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Abstract. This paper delves into the application of Markov chains in Natural Language 

Processing (NLP), and the Markov Chain Monte Carlo (MCMC) methodology relevant to the 

three-pool model. The former outlines the basic principles of Markov chains, highlighting their 

utility in predicting word sequences in language modelling and text generation, despite certain 

limitations. Also, the former describes mathematical frameworks like n-gram models that 

enhance prediction accuracy by considering multiple preceding words. It acknowledges 

challenges in NLP such as oversimplification and emotional depth, as well as computational 

issues in higher-order models. It concludes by discussing the integration of Markov chains with 

other models to mitigate these limitations, and their enduring relevance in computational 

linguistics. The later investigates the MCMC methodology, a seminal development in the field 

of statistical inference, which is especially useful when analysing complicated systems when 

traditional statistical techniques are inadequate. Moreover, this later explores the fundamental 

concepts of MCMC, clarifies how it is inherently related to Markov chains, presents the three-

pool model that is commonly applied to models of physical, chemical, or ecological systems, 

and discusses how MCMC can be used to analyse these models.  
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1.  Introduction 

Originally introduced in 1906 by Russian mathematician Andrey Markov, Markov Chains are a type of 

stochastic model that satisfies the Markov Property, also known as the Memoryless property. In less 

esoteric terms, describe a sequence of events in which the probability of each event depends only on the 

event directly prior to it. This means that the probability of each future event is independent of all events 

save for the event directly preceding it [1]. Markov Chains can primarily be divided into two groups, 

Discrete Time Markov Chains (DTMC) and Continuous Time Markov Chains (CTMC). DTMCs have 

events that operate in discrete time while CTMCs have their events operate within a continuous time-

space, as their names would imply. Note that due to no widely agreed-upon nomenclature within relevant 

literature, some papers may refer to CTMCs as Markov Processes, rather than a Markov Chain that 

operates in continuous time. 

The formal definitions for DTMCs and CTMCs are as follows. A set of random variables 

X1,  X2,  X3, … ,  Xn that have the Markov Property, that is, 𝑃𝑟(𝑋𝑛+1  =  𝑥 | 𝑋1  , 𝑋2 = 𝑥2, … , 𝑋𝑛 = 𝑥𝑛) =
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𝑃𝑟(𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛)  are considered a Markov Chain with discrete time. A stochastic process 

𝑋(𝑡): 𝑡 ≥ 0 with discrete state space S is considered a continuous time Markov Chain if for all 𝑡 ≥
0, 𝑠 ≥ 0, 𝑖 ∈ 𝑆, 𝑗 ∈ 𝑆 , 𝑃(𝑋(𝑠 + 𝑡) = 𝑗|𝑋(𝑠) = 𝑖, 𝑋(𝑢): 0 ≥ 𝑢 < 𝑠) = 𝑃(𝑋(𝑠 + 𝑡) = 𝑗|𝑋(𝑠) = 𝑖) =
𝑃𝑖𝑗(𝑇) [2]. Markov Chains are a widely used tool within the field of statistics and form the basis of many 

processes such as the MCMC process and the Poisson process and is used in both Bayesian and 

Frequentist methods. 

In more specificity, MCMC processes are a group of algorithms that seek to create samples from the 

probability distribution of a continuous random variable by constructing a Markov Chain of the 

continuous random variable. Markov Chains are also frequently used outside of statistics in more applied 

mathematics. It is used within chemistry to map chains of molecular reactions in a mathematical way 

[3], and it is used within Biology as a Hidden Markov Model (HMM) to model nucleotide structures [4]. 

Within this paper, however, the authors intend to utilise and explore MCMC processes and NLP through 

the Three-Pool Process. 

2.  The three-pool model 

2.1.  Introduction of three-pool model 

For comprehending and quantifying the cycle of chemical elements, like carbon in ecosystems, a key 

conceptual landscape is the three-pool model. It is often used in ecology, biogeochemistry, and 

environment research. The ecosystem is divided into three main pools or compartments by the model. 

Each of them stands for a distinct position or state of the chemical element [5].  

The pools mainly encompass three parts. Firstly, it is the active pool. This encompasses the 

components cycling swiftly in the environment, like those discovered in animals and plants, and in the 

soil microbial biomass. The chemical elements in this pool own a relatively short turnover time. Besides, 

the time varies within day from some days to some years. Secondly, the slow pool. There exist chemical 

elements in this pool which cycle in the environment more slowly. It is comprised of soil organic debris 

decomposing more slowly than the materials in the active pool. Chemical elements in the pool may have 

long turnover times that vary between years and decades. Thirdly, the passive pool. This consists of 

components cycling in the environment exceedingly slowly. It is composed of organic matter or highly 

stable organic stuff, which are buried deeply like charcoal. In this pool, the element turnover times can 

range between centuries and millennia. The above-described model is particularly applied to ecological 

research since it makes the transformations between disparate element states easier to view and gauge. 

