
Representation of Coxeter group and orthogonal group

Di Cai1,2, Yiding Tian1

1 5240 Fiore Terr, Apt J411, 92122, San Diego, CA, USA

2 bruceyidingtian@gmail.com

Abstract. The paper is primarily divided into two parts.
The main focus of the first part is the construction of a representation of Coxeter groups. This begins
with the definition of the Coxeter system and connected components, followed by the introduction of the
length function and subsequent theorems. The faithfulness of this representation is then proven, allowing
for the identification of isomorphisms that enable the final classification of finite Coxeter groups. This
classification is achieved by leveraging the established relationship between irreducible representations of
Coxeter groups and positive definite quadratic forms.
Given the strong connection between Coxeter groups and orthogonal groups, the primary objective of the
second part is to create a specific representation of orthogonal groups. This is accomplished through an
examination of the decomposition of harmonic polynomials into subspaces of homogeneous harmonic
polynomials, using the action of O(2) on these subspaces.
The paper concludes by drawing connections to results in Invariant Theory, demonstrating the applicability
of the presented concepts in a more general duality context.
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1. Introduction
In general, the reflection group is generated by a set of involutions in Rn, which can be embedded into
an orthogonal group. By representation theory, a faithful map ρ, from the reflection group W to GL(Rn)
represents Coxeter Group.

In 1934, H.S.M. Coxeter, in his publication ”Discrete Groups Generated by Reflections”, made a
massive progress on such groups satisfying certain properties. And those groups are so called Coxeter
group.

Coxeter groups generalize the nature of reflections and symmetry in space. And nowadays, they have
many applications in mathematics, particularly in algebraic groups, semi-simple Lie algebras and more.

Furthermore, as a broader demonstration of symmetry and reflection, Orthogonal groups can be
regarded as an extended branch of both Coxeter groups and all reflection groups. Observing the group
action of orthogonal groups on harmonic polynomials, we uncover relationships between the space of
harmonic polynomials H and Orthogonal groups O(n), leading us to delve into the concepts about the
representation of Orthogonal groups with respect to H.

In this paper, we are going to delve deeper on how Coxeter Group defined in order to demonstrate
its representation in term of reflection and symmetry, discuss its applications on orthogonal groups with
group actions, and then get in touch with some invariant theory at the end.
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2. Representation of Finite Coxeter Groups
2.1. Characterisation of Coxeter groups
Let A = {a1, ..., an} be a set. Let F (A) be the free group generated by A. To give a detailed definition
of Coxeter group, we need to introduce group presentation.

Definition 2.1. Let A and F (A) be the definition above. Let R be a set of relations between elements in
A. The presentation ⟨A|R⟩ is defined as the quotient group F (A)/N , where N is the smallest normal
subgroup of F (A) that contains each elements of R. [1](Mukherjee, 2021, p.2)

This definition raises Theorem 1.2.4 in [2]. In this case, we consider A as a set of symbols
or words under multiplication operation, called concatenation, by maintaining only reduced words
through removing all forbidden occurrences, and empty word 1 is the identity element of A.

Theorem 2.2. Assume that ϕ : A → G is a map from the alphabet A to the group G. Then ϕ can be
uniquely extended to a group homomorphism ϕ : F (A) → G. Let ⟨A|R⟩ be a group presentation such
that ϕ(w1) = ϕ(w2) is satisfied for each expression w1 = w2 in R. Then ϕ induces to a homomorphism
of groups ⟨A|R⟩ → G.[1](Mukherjee, 2021, p.2)

Proof. Let ϕ : A → G s.t. ϕ(a−1) = ϕ(a)−1 for all a ∈ A.
We will show ϕ : F (A) → G is a group homomorphism first.
Let v ∈ F (A) such that v is a reduced word a1a2...an for a specific ai ∈ A ∪A−1.
Set ϕ(v) =

∏n
i=1 ϕ(ai).

