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Abstract. The background and motivation of our research is to explore how to use 

computational methods to analyze GCaMP fluorescence data. GCaMP is a genetically encoded 

calcium indicator that can be used to observe the activity of thousands of neurons 

simultaneously using modern fluorescence imaging techniques. Our research includes the 

application of principles such as basic signal processing, statistical inference, hypothesis 

testing, and graph theory to help understand raw GCaMP fluorescence data recorded from 

awake, behavioral mice. The data set includes GCaMP fluorescence trace and correlation 

coefficient matrix among neurons. Our methods include high-pass filtering, Gaussian mixture 

model fitting and online active set method peak inference (oasis). By analyzing the correlation 

between neurons, we can understand the connection and centrality between neurons. 
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1.  Introduction 

Calcium imaging is a technique used to observe neuronal activity. It involves labeling calcium ions in 

neurons using calcium indicators and detecting changes in the fluorescent signal emitted by the 

indicators. 

During neuronal activity, the change of calcium ion concentration is closely related to the electrical 

activity of neurons. Through calcium indicators, these changes in calcium ion concentration can be 

translated into changes in the fluorescence signal. Fluorescence microscopes (maikeruoscope) and 

corresponding imaging systems are used to observe and record these fluorescence signals. 

The advantage of calcium imaging is the ability to observe large numbers of neurons simultaneously 

and to provide spatial and temporal resolution of neuronal activity. This makes calcium imaging a 

common tool in neuroscience research to study the function of neural circuits, the interactions between 

neurons, and the activity of the nervous system during different behavioral and cognitive processes.[1] 

Calcium imaging analysis is a very complete technology, it includes many steps, such as how to 

inject calcium indicators, how to extract signals, and data analysis, etc. We only studied a part of it 

We have developed a strong calculation method that can be used to analyze GCaMP fluorescent data. 

GCaMP is a causal coding calcium indicator, the most widely used is to observe the activity of thousands 

of neural groups at the same time using modern fluor imaging techniques. 
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We use some background knowledge of basic information processing, statistical inference, 

hypothesis testing and basic principles of graph theory. We should use these principles to help interpret 

the primary GCaMP fluorescence data recorded from the waking rats. 

Our initial data were two GCaMP6(special edition of GCaMP) fluorescent data sets containing 

temporal sequence traces of hundreds of rats primary visual cortex (V1) elements. These elements are 

located in a three-dimensional volume of about 800 μm x 800 μm x 100 μm. The axial depth is limited 

by various physical limits. This volume contains a large part of two-thirds of the layers, and many of the 

higher layers of the large brain are born in the skin. 

The GCaMP fluorescent record sample is made as the phase pair modification of the fluorescent 

phase to the basic fluorescent water level for each celestial element n and each time point m 

 

Figure 1. The original data is derived from experimental mice 

2.  Related work 

Calcium imaging, especially using genetically encoded calcium indicators like GCaMP, has become a 

key method for observing neural activity [2]. Over the years, various methods have been developed and 

optimized to analyze GCaMP fluorescence data.[3] 

Tian et al made significant advancements in improving the GCaMP indicator for observing neural 

activity in worms, fruit flies, and mice. [4] Their research emphasized the importance of optimizing the 

sensitivity of GCaMP indicators, highlighting the evolving nature of these tools and their potential to 

capture neural dynamics in different organisms. 

Chen et al highlighted the challenges of threshold fluorescence modes. They laid down fundamental 

concepts in the field of using GCaMP for neuronal activity imaging. [5] This method, although powerful, 

often faces challenges distinguishing high-frequency changes from actual neural activity, emphasizing 

the importance of robust analytical techniques. 

In the exploration of optimizing calcium imaging, Dana et al delved deeply into high-performance 

calcium sensors for imaging neural activity.[6] Their work centered on creating more sensitive and 

faster variants of GCaMP, elucidating the need for a balance between sensitivity and noise. 

There are many ways to analyze calcium imaging data. One of the most notable methods is a toolkit 

called “EZcalicu”[7]. This toolkit is convenient as it produces results directly. However, EZcalicu has its 

limitations. Specifically, it only supports the analysis of .tiff files. Data formats like .AVI or .mat are 

incompatible. Given the frequent challenges of converting complex data formats to either .TIFF or .AVI, 
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this posed a significant limitation. Recognizing this challenge, we embarked on the task of developing 

our own set of codes specifically tailored for similar data analysis, using . MAT data as an example. 

Moreover, the work of Eftychios Pnevmatikakis on the MATLAB toolbox, despite being 

commendable, also has its limitations. While it can efficiently analyze calcium imaging data, it often 

blurs high-frequency changes, potentially losing key information. 

Our approach is largely influenced by the aforementioned research, and we have integrated various 

elements from them. However, our goal is to address some of these limitations, especially when it comes 

to preserving high-frequency data without compromises. We adopted a combination of high-pass 

filtering, Gaussian mixture modeling, and connectivity centrality, ensuring a comprehensive analysis of 

GCaMP fluorescence data. 

