
The analysis of chaos and fractals 

Bohan Zhao  

Fullbright Academy, Fort Erie, Ontario, Canada, L2A5M4 

 

zhaobohan9@gmail.com 

Abstract. Chaos and fractals are closely interconnected ideas in the field of mathematics. The 

behavior of complex systems is characterized by chaos, which is the result of excessive 

sensitivity to initial conditions, leading to unpredictable and random consequences. Fractals are 

geometric patterns that display self-similarity at many scales. This paper examines the complex 

connection between chaos and fractals using a method of theoretical analysis and a 

comprehensive examination of relevant literature. Studying the connection between chaos 

science and fractals can provide valuable insights into chaotic events in nonlinear dynamical 

systems. Furthermore, this investigation enables readers to understand the underlying fractal 

nature of such systems. Gaining insight into this correlation not only enhances comprehension 

of the fundamental principles that control intricate systems, but also provides opportunities for 

utilization in other domains, spanning from physics to biology and beyond. 
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1.  Introduction 

Real life is often characterized by a lack of order, stability, and certainty. Instead, it exists in a constant 

state of randomness, disorder, and imbalance. Put simply, it’s impossible to precisely predict what will 

occur in the future, often referred to as fate. Does a nonlinear system have specific rules to follow? 

Nonlinear systems are inherently chaotic and unpredictable, so it’s natural to question the existence of 

any set rules to govern them. Nonlinear systems are governed by laws, yet their long-term state remains 

unpredictable. An example of a nonlinear system is the simple pendulum, which can be analyzed using 

principles from physics. This linear system is quite straightforward, and its outcome can be precisely 

determined once it reaches the desired position. However, when a line is introduced or a ball is affixed 

underneath, it transforms into a double pendulum [1]. This double pendulum is certainly predictable, 

but it’s impossible to accurately predict its next swing position due to its nonlinear nature. It has the 

potential to cause disorder. Chaos is the term used to describe the occurrence of random and irregular 

motions within a specific system. These chaotic phenomena cannot be predicted or repeated, but they 

can be mathematically or physically described [2]. For instance, in the case of the double pendulum 

depicted above, its motion can be described using physical equations. However, with each movement, 

it generates an apparently unpredictable curve, revealing the inherent chaotic nature of the system. 

Studying the relationship between chaos science and fractals can provide valuable insights into the 

understanding of chaotic phenomena in nonlinear dynamical systems and the intricate patterns they form 

[3]. 

Proceedings of  the 2nd International  Conference on Mathematical  Physics and Computational  Simulation 
DOI:  10.54254/2753-8818/36/20240630 

© 2024 The Authors.  This  is  an open access article  distributed under the terms of  the Creative Commons Attribution License 4.0 
(https://creativecommons.org/licenses/by/4.0/).  

211 



This study seeks to provide an introduction to the fundamental concepts and characteristics of chaos 

and fractals, and explore their significance in the realm of mathematics and practical applications. By 

utilizing literature review and theoretical analysis, this paper aims to deepen readers’ understanding of 

the connection between chaos and fractals. Additionally, it offers a fresh approach for individuals to 

navigate complex systems and data. 

2.  Definition and relationship of chaos and fractals 

The 1D logistic chaotic map is xn+1 = rxn(1 − xn)[4]. In a simple way, this formula represents the 

relationship between the quantity of certain things. If the quantity of a kind of species decreases below 

a certain level in one year, the quantity of this species will increase in the next year. However, if the 

quantity of a certain species increases too much, the competition for living space and resources will 

cause the quantity of this species to decrease, where R is an adjustable parameter. When R is less than 

3.5, the number of species changes regularly. However, when R>3.5, the number of species will 

suddenly become unpredictable. There are various possibilities, making it completely 

unpredictable.This is the characteristic of chaos [5]. 

The image below reflects the characteristics of a fractal. That is, when zoomed in, the local picture 

looks similar to the whole, exhibiting self-similarity. 

 

Figure 1. The representation of characteristic of chaos [6] 

To illustrate the relationship between chaos and fractals, the example of a fractal repeller is 

considered. More concretely, the mapping of the line given by 

 T(x) = {
sx if x ≤ a

a

a−1
s(1 − x)  if x > a

 (1) 

is also considered, where the parameters satisfy a ∈ (0,1);  sa > 1. Its graph looks like figure 2. 
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Figure 2. The relationship between chaos and fractals 

First, if x is not in [0,1], then its orbit goes to minus infinity, which is represented as below: 

x ∉ I1 ∪ I2
⬚
⇒ Tn(x) ∉ [0,1] ∀n ∈ N 

Within the interval [0,1], three sub-intervals are identified, the first and last of which map onto the 

whole interval [0,1], and the middle one maps out of [0,1] in one iterate of T. 

x ∈ I1 ∪ I2
⬚
⇒ T(X) ∈ [0,1] 

This paper is interested to describe the set P of points x in [0,1] whose forward orbit remains within 

[0,1] for all iterates of T. Note that the points in [0,1] that remain in [0,1] under one iterate of T form the 

sub-intervals I1 and I2. These sub-intervals can be obtained as images of [0,1] under f1 and f2 that 

are the inverses of the maps T1 ∶= T|I1: I1 → [0,1]  and T2 ∶= T|I2: I2 → [0,1] . Note that f1  and f2 

are contractions in the sense that they shrink the distance between any pair of points uniformly. 

