑠 =

1
7

−
1
4

3
4

= −
1

7
  

After determining the parameters 𝑎 and 𝑏, the final value, which is 𝑅𝑖, the inner radius of the final 

pattern when viewed from the side. 

𝑅𝑖 =
(𝑏 − 2𝑎) × 1

2 −
2

√7

=≈ 0.66(𝑏 − 2𝑎) (20) 

When 𝑎 = 2, 𝑏 = 6, 𝑅𝑖 ≈ 1.32 

The value measured in the physical model is 1.2 centimetres, an about 9% deviation from the 

theoretical value. Considering the imperfections of the material and the volume of the hinges that are 

neglected in the calculations, as well as the shear movements of the hinges as they are made from paper, 

the deviation can be accepted as within the random error range of the handmade paper model, shown 

above in Fig. 7. 

  

(a)                                       (b) 

Figure 7. Non-developable model folding pattern, from developed to folded position 

2.4.  Non-Flat-Foldable Pattern 

The pattern is formed by eliminating the flat foldability of the pattern. That is to say, when the pattern 

is fully folded, the formed result is no longer a flat piece, but rather a structure with thickness [6,7]. 

Similar to the previous design, the non-flat-foldable pattern is formed by altering the connecting pieces 

between units, as shown in Fig. 8 below. 

 

Figure 8. Non-flat-foldable pattern geometry [4] 

The following equations can be derived from geometric and trigonometric analysis. Some are very 

similar to those in the previous layout as these two are very similar, as shown below [4]:  
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(1 + 𝑐𝑜𝑠𝜂𝑧)(1 − 𝑐𝑜𝑠𝜂𝐴) = 4𝑐𝑜𝑠2𝜙  

𝑡𝑎𝑛𝛾 =
Δ𝑏𝑠𝑖𝑛

𝜂𝑧
2

𝑎𝑐𝑜𝑠
𝜂𝐴
2

  

𝑊 = Δ𝑏𝑠𝑖𝑛𝜙  

𝑐𝑜𝑠𝛼 =
𝑤𝑐𝑜𝑠𝛾

𝑎𝑐𝑜𝑠
𝜂𝐴
2

  

𝜁 =
𝜋

2
− 𝛾 − 𝛼  

𝑅𝑖 =
𝑏𝑖𝑠𝑖𝑛

𝜂𝑧
2

2𝑠𝑖𝑛𝜉
  

𝑅0 = √(𝑅𝑖 +
𝑎𝑐𝑜𝑠

𝜂𝐴
2

𝑠𝑖𝑛𝛼

𝑐𝑜𝑠𝛾
)

2

+ 𝑤2  

𝑠𝑖𝑛𝜉𝑘 =
𝑤

𝑅0
  

Here, 𝑊 refers to the width of the intermediate connecting pieces while 𝜉 refers to the angle 

subtended at the centre. 

The shape and position of the model are specified, and the following values can be determined by 

substituting the variables in the equations: 

Let 𝜙 =
𝜋

3
, when 𝜂𝑧 =

𝜋

3
, by (1), 𝑐𝑜𝑠𝜂𝐴 =

1

3
. 

𝑡𝑎𝑛𝛾 =
Δ𝑏

1
2

𝑎𝑐𝑜𝑠
𝜂𝐴
2

  

𝑐𝑜𝑠2
𝜂𝐴

2
− (1 − 𝑠𝑖𝑛2

𝜂𝐴

2
) = 𝑐𝑜𝑠𝜂𝐴 =

1

3
 

∴ 𝑐𝑜𝑠
𝜂𝐴

2
=

√2

√3
, 𝑡𝑎𝑛𝛾 =

Δ𝑏

𝑎
∙

√3

2√2
 

To obtain a specific value, the ratio of Δ𝑏 and 𝑎 are determined. 