2.2.  Rationale for using MCMC in three-pool model analysis 

It is necessary to understand the complex correlations and transformations of elements between the pools, 

which brings about the MCMC application to three-pool models. Because these models become non-

linear and poly-dimensional, conventional statistical approaches perhaps cannot sufficiently capture 

their features. As the models are proficient in controlling the complex probability frameworks, MCMC 

offers an intricate approach with the aim of estimating the relative parameters, quantifies uncertainties, 

and improves the understanding of the system dynamics [6]. 

By virtue of its versatility, MCMC can contain various information, like isotope ratios and flux 

measurements. They are important to ecological modeling. The MCMC offers a more intricate picture 

of the processes, which underlies the three-pool model through establishing a Markov chain simulating 

the transformations between nations, efficiently explaining the variability and indeterminacy intrinsic in 

ecosystems. Furthermore, through the model, an intricate system is captured where components 

nonlinearly move between nations and own intricate correlations between two pools. This complexity 

makes the traditional analysis hard to use. On the other side, MCMC approaches are expert at tackling 

difficulties. They conquer that through cautiously investigating the big parameter space. Accordingly, it 

is possible to completely understand and characterize the interactions and dynamics in the three-pool 

framework. 
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2.3.  Analysis of three-pool models through MCMC 

Apart from the states aligning with each pool, the transformation probabilities between two states are 

stated as parts of the MCMC analysis on the models. The specific characteristics of every pool can be 

considered by means of MCMC calibration, reflecting the cyclical essence of the ecosystem. Through 

making it easier to investigate the parameter space, the approach makes it possible to measure the rates 

such as decay within the slow pool or cumulation within the passive pool. 

The detailed steps are listed below. The first step is to define the Mathematical Model. First, the 

equations need to be modelled. The differential equations describe each pool’s dynamics, and they 

should be defined as [7] 
𝑑𝐶1

𝑑𝑡
= 𝑖𝑛𝑝𝑢𝑡1 − 𝑘12𝐶1 + 𝑘21𝐶2 − 𝑘13𝐶1 + 𝑘31𝐶3 (1) 

𝑑𝐶2

𝑑𝑡
= 𝑖𝑛𝑝𝑢𝑡2 + 𝑘12𝐶1 − 𝑘21𝐶2 + 𝑘32𝐶3 − 𝑘23𝐶2 (2) 

𝑑𝐶3

𝑑𝑡
= 𝑖𝑛𝑝𝑢𝑡3 + 𝑘13𝐶1 + 𝑘23𝐶2 − 𝑘31𝐶3 − 𝑘32𝐶3. (3) 

In the formulas, (𝐶𝑖) means the quantity of materials in pool (I), (𝑖𝑛𝑝𝑢𝑡𝑖) means the external input to 

pool (I), and (𝑘𝑖𝑗 ) means the transfer rates between pools. The Second is parameterization, which 

determine which parameters require data-driven estimation. These could be the (𝑘𝑖𝑗) transfer rates in the 

equations, as well as the inputs if they are not directly measured. 

The second step is to prepare the data. Gather or create data that accurately depicts the system’s 

behavior. Time series measurements of pool sizes or fluxes between pools may fall under this category. 

The third step is to choose a software framework. There are a variety of software packages that can 

be utilized, like PyMC3 in Python, JAGS via rjags, and Stan using the rstan package in R, to implement 

MCMC. The decision is based on the experience and the requirements of the model. 

The fourth step is to implement the model. Firstly, the model needs to be written. Give a definition 

of the model in the language of the selected framework, including the likelihood of the data given the 

parameters and the prior distributions for each parameter. As an example, a model could be built that 

can block in Stan that contains the differential equations needed to calculate the likelihood of the 

observed data. Secondly, prior to receiving the data, there is a need to select priors that represent people’s 

understanding of or presumptions about the parameters. If there is no information about prior states 

already, these could be as straightforward as uniform priors or more detailed distributions. 

The fifth step is to run MCMC simulations. When running the MCMC simulation, samples will come 

from the parameter posterior distributions. Typically, this entails deciding how many iterations to run in 

each chain, how many chains to run in total, and how many iterations to discard as burn-in. 

The sixth step is to diagnose and validate. Firstly, there is a need to do is check the convergence. 

Make use of the software package’s diagnostic tools to make sure the MCMC chains have converged to 

the desired distribution. The R-hat statistic and visual inspection of trace plots are two frequently used 

diagnostic techniques. Secondly, there is the need to analysis the posterior. To estimate the parameters, 

such as the mean, median, or credible intervals, analyze the posterior samples. As a result, there can be 

better understanding of which parameter values match the data and model the best. Thirdly, it is model 

checking. Use posterior predictive checks or a comparison of the model’s predictions and observed data 

to validate the model [8]. 