3.  Research methods 

Our workflow is shown in the figure 2 

 

Figure 2. Flow chat 

3.1.  Filtration 

Low frequency base line drift is present in each time sequence track due to motion, image noise, and/or 

optical bleaching. We are interested in the relative high frequency variation of GCaMP. High frequency 

variation is the result of calcium inflow and outflow, and is related to the direct discharge of neurons. 

We must design a suitable high-pass filter and the filter should be used in tandem data to eliminate 

the above low frequency drift in each record of the Scriptures. We must ensure that, when designing the 

filter, only the unwanted low frequency drift induced by the above mentioned error is eliminated and the 

calcium inflow and outflow fluorescence changes are retained. 

First we draw the mean Fourier amplitude spectrum and determine an appropriate cut-off frequency 

for the logical high pass filter that applies to all GCaMP time sequence traces.[8] 

In the frequency domain, the ideal high-pass filter is defined, for some cutoff frequency ωc, as follow 

 

After analysis and calculation, we determined that ωc = 0.198 
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Figure 3. A histogram showcasing the distribution of fluorescence intensities in the collected data 

Then we get the raw data and the filter coefficient. Then we can filter the raw data in the time domain 

resorts to convolving the data with the filter coefficients in the time domain. The result we get after the 

convolution should the filtered data. 

We use Matlab to achieve, the code is as follows 

 

Figure 4. Defining and Processing Discrete-Time Fourier Transform with Ideal Gate Signal 

And next we did Filtering by convolution: 

we using convolution. Filtering data in the time domain resorts to convolving the data with the filter 

coefficients in the time domain. We design this code 

y_0 = cconv(qwe_0,u_ifft, length (qwe_0)) 

(What this expression means is to convolve qwe_0 and u_ifft cyclically and store the result in y_0. 

length(qwe_0) is used to specify the length of the convolution, which is the same length as qwe_0.) Our 

results are shown in the figure 2 and 3 below 
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Figure 5. Code Spectral Analysis of Frequency and Time Domain Using Fast Fourier Transform 

 

Figure 6. Result 1 Visualization of the Gaussian mixture model’s ability to differentiate neuronal states. 

3.2.  About the Gaussian mixture model 

The function of Gaussian mixture model fitting is to model and analyze the activity data of neurons. In 

our project, Gaussian mixture model is used to fit neuronal data after high-pass filtering. The specific 

steps are as follows: First, the neuron data after high-pass filtering is taken as a sample, assuming that 

the sample of each neuron is generated by a Gaussian mixture model with two mixed components. One 

of the mixed components represents the baseline state and the other represents the excited state.Then, 

using built-in functions or packages in Python or MATLAB, a Gaussian mixture model is fitted to a 

sample of each neuron. The goal of fitting is to find the best model parameters so that the model can best 

describe the sample data. By fitting the Gaussian mixture model, the probability density function of each 

neuron can be obtained, so that the activity pattern and interaction of neurons can be better understood. 

These probability density functions can be used for further analysis, such as calculating correlations 

between neurons, exploring connectivity and centrality between neurons, etc. Therefore, Gaussian 
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mixture model fitting plays an important role in studying neuronal activity and the function and structure 

of neural networks.  

But because of time and schedule, the work is still being done. 

3.3.  OASIS 

OASIS (Open Source Imaging Spike Sorting) is a MATLAB toolkit for offline analysis and peak 

detection of neural activity. [9] It provides a set of functions and tools for processing and analyzing 

calcium imaging data. 

The main features of OASIS-MATLAB include: Data preprocessing, Peak detection, Data analysis, 

Utility functions. 

So, how does the OASIS filter the signal? 

Initialization: Firstly, the signal needs to be initialized.  

Attenuation Rate Estimation: Next, OASIS distinguishes the desired signal component from the 

noise component by estimating the attenuation rates of the signal. [10] 

Filtering Iterations: In each iteration, OASIS filters the signal based on the estimated attenuation 

rates.  

Convergence Check: After each iteration, OASIS examines the difference between the filtered result 

and the previous iteration. 

Then we using “deconvolveCa” to perform deconvolution analysis on the original calcium imaging 

data. (code as follow) 

 

Figure 7. Code representation of the estimated neural activity and estimated calcium indicator 

concentration using the deconvolution algorithm 

“c”- the estimated neural activity trace 

“s” - the estimated calcium indicator concentration signal 

“options” - a structure that contains parameter options for configuring the deconvolution algorithm. 

This is a cyclic convolution calculation in signal processing that we designed. The deconvolveCa 

function is used in the code for signal deconvolution operations. 

First, the code deconvolveCa deconvolved the signal qwe_0 by calling the deconvolveca function, 

and assigned the returned results to the variables c, s, and options, respectively. Similarly, the code 

performs a convolution operation on the signal qwe_2 and assigns the result to the variables c_2, s_2, 

and options_2. 