when Δ𝑏 𝑖𝑠 𝑡𝑎𝑘𝑒𝑛 𝑎𝑠 
1

2
𝑎, 𝑡𝑎𝑛𝛾 =

√3

2√2
 

𝑐𝑜𝑠𝛼 =

√3
2

∙
1
2

𝑎 ∙
4√2

√35

𝑎 ∙
√2

√3

=
3

√35
  

𝑅𝑖 =
𝑏𝑖 ∙

1
2

2 ∙ cos(𝛼 + 𝛾)
=

35𝑏𝑖

48√2 − 4√78
  

𝑅0 = √(
35𝑏𝑖

48√2 − 4√78
+

√26𝑎

4√3
)

2

+
9

16
𝑎2  
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By determining the specific parameters, the value can be obtained:  

When 𝑎 = 2, 𝑏𝑖 = 2√3, 𝑅0 ≈ 4.02 

The model made measures a value of around 7% deviation, at 4.3 centimeters. When considering the 

imperfections in the model making process and deviations in the measuring process, this is still within 

the acceptable range of random error, and hence could validate the theory. The model and its folding 

pattern are shown in Fig. 9 below. 

  

(a)                                     (b) 

Figure 9. Non-flat-foldable model folding pattern, from developed to folded 

2.5.  Tapered Miura Pattern 

The final pattern is the tapered miura pattern. It is formed by removing the rectilinearity of the original 

pattern. That is to say, the lines along the longitudinal direction of the pattern are no longer parallel to 

each other, but instead meet at a point. Therefore, the other sides are also no longer of equal lengths. 

Like the above, the model is shown in Fig. 10. 

 

Figure 10. Tapered miura pattern geometry [4] 

Based on its geometry, the following equations can be established:  

 𝜑𝑓 = 𝜑𝑐 − 𝜌 (30) 

𝑎𝑐 =
𝑎𝑓 ∙ 𝑠𝑖𝑛𝜑𝑓

𝑠𝑖𝑛𝜑𝑐
 (31) 

𝑐𝑜𝑠𝜂𝑐𝑍 = 𝑠𝑖𝑛2𝜑𝑐𝑐𝑜𝑠𝜃𝑐𝐴 + 𝑐𝑜𝑠2𝜑𝑐  
𝑐𝑜𝑠𝜂𝑐𝐴 = 𝑠𝑖𝑛2𝜑𝑐𝑐𝑜𝑠𝜃𝑍 + 𝑐𝑜𝑠2𝜑𝑐  

(1 + 𝑐𝑜𝑠𝜂𝑐𝑍)(1 − 𝑐𝑜𝑠𝜂𝑐𝐴) = 4𝑐𝑜𝑠2𝜑𝑐  
𝑐𝑜𝑠𝜂𝑓𝑍 = 𝑠𝑖𝑛2𝜑𝑓𝑐𝑜𝑠𝜃𝑓𝐴 + 𝑐𝑜𝑠2𝜑𝑓   

𝑐𝑜𝑠𝜂𝑓𝐴 = 𝑠𝑖𝑛2𝜑𝑓𝑐𝑜𝑠𝜃𝑍 − 𝑐𝑜𝑠2𝜑𝑓   

(1 + 𝑐𝑜𝑠𝜂𝑓𝑍)(1 − 𝑐𝑜𝑠𝜂𝑓𝐴) = 4𝑐𝑜𝑠2𝜑𝑓    

Specific parameters are substituted into the calculations in order to get specific parameters for 

calculations: 

𝑊ℎ𝑒𝑛 𝜑𝑓 =
𝜋

6
, 𝜑𝑐 =

𝜋

3
, 𝜌 =

𝜋

6
,  

𝑎𝑐 =
𝑎𝑓 ∙

1
2

√3
2

=
√3

3
∙ 𝑎𝑓   

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/43/20241067

128



𝑊ℎ𝑒𝑛 𝜂𝑐𝑍 = 0 

1 =
3

4
𝑐𝑜𝑠𝜃𝑐𝐴 +

1

4
  

𝜃𝑐𝐴 = 0 

2(1 − 𝑐𝑜𝑠𝜂𝑐𝐴) = 4 ∙
1

4
  

𝜂𝑐𝐴 =
𝜋

3
 

1

2
=

3

4
𝑐𝑜𝑠𝜃𝑍 −

1

4
  

𝜃2 = 0 

𝑐𝑜𝑠𝜂𝑓𝑍 =
1

4
∙ 1 +

3

4
  

𝜂𝑓𝑍 = 0 

𝑐𝑜𝑠𝜂𝑓𝐴 =
1

4
∙ 1 −

3

4
   

𝜂𝑓𝐴 =
2𝜋

3
 

The final equation can be used for validation of the above calculations: 

