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Abstract. Lagrange’s Four-square Theorem is a fundamental principle in number theory, which 

states that every positive integer can be expressed as the sum of four squares. The theorem was 

first conjectured by the Greek mathematician Diophantus of Alexandria in the 3rd century CE. 

It was later proved by Pierre de Fermat in the 17th century, and the first published proof was 

attributed to Joseph-Louis Lagrange in 1770. This paper presents a comprehensive account of 

the four-square theorem in number theory, which focuses on finding integer solutions to 

polynomial equations. The theorem has significantly advanced the study of Diophantine 

equations. It traces Lagrange’s Four-square Theorem from its conjectural origins to its emergence 

as a cornerstone of contemporary mathematical research. This paper reviews the proof of the 

theorem and its implications, as well as its connection to modern research and applications, 

highlighting its timeless relevance in mathematics. In addition, the paper reaffirms the extensive 

influence of the theorem on the advancement of Diophantine equations and its ongoing 

significance in elucidating the enigmas of number theory. This enhances our comprehension of 

the theorem’s position in the wider story of mathematical progress, confirming its significance 

in both historical and contemporary contexts. 

Keywords: Lagrange’s Four-Square Theorem, Diophantine Equations, Computational Number 

Theory, Quantum Computing 

1.  Introduction 

The study of numbers and their properties is a fundamental aspect of mathematical inquiry, with the 

representation of numbers as sums of squares occupying a pivotal role throughout history. This 

fascination spans from the Pythagorean triples rooted in ancient geometry to the sophisticated realms of 

modern number theory. Positioned at the confluence of historical curiosity and contemporary 

mathematical rigor, this paper aims to explore the representation of integers as sums of squares, a 

question that has intrigued mathematicians for centuries [1]. The foundation of modern number theory, 

enriched by resources like NRICH and Silverman’s “A Friendly Introduction to Number Theory” [2] 

[3], builds upon these ancient questions, showing their relevance in today’s mathematical challenges. 

By delving into the historical evolution of this problem, from the early explorations by Pythagoras and 

Diophantus to the groundbreaking proofs by Fermat, Euler, and Lagrange, it uncovers the mathematical 

underpinnings and implications of such representations. Combined with a comprehensive review of the 

historical literature tracing the development of sums of squares in number theory and an analysis of 

contemporary mathematical texts and papers demonstrating current research and methods in the field, 
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this paper bridges the gap between historical insights and modern mathematical advances, providing a 

holistic view of the subject matter. 

2.  Historical Background 

The journey to express numbers as the sum of squares begins with Diophantus of Alexandria in the 3rd 

century (Diophantus of Alexandria, 3rd century CE) [4,5], whose work “Arithmetica” laid early 

foundations for algebra and introduced the concept of Diophantine equations—seeking integer solutions 

for equations. Diophantus’s insights into equations involving squares paved the way for future 

mathematical breakthroughs. The narrative advanced significantly with Pierre de Fermat in the 17th 

century. Fermat proposed that every prime number of the form 4n+1 could be uniquely expressed as the 

sum of two squares. This proposition, known as Fermat’s theorem on sums of two squares, opened new 

vistas in understanding the nature of numbers. The story took a monumental leap with Joseph-Louis 

Lagrange in the 18th century, who proved that every positive integer could be represented as the sum of 

four squares. Lagrange’s proof not only underscored the significance of sums of squares within number 

theory but also highlighted the analytical techniques’ prowess in addressing mathematical challenges. 

Leonhard Euler contributed further by developing the Euler four-square identity, enhancing the 

mathematical framework for analyzing sums of squares. Similarly, Adrien-Marie Legendre’s work, 

including his three-square theorem, deepened the understanding of numbers’ representation as squares, 

particularly in relation to prime numbers. These milestones by Diophantus, Fermat, Lagrange, Euler, 

and Legendre have fundamentally shaped the study of number theory, especially concerning the 

intriguing challenge of expressing numbers as the sum of squares. Their collective work underscores the 

mathematical field’s depth, interconnectedness, and the ongoing quest to unravel the complexities of 

integers. 

3.  Mathematical Foundations 

In number theory, there are several basic concepts and notations pivotal for understanding theorems such 

as the Lagrange’s four-square theorem [1][4], including: 

⚫ Integers (ℤ): The set of whole numbers including positive, negative numbers, and zero. 