Now the points in [0,1] that remain in [0,1] under two iterates of T is considered. It is worth notable 

that points in I1 that are mapped to I1 by T are the points in I11 ≔ f1(I1); points in I1 that are mapped 

to I2 by T are the points in I12 ≔ f1(I2); points in I2 that are mapped to I1 by T are the points in 

I21 ≔ f2(I1); and points in I2 that are mapped to I2 by T are the points in I22 ≔ f2(I2). 

By continuing calculating this argument n times, it can be obtained that 2n sub-intervals Is0....sn−1

∶= fs0
∘ ⋯ ∘ fsn−1

([0,1]) consisting of points in Is0
 that maps into Is1

 under one iterate of T, and into 

Is2
 under two iterates of T etc. Let Pn ∶= ⋃ Is0⋯sn−1s0⋯sn−1∈{1,2} . The sets Pn are nested Pn ⊆ Pn−1 

because Is0⋯sn−1
⊆Is0⋯sn−2

 and Pn=F(Pn−1). Moreover, their intersection consists of points that never 

escape the interval [0,1] x∈P
⬚
⇔ ∀n, x ∈ Pn,i.e,Tn(x) ∈ [0,1]. In other words, P= ⋂ Pn

∞
n=1 . 

To study the fractal properties of P, the Iterated Function System (IFS) is introduced on the space of 

fractals H([0,1]) consisting of all nonempty closed subsets of the interval [0,1]. Define 

F: H([0,1]) → H([0,1]),    F(A) ≔ f1(A) ∪ f2(A). 

Note F([0,1]) = I1 ∪ I2 = f1([0,1]) ∪ f2([0,1])  and Fn([0,1]) = Pn.  Since f1  and f2  are 

contractions, so is F, and hence, by the Contraction Mapping Theorem, F has a unique fixed point in 

H([0,1]). This fixed point is noted as P. 

To see this hypothesis, F(P)=P is verified. By properties of the sets Pn , it can be obtained that 

F(P)=F(⋂ Pnn≥1 )=⋂ F(Pn)n≥1 =⋂ Pn+1n≥1 =⋂ Pnn≥2 =P, which proves the claim. 

To compute its similarity dimension D, it is notable that f1 and f2 are not only contractions with 

factors λ1
⬚

=
1

S
,  λ2

⬚
=

1−a

as
 but also similarities in the sense that |fi(x) − fi(y)| =  λi|x − y| for any 

pair of points x and y in the interval [0,1].  
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Recall the defining equation: 

λ1
D + λ2

D = 1, 

whose unique solution D is the similarity dimension of P. As D is nonzero and strictly smaller than 

1, it is concluded that P is a fractal with non-integer dimension. 

Next this paper shows that the dynamics of T on P is chaotic in the sense that there is a dense orbit, 

and the periodic orbits form a dense set. For this, the author considers the sequence space 

∑ = {s0s1s2. . . . . |si ∈ {1,2}}+
2   and define the coding map h : ∑ → P+

2   by h(s) ∶= lim
n→∞

 fs0
∘ ⋯ ∘

fsn
([0,1]). Note that this limit exists and is unique because f1 and f2 are both contractions on the 

interval [0,1]. By the nested property of  Is0....sn−1
∶= fs0

∘ ⋯ ∘ fsn−1
 ([0,1]), it follows that 

h(s) ∈ Is0....sn−1
 for any n.  

Moreover, for every point x ∈ P there is a unique symbolic sequence s ∈Σ2
+

 for which ℎ(s) =

x. The dynamics of T on P can be represented by the shift dynamics σ on Σ2
+

 in the sense that T 
ℎ(s) = ℎ ∘σ(s), where σ(s0s1 ⋯ ) = s1 ⋯. 

For the first property of chaos, this paper constructs a point x∈ P whose orbit under T is dense in 

P. It is notable that a set is dense in P if and only if it contains a point in Is0....sn−1
 for every possible 

finite symbolic sequence s0 ⋯ sn−1 . Therefore, it suffices to construct a symbolic sequence s 

containing all possible finite symbolic sequence s0 ⋯ sn−1 . For instance, such a sequence can be 

obtained by listing consecutively all finite sequences. 

For the second property of chaos, in each Is0....sn−1
 a periodic point under iterates of T is exhibited. 

Note that a point x ∈ P satisfies Tm(x) = x if and only if there is some symbolic sequence s ∈Σ2
+

 

such thatx = h(s)  and σm(s) = s . Hence, it suffices to exhibit a periodic symbolic sequence that 

begins with s0 ⋯ sn−1: s = s0 ⋯ sn−1s0 ⋯ sn−1 ⋯. 

3.  Conclusion 

This essay explores the connection between chaos and fractals, specifically focusing on the concept of 

a fractal repeller. For a more concrete example, let’s examine the mapping of a line described by formula 

(1), assuming that the parameters meet the condition a ∈ (0,1) ;  sa > 1. And the paper examines the 

evolving role of the image. This essay demonstrates the strong correlation between chaos theory and 

fractal theory. Understanding the intricate dynamics of complex systems and the presence of self-

similarity in various natural and man-made systems is a fascinating aspect of scientific exploration. 

Through exploring the relationship between chaos and fractals, we can gain a deeper understanding of 

the governing principles behind natural phenomena and complex systems. This knowledge can offer 

fresh insights and approaches for advancements in the fields of science and engineering. Future research 

can delve deeper into the intricate connections between chaos and fractals and their potential 

applications across various disciplines, thereby advancing our comprehension and mastery of intricate 

systems. 
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