(1 + 𝑐𝑜𝑠𝜂𝑓𝑍)(1 − 𝑐𝑜𝑠𝜂𝑓𝐴) = 4𝑐𝑜𝑠2𝜑𝑓   

𝐿. 𝐻. 𝑆. = (1 + 1) [1 − (−
1

2
)] = 3, 𝑅. 𝐻. 𝑆 = 4 ∙

3

4
= 3, 

∴ 𝐿. 𝐻. 𝑆 = 𝑅. 𝐻. 𝑆, the calculations are consistent 

Since the aforementioned zigzag lines are also of unequal lengths, there is a relationship for the value 

of those as well: 

   𝑏𝑗 =
𝑏1 + (𝑗 − 1) ∙ 𝑎𝑐 ∙ 𝑠𝑖𝑛𝜌

𝑠𝑖𝑛𝜑𝑓
 ∀ 𝑗 ≥ 2   

The measured result is the quantity 𝜂𝑓𝐴, which was obtained to be 
25𝜋

36
, a 4% deviation from the 

theoretical value. The deviation is less than 5% and within the acceptable range of random error incurred 

by uncertainties in the folding process of the model as well as the thickness and deformation of a real 

piece of paper instead of an ideal material. The model made is shown above in Fig. 11. 

 

Figure 11. Tapered Miura model folding pattern, from developed to folded 
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3.  Further Discussions & Possible Extensions 

The above calculations and experiments validated the theories and parameters for the five derivatives. 

The following part discusses two possible use for such a pattern, which is to accommodate curved or 

doubly curved surfaces. The possibility of constructing a multi-layered structure is also discussed. 

3.1.  Work on More General Curved Miura-ori Structures 

The above is work done in already existing works, which present a method of connecting the basic 

miura-ori pattern. However, the result formed only possesses a flat layout that is identical to the original 

pattern. Therefore, in circumstances where such a design is not satisfactory, but a curved structure or 

circular structure is needed, the design based on the first-derivatives of the miura-ori pattern can be 

formed. 

The overall guidelines of the altered design are identical: the layers must be connected so that all 

creases are collinear, and that motion of each individual layer must be guaranteed. Hence, some details 

of the designs are to be altered. For example, for arc pattern and arc-miura pattern, the different layers 

cannot be identical; instead, the radius of the folded structure at the optimal position must increase along 

the radial direction of the pattern, away from the centre of the curve. The resulting pattern can form 

curves along the stress-bearing surface, if based on the first two types of derivatives; it can also form 

curves normal to the stress-bearing surface, if using the fifth type of derivative introduced. 

There have been studies made to accommodate these aforementioned circumstances. One solution 

proposed is by using miura-ori based structures. These structures are not first-derivatives, but instead 

doubly curved or obtaining single or double curved target surfaces [8] [9]. There have been mathematical 

deductions based on the geometry and layout of the design, and 3D modelling results also comply with 

the deductions. The design can be used to provide internal support for objects of irregular layout, and 

an algorithm is proposed to optimize the structure layout while preserving the characteristics of the 

original miura-ori structure mentioned above. For example, such an algorithm is used for designing 

structures providing internal support for standardized airfoils. However, the algorithm does not always 

derive a valid result, and the number of vertexes are limited to avoid over-constraint. Hence, in the 

process of forming larger structures, no generalized rule was found and instead empirical models are 

still needed.  