⚫ Prime numbers: Natural numbers greater than 1 that have no positive divisors other than 1 and 

themselves. 

⚫ Squares: Numbers that are the product of an integer with itself. For example, 4 = 22 is a square. 

⚫ Sum of squares: An expression that represents a number as the sum of the squares of integers. 

Lagrange’s Four-Square Theorem states that every positive integer can be expressed as the sum of 

four squares of integers. Formally, for any positive integer n, there exist integers a, b, c and d such 

that:  

 n = a2 + b
2 + c2 + d

2
 (1) 

⚫ Euler’s Four-Square Identity: According to the Figure 1, this identity shows how the product of two 

sums of four squares is itself a sum of four squares. Specifically, if we have two numbers expressed 

as the sum of four squares:  

 (a2 + b
2 + c2 + d

2)(e2 + f
2 + g2 + h

2) (2) 
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Figure 1. The visualization of Euler’s Four-Square Identity 

Euler’s identity allows us to express this product again as a single sum of four squares, an essential 

concept for proving that the set of numbers expressible as the sum of four squares is closed under 

multiplication [6]. This principle is further elucidated in texts such as Silverman’s introduction to 

number theory, offering a gateway to understanding complex mathematical structures [3]. 

Understanding these concepts and their interrelations not only facilitates the comprehension of the 

theorem’s proofs but also illustrates the elegance and depth of mathematical structures dealing with 

integers and their properties. 

4.  Proof of Theorem 

Lagrange’s original proof of the four-square theorem was presented in a simplified manner, leveraging 

earlier works by mathematicians like Fermat [5] and Euler [6]. A detailed step-by-step simplification of 

Lagrange’s proof would require a deep dive into complex number theory, the essence of his approach 

was to show that every positive integer can be broken down into a sum of four squares, leveraging earlier 

works by mathematicians like Fermat. Lagrange’s proof is notable for its methodical approach, showing 

that if the theorem holds for certain types of numbers, it must then hold for all positive integers. One 

key aspect of his proof involved demonstrating that if two numbers can be expressed as the sum of four 

squares, then their product can also be expressed in the same form. This foundational concept is crucial 

for understanding the theorem’s proof and its significance. 

4.1.  Alternative Proofs and Generalizations 

The aim of this chapter is to examine alternative proofs and generalizations of the original theories or 

conclusions. This not only demonstrates the diversity and flexibility of the original ideas but also 

provides new perspectives and possibilities for further research and application. 

4.1.1.  Infinite Descent. Fermat famously used the method of infinite descent to prove various 

propositions, which consisted of assuming there is a smallest counterexample to a proposition and then 

showing that a smaller one exists, leading to a contradiction. Though not directly applied to the original 

four-square theorem, this method has influenced proofs in related areas. 

4.1.2.  Hurwitz Quaternions. A more modern approach to understanding sums of squares involves the 

algebra of Hurwitz quaternions, which are complex number systems that extend real numbers. These 

quaternions provide a powerful framework for generalizing and proving the sums of squares theorems, 

illustrating the deep connections between number theory and algebra. 

4.2.  Computational Methods in Proofs 

With the advent of computers, computational methods have become invaluable in exploring the realms 

of number theory, including proofs related to the four-square theorem. Computers empower 
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mathematicians to validate hypotheses on large datasets, identify patterns, and even provide proofs for 

specific cases that would be unmanageable manually. These methods have not only confirmed the vast 

applicability of the theorem but also opened new avenues for its exploration and application. 

4.3.  Applications and Implications. 

The four-square theorem finds applications across various domains of mathematics and science, 

demonstrating its fundamental nature: 

4.3.1.  Cryptography. In cryptographic systems, particularly those based on lattice problems and 

quadratic forms, the ability to represent numbers as sums of squares has implications for encryption 

algorithms and security protocols [7]. 

4.3.2.  Coding Theory. The theorem’s concepts are applied in coding theory, where sums of squares are 

related to error-detecting and error-correcting codes, crucial for data transmission and storage. 

4.3.3.  Quantum Computing. In quantum computing, the mathematical structures underlying the four-

square theorem can influence algorithms and the development of quantum error correction. 