The seventh step is interpretation and reporting. The analysis of the findings should consider the 

application or scientific question. This includes talking about the parameter estimations, their 

uncertainties, and how the dynamics of the system are understood in light of them. Extensive 

information about the transitions of elements between pools is needed for MCMC modeling. The 

Markov chain’s transition probabilities, which MCMC employs to model the system’s behavior over 

time, are based on this data. Due to its complexity and the random system characteristics, standard 

methods cannot accurately produce estimations for parameters, such as transition rates or residence 
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lengths. Nonetheless, MCMC may offer estimations for the parameters through implementing thousands 

or millions of times. 

3.  Mathematical framework of Markov chains in NLP 

3.1.  Introduction of NLP 

The application of Markov chains in NLP typically involves constructing a transition matrix that 

represents the probabilities of moving from one word to another. This matrix is built from a corpus of 

text by analyzing word sequences and calculating the likelihood of a word following another.  

The authors shall define 𝑃𝑖,𝑗 as the probability of transitioning from word 𝑖 to word 𝑗. However, in 

real estimation, the result can be constrained by traditional Markov chains since it is impossible to 

predict one word just based on the previous one. Therefore, in NLP model, n-gram model is utilized 

which is an extension of Markov chain. In this model, it is considered that there are 𝑛 − 1 words that 

can be used to predict the 𝑛𝑡ℎ word. To be specific, if 𝑛 equals to 4, it represents the fifth word that can 

be predicted by using the previous four words. If one defines the states of different words as 𝑊 =
𝑤1, 𝑤2, 𝑤3, 𝑤4, … 𝑤𝑛 in an n-gram model, it can be further written as 𝑃(𝑊) = 𝑃(𝑤1) × 𝑃(𝑤2|𝑤1) ×
𝑃(𝑤3|𝑤1, 𝑤2) × … ×  𝑃(𝑤𝑛|𝑤1, 𝑤2, … , 𝑤𝑛−1) [9]. 

One of the most wide-used applications of Markov chains in NLP is in text generation. By starting 

with an initial word or phrase, a transition matrix is used to probabilistically judge subsequent word. 

Markov chains can generate new sentences that mimic the style of the input text. This approach has been 

used in various applications, from automated story generation to simulating dialogue in virtual assistants. 

Beyond text generation, Markov chains serve as the basis for more complex language models. They 

are used to predict the likelihood of a sequence of words, which is essential for tasks like speech 

recognition, auto-completion in text editors, and machine translation. The simplicity of Markov chain 

models makes them faster and more computationally efficient. Although they are often outperformed by 

more complex models, such as neural networks, for tasks requiring understanding of long-term 

dependencies. 

3.2.  Challenges and limitations 

Even though it is available to use Markov chain, there are still significant limitations in NLP. It can 

either oversimplify the model or be too complicated to predict the occurrence of words and phrases. If 

the probability of state only depends on the previous state, it can result in texts that lack coherence 

especially in long passages. What is more, human writing is always emotional, and it is impossible to 

capture the complexities of human language. Writers may not have fixed emotions when they write, and 

the intensity of emotions is closely related to the use of words. Therefore, it seems that it is easier to 

analyze existing works such as Shakespeare’s articles instead of predicting how a writer might write. In 

the context of the higher-order n-gram models, the number of words and phrases grows exponentially. 

The explosion of the possible states can lead to data sparsity problems, which makes it more difficult to 

process the model with increasing computational bases [10]. 

To overcome these limitations, researchers have integrated Markov chains with other statistical and 

machine learning models. HMMs, for example, extend Markov chains by incorporating hidden states 

that can model parts of speech or other linguistic features, providing a richer understanding of language 

structure. More recently, the occurrence of deep learning has exceeded Markov chains in many NLP 

tasks. However, Markov chains remain a valuable tool for certain applications due to their simplicity 

and efficiency. 

Markov chains have played a fundamental role in the development of NLP, offering a straightforward 

yet powerful method for modeling language and generating text. While their application in NLP systems 

has been overshadowed by the rise of deep learning, they are still serving as a significant tool for 

understanding the nature of language. As NLP advances, it is likely that Markov chains are still widely 

used, either in their pure form or integrated into more complex models, which all proved their enduring 

value in the field of computational linguistics. 
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4.  Conclusion 

In this paper, the origin of Markov chain is demonstrated at the beginning. It can be divided into two 

main groups, which are discrete-time and continuous-time Monte Carlo. A major part of the essay 

concentrates on the applications of Markov chain. Markov chain is a basic model for many applications 

and there are also many Markov chain-based models which can be utilized in different areas. Firstly, the 

three-pool model with Markov chain is introduced to present extensive applications in areas of physics, 

chemistry and so on. It is typically used to describe a system that has three interconnected states and 

these states transition between each other with certain probabilities. The necessities of the three-pool 

Markov chain are given, along with the detailed modeling steps. Apart from this, natural language 

processing is another application. By using the Markov chain model, words and phrases will be predicted 

which can be used to generate articles and make it easier to research existing literature. Certainly, 

limitations for this application are obvious as the human mind is unpredictable, and language is 

sometimes art than science. The whole essay is to show that Markov chain is widely used, and its 

extensions can help build more useful models to solve more complex problems. 
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