Another possibility proposed by You.et.al. is piecewise connection of first derivatives to form 

structures with certain geometric characters removed [4]. In this process, a more general and not 

necessarily consistent curvature can be obtained. 

3.2.  Multi-layered Structure based on the Miura-ori Pattern 

The multi-layered structures of the miura-ori fold are formed by overlapping the identical miura-ori 

folds over each other, one on top of the other. They are rotated about the horizontal axis. Therefore, the 

number of creases that overlap each other is maximized. Hence, the structure can be fixed at the greatest 

level.  

The multi-layered structures not only possess the foldable characteristics of the original structure, it 

also gains new characteristics in the process of stacking. Since the layout is self-repetitive in all three 

dimensions, the layout can be viewed as a type of metamaterial. That is to say, the layout can be repeated 

indefinitely to form a specific three-dimensional layout and possesses properties that are not obtained 

by materials that are formed naturally [3]. The multi-layered miura-ori structure obtain a low-density, 

foldable characteristic while also being able to be used for energy absorption with adjustable stiffness.  

As is the case in the previous section, a physical model is made for the validation of this theory. In 

this case, a quantitative approach is not taken, as the sole goal is to validate the property of the multi-

layered design. Three identical miura-ori patterns are made, and two of them are connected together to 

form the multi-layered structure in the aforementioned fashion.  A ceramic weight is placed at the centre 

of the two structures. It was observed that the single layered mechanism deployed under pressure while 

the multi-layered structure retained its original shape and presented no obvious deformations. This 
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proves that by constructing a multi-layered structure, stiffness can be obtained that is greater than that 

of the material-inherent stiffness. 

  

(a)                                         (b) 

Figure 12. Multi-layered Miura-ori Structure Demonstration. (a) Multi-layered miura model folded 

pattern. (b) Behavior under load of a ceramic weight 

3.3.  Discussions on Multi-layered Structure Based on the First-derivatives of the Miura-ori Pattern 

The above is work done in already existing works, which present a method of connecting the basic 

miura-ori pattern. However, the result formed only possesses a flat layout that is identical to the original 

pattern. Therefore, in circumstances where such a design is not satisfactory, but a curved structure or 

circular structure is needed, the design based on the first-derivatives of the miura-ori pattern can be 

formed. 

The overall guidelines of the altered design are identical: the layers must be connected so that all 

creases are collinear, and that motion of each individual layer must be guaranteed. Hence, some details 

of the designs are to be altered. For example, for arc pattern and arc-miura pattern, the different layers 

cannot be identical; instead, the radius of the folded structure at the optimal position must increase along 

the radial direction of the pattern, away from the centre of the curve. The resulting pattern can form 

curves along the stress-bearing surface, if based on the first two types of derivatives; it can also form 

curves normal to the stress-bearing surface, if using the fifth type of derivative introduced. 

3.4.  Limitations & Possibilities for Future Studies 

In the passage above, possibilities for both generalized curve structures as well as multi-layered 

structures are discussed.  

For the generalization of curved structures, the algorithm can only cover small-scaled designs, and 

over-constraint cannot be represented in its calculations. Basic models or general guidelines for the 

design and optimization of curved folds could be a direction for future work. 

The multi-layered design currently only spans over the basic design and kirigami structures [10], and 

although the structures are optimized through mathematical modelling based on geometrical properties 

and material properties, and physical simulations of the folding process are also conducted, studies on 

muti-layered derivatives can be a topic to be discussed in the future. 

4.  Conclusions 

In the work above, we managed to validate the five first-derivatives of the miura-ori fold and the 

equations of each layout by making physical models with specific parameters and measuring a specific 

data when the model is at a specific point on the deployment process. The equations are validated by 

comparing the measured values and the ones obtained through calculations.  

Further discussions on curved miura-ori folds and multi-layered first-derivatives are both conducted 

through summarizing the latest discoveries as well as possible extensions. Further work could be made 

to fill the gaps of large-scaled curved miura-ori patterns and curved multi-layered miura-ori structures. 
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