Then, we define some variables and calculations. Y and Y_2 represent signals qwe_0 and qwe_2, 

respectively. truec and trueC_2 represent the result c and c_2 after deconvolution, respectively. 

truespikes and truespikes_2 represent the result s and s_2 after deconvolution, respectively. T and T_2 

represent the length of the signal, and firerate_2 represent the frequency of the pulse in the result after 

deconvolution, respectively. 

Next we will plot the result using Matlab. Here is an explanation of our code: First, the code 

initializes the graph by setting the paper size of the graph to ‘[15, 2.5]’ and calling the ‘init_fig’ function. 
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Next, use the ‘hold on’ command to keep what is already on the graph and allow multiple graphs to be 

drawn on the same graph. Then, the color variable ‘col’ is defined, which contains the RGB values for 

the three colors. Next, plot the fluorescence tracing curve using the ‘plot’ function. ‘(1:T)/FR’ represents 

the time point on the X-axis, and ‘Y(1,:)’ represents the corresponding fluorescence value. The ‘o’ 

parameter is used to specify the color, and the ‘uint8(col(2))’ is used here for the second color. Then, plot 

the calcium ion trace curve using the ‘plot’ function. ‘(1:T)/FR’ represents the time point on the X-axis, 

and ‘trueC(:,1)’ represents the corresponding calcium ion value. The ‘color’ parameter is used to specify 

the color, here ‘k’ is used for black. Next, use the ‘find’ function to find the point in time when the pulse 

occurred, and use the ‘plot’ function to plot the location where the pulse occurred. ‘[1,1]*tsp(m)/FR’ 

represents the point in time at which the pulse occurs, and ‘[0, 1]’ represents the starting and ending 

positions on the Y-axis. The ‘color’ argument is used to specify the color, and uint8(col(3)) is used here 

to represent the third color. Then, use the ‘axis tight’ command to fit the axes to the data range. Next, use 

‘xlabel’ and ‘ylabel’ to set the labels for the x and y axes, respectively. Then, a legend is drawn using the 

‘Legend’ function, where ‘y’, ‘c’, and ‘s’ represent fluorescence tracking, calcium ion tracking, and 

pulse generation, respectively. Finally, use the ‘set’ function to set the properties of the current graph 

object, where ‘fontweight’ is set to ‘bold’. (figure 5) 

 

Figure 8. Plotting Fluorescence Trace, Calcium Signal Trace, and Spike Event Time Series 

Need attention that Fire rate refers to the frequency at which a neuron generates action potentials, 

also known as spikes, within a certain period of time. 

0.4300 is fire rate of datecase1 and 0.7401 is fire rate of datecase2 

Our result is shown in Figure 6 

 

Figure 9. Comprehensive graph showcasing fluorescence trace, calcium trace, and spike train. 
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“Y”- flourecence trace 

“c” - calcium trace 

“s”- spike train 

Next we define a few variables and create two empty 2D arrays using the zeros function. We store the 

randomData value of each data point into a 2D array for subsequent analysis and processing (possible 

uses include statistical analysis, graph drawing, model training, etc.) 

3.4.  Connectivity & Centrality 

The work of this step is to calculate the correlation coefficient matrix R from the standardized data for 

each dataset. Now that we have processed and standardized the GCaMP fluorescence time series data for 

each neuron imaging in each dataset, we can begin to examine the paired interactions between all 

neurons in the population. The correlation coefficient describes how similar the activity of one neuron is 

to that of another. Thus, correlation coefficients provide a very simple and easy way to glimpse the 

connectivity of neural populations. The number of neurons in data 1 and data 2 is 233 and 453, 

respectively 

So we need to get a coefficient matrix 233 by 233 and a matrix 453 by 45 

Here are our results (figure 10) 

 

Figure 10. Correlation matrices of the analyzed neuronal populations, indicating the connectivity 

between different neurons. 

4.  Conclusion and prospect 

Our aim was to explore how GCaMP fluorescence data can be analyzed using computational methods to 

better understand the patterns and interactions of neuronal activity. By calculating the correlation 

coefficient matrix between neurons, we can understand the interactions and connections between 

neurons, and further reveal the structure and function of neural networks. At the same time, the use of 

high-pass filters can help us eliminate noise and drift, extract the high-frequency changes associated 

with neuronal activity, and thus more accurately study the behavior of neurons. We use Matlab as our 

primary tool, along with the application of principles such as basic signal processing, statistical 

inference, hypothesis testing, and graph theory, to help understand raw GCaMP fluorescence data 

recorded from awake, behavioral mice. The results have important implications for understanding the 

patterns and interactions of neuronal activity. 

What else can we expand?  

Gaussian Mixture Model:  
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When we need to analyze a set of data, the Gaussian mixture model (GMM) can help us better 

understand the distribution of the data. In this case, we can better distinguish between the resting state 

and the activated state.  

Design a better filter:[11] 

Since our filter can only filter the low frequencies signals, so the effect of filtering is not very good. 

We can design a better filter which can also filter the overfrequences. 
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