Suppose we take another reduced word w ∈ F (A) such that w = b1b2...bm where there exists a maximal
r ∈ Z≥0 such that an−kbk+1 = 1 for 1 ≤ k ≤ r − 1.
Therefore, by the operation under concatenation,

Since, vw = a1...an−rbr+1bm (1)
= a1a2...an−r(an−r+1...an)(b1...br)br+1...bm (2)

ϕ(vw) = ϕ(a1)...ϕ(an−r)(ϕ(an−r+1)...ϕ(an)ϕ(b1)...ϕ(br))ϕ(br+1)...ϕ(bm) (3)
= ϕ(a1...an) · 1 · ϕ(b1...bm) (4)

= ϕ(v)ϕ(w) (5)

Hence, ϕ preserves group operation in F (A) as a group homomorphism.
Moreover, as w1 = w2 for all w1, w2 ∈ F (A), we have w1w

−1
2 = e, identity of F (A).

Equivalently, ϕ(w1w
−1
2 ) = ϕ(e) = e so that w1w

−1
2 belongs to Ker ϕ.

Hence, the normal subgroup generated by w1w
−1
2 as ⟨w1w

−1
2 ⟩ = ⟨e⟩ naturally implies that

F (A)/⟨w1w
−1
2 ⟩ is equivalent to F (A)/⟨e⟩ as F (A) itself.

Therefore, by the universal property of the free group with Ker ϕ from expression in R, ⟨A|R⟩ which
logically equivalent as F (A) is isomorphic to a group G.

Accordingly, if G is isomorphic to the group ⟨A|R⟩, then this group G has a group presentation ⟨A|R⟩.
From here, we are able to use the concepts introduced to define Coxeter Groups.

Definition 2.3. Let M = (mij)1≤i,j≤n be a symmetric n × n matrix with entries from N ∪ {∞} such
that mii = 1 for all 1 ≤ i ≤ n and mij > 1 whenever i ̸= j. The Coxeter Group of type M is the
group

W (M) = {(s1, ..., sn)|(sisj)mij = 1|1 ≤ i, j ≤ n,mij < ∞}
where we can also denote {s1, ..., sn} as a set of generators S, and W as group satisfying the relations
described in group presentation.
By above, we called the pair (W,S) as Coxeter System of type M . [1](Mukherjee, 2021, p.2)

Additionally, there is another concept would help us to understand Coxeter matrix M with edges and
vertices as labelled graph as stated in [1].
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Definition 2.4. In M , we say that i is adjacent to j, or i ∼ j, if mij ≥ 3. If mij > 3, we label the
edge {i, j} with the value of mij . Then, a connected component of M is a maximal subset of J of
[n] = {1, ..., n} such that mjk = 2 for each j ∈ J and k ∈ [n] \ J , where maximal defined as no other
vertex can be added to it. In the graph M, this means that j and k have no edge between them.
If M has a single connected component, it is called connected or irreducible. A Coxeter group W over
a Coxeter diagram M is called irreducible if M is connected.[1](Mukherjee, 2021, p.2)

We could see more examples of visualization of the Coxeter diagram in Example 1.3 in [3].

2.2. Length function on Coxeter groups
Consider the case where w ∈ W (M) can be represented by more than one reduced word, we call a word
of minimal length the minimal expression. The length of w is defined by the length of such minimal
expression, denoted by l(w).

Consider that w is an element of W (M) and can be expressed by more than one reduced word. In
such a case, we refer to the word with the shortest length as the minimal expression. The length of w
is determined by the length of this minimal expression and is symbolized by l(w).

Lemma 2.5. ”Let (W,S) be a Coxeter system. Then l(sw) = l(w) ± 1 for s ∈ S and w ∈
W .”[1](Mukherjee, 2021, p.3)

Proof. First we have that l(w)− 1 = l(s(sw))− 1 ≤ l(sw) ≤ l(w) + 1
Let (W,S) be a Coxeter system. Construct a group homomorphism sgn : W → {±1}, determined

by sgn(s) = −1 for each s ∈ S. Then sgn(w) = (−1)l(w), which implies (−1)l(sw) = sgn(sw) =
sgn(s)sgn(w) = (−1)l(w)+1. It follows that l(sw) = l(w)± 1.

Definition 2.6. Choose a subset T ⊆ S. w ∈ W is called left T-reduced if l(tw) > l(w) for all t ∈ T .
The set of all left T -reduced elements of W is denoted by TW . Analogously, for K ⊆ W , we can define
right K-reduced and WK . [1](Mukherjee, 2021, p.3)

Next we give a decomposition law for length function, it helps us to decompose a element in a Coxeter
group according to the decomposition of length.