The four-square theorem, with its rich history and wide applicability, continues to be a subject of 

fascination and study within the mathematical community. Its enduring legacy underscores the timeless 

nature of mathematical inquiry and its relevance to both foundational research and practical applications. 

5.  Contemporary Perspectives 

In the realm of number theory, researchers often focus on advancing the understanding of the four-square 

theorem. And recent developments may include efforts to generalize the theorem to other number 

systems or to explore its connections to other area of mathematics. Additionally, researchers might be 

working on computational approaches to efficiently find representations of numbers as sums of squares 

or investigating specific open problems and conjectures related to the theorem. Nonetheless, this paper 

can lead to an understanding of the focus of the research community and the types of developments that 

are likely to occur. The advent of powerful computational tools, as detailed by Crandall and Pomerance 

in “Prime Numbers: A Computational Perspective,” allows researchers to test hypotheses related to the 

four-square theorem on a scale not previously possible, verifying the theorem for very large numbers 

and exploring its implications in computational complexity and algorithmic number theory [8]. 

5.1.  Recent Generalizations and Computational Approaches 

Recent generalizations include extending the four-square theorem to more complex structures, such as 

higher-dimensional lattices or other algebraic systems. Mathematicians are also interested in similar 

representations for other forms, like cubes or higher powers, and the conditions under which similar 

theorems hold. These explorations are supported by advancements in computational number theory, 

which Silverman and Crandall with Pomerance discuss in their respective works [3,8]. 

⚫ Generalizations: Research might explore extending the four-square theorem to more complex 

structures, such as higher-dimensional lattices or other algebraic systems. Mathematicians are also 

interested in similar representations for other forms, like cubes or higher powers, and the conditions 

under which similar theorems hold. 

⚫ Computational Number Theory: The advent of powerful computational tools allows researchers to 

test hypotheses related to the four-square theorem on a scale not previously possible. This includes 

verifying the theorem for very large numbers or exploring its implications in computational 

complexity and algorithmic number theory. 

5.2.  Open Problems and Conjectures: 

⚫ Density and Distribution: Questions about the density and distribution of the representations of 

numbers as the sum of squares, and how these properties might influence other areas of number 
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theory and combinatorics. 

⚫ Connections to Other Fields: Exploring deeper connections between the four-square theorem and 

other mathematical fields, such as elliptic curves, modular forms, and cryptographic algorithms, 

may yield new insights and open problems. 

6.  Discussion 

The Four-square Theorem, proven by Joseph-Louis Lagrange in 1770, stands as a monumental testament 

to the beauty and depth of number theory. This theorem, demonstrating that every positive integer can 

be represented as the sum of four squares, resolved a long-standing question and catalyzed a new era of 

mathematical exploration. Its simplicity belies the profound implications it has for number theory and 

beyond, having inspired countless mathematicians to delve into the properties of numbers, leading to 

the emergence of new branches within mathematics and a deeper understanding of existing ones. 

ThisStewart and Tall’s “Algebraic Number Theory and Fermat’s Last Theorem” and Weil’s historical 

approach in “Number Theory: An Approach Through History from Hammurapi to Legendre” provide 

context for the theorem’s impact beyond its initial proofs, demonstrating its foundational role in 

algebraic number theory and its historical significance [9]. Meanwhile, Conway and Smith’s exploration 

of “On Quaternions and Octonions” illuminates the deep connections between the theorem and algebra, 

highlighting the quaternion algebra’s role in generalizing and proving sums of squares theorems [10]. 

7.  Conclusion 

This paper has sought to illuminate these facets, presenting a comprehensive review of the theorem’s 

historical development, its pivotal role in advancing number theory, and the myriad ways it continues to 

influence modern mathematical research. By highlighting the theorem’s ongoing relevance and potential 

for future discoveries, it underscores the dynamic nature of mathematics, where ancient questions give 

rise to contemporary challenges and innovations. In conclusion, the four-square theorem remains a 

cornerstone of mathematical inquiry, a source of inspiration for both theoretical exploration and practical 

application. Looking ahead, it is clear that the theorem not only constitutes a significant chapter in the 

history of mathematics but also serves as a springboard for future generations of mathematicians to 

explore the endless mysteries of numbers. This work provides a deeper understanding of the theorem’s 

place in mathematical thought, reaffirming its timeless significance and the endless curiosity it inspires 
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