Lemma 2.7. Let (W,S) be a Coxeter system. For each w ∈ W and T ⊆ S, there exists u ∈ ⟨T ⟩ and
v ∈T W such that w = uv and l(w) = l(u) + l(v). Also we can decompose w according to the right
K-reduced set.[1](Mukherjee, 2021, p.3)

Proof. Consider the subset D of ⟨T ⟩ × W consisting of all pairs (u, v) with w = uv and l(w) =
l(u)+ l(v). Since this set is nonempty, we can find an element of D with l(u) maximal. Suppose v is not
left T -reduced, which means there exists t ∈ T such that l(tv) < l(v). Then v = tv′ for some v′ ∈ W
with l(v) = l(v′) + 1. Since w = utv′, l(w) ≤ l(u) + 1 = l(tu). Therefore, we find (ut, v′) ∈ D with
l(ut) > l(u), a contradiction to the maximal hypothesis. Then we conclude that v ∈T W , satisfying the
condition above.

In order to be consistent with the notion in later parts, we label these subgroups ⟨T ⟩ as follows.

Definition 2.8. For any subset T ⊆ S, define WT to be the subgroup of W generated by all t ∈ T . We
call such subgroups parabolic subgroups.

For the convenience, we label a length function lT relative to the generating set of T . It is easy to get
l(w) ≤ lT (w) for all w ∈ WT .
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2.3. Reflection representation of Coxeter groups
In this part, we will focus on the geometric representations of Coxeter groups, define an abstract notion
of reflections in vector space. Our main goal is to construct the reflection representations of Coxeter
groups and inscribe the irreducibility of such representations.

To begin with, we now define linear representation of a group.

Definition 2.9. A linear representation of a group G is a group homomorphism ρ : G → GL(V ),
where V is a vector space.[1](Mukherjee, 2021, p.3)

Meanwhile, we also need to specify reflections over a real vector space, say V .

Definition 2.10. A reflection on a real vector space V is a linear transformation on V fix a subspace
of V of codimension 1 called its mirror and having a nontrivial eigenvector with eigenvalue −1, called
a root of the reflection. [1](Mukherjee, 2021, p.3)

To further demonstrate a detailed construction of such reflections without loss of generality, we use
the lemma 4.3 from [2] to extend our understanding of reflection for all abstract cases.

Lemma 2.11. Let ϕ : V → R be a nonzero linear form on the real vector space V , a ∈ V \ {0}. Then
the following hold:

(i) The map ra,ϕ : V → V defined by ra,ϕ(v) = v − ϕ(v)a is a reflection if and only if ϕ(a) = 2.
(ii) Every reflection on V can be written in this way.

[1](Mukherjee, 2021, p.3)

Proof. (i) (⇐) Suppose ϕ(a) = 2 in advance.We will show ra,ϕ as stated is a reflection by its properties
of mirror and root.

ra,ϕ(a) = a− ϕ(a)a (6)
= a− 2a = −a (7)

Hence, a is a nontrivial eigenvector with eigenvalue -1 in ra,ϕ.
Then, let bx+ y ∈ V .

ra,ϕ(bx+ y) = bx+ y − ϕ(bx+ y)a (8)
= bx+ y − 2(bx+ y)a = bx− 2abx+ y − 2ay (9)
= b(x− 2ax) + (y − 2ay) = bra,ϕ(x) + ra,ϕ(y) (10)

Therefore, ra,ϕ preserves linear operations in addition and multiplication.
Then, ϕ is surjective since for an arbitrary r ∈ R, there exists r = rϕ(a2 ) = ϕ( r2a) such that
ϕ(a2 ) =

1
2 · 2 = 1.

Furthermore, because of subjectivity of ϕ, Im ϕ is R. Then, by first isomorphic theorem with ϕ, V/Ker
ϕ ∼= Im ϕ = R. In other words, dimV/Ker ϕ = dim V − dim Ker ϕ = dim R = 1.
Then, since ra,ϕ(x) = x− ϕ(x)a = x for all x ∈ Ker ϕ, ra,ϕ fixes a subgroup of V of codimension 1.
In sum, by showing ra,ϕ is a linear transformation on V with mirror and roots, we know it is a reflection.
(⇒) Suppose ra,ϕ : V → V as stated is reflection. Then, we are showing ϕ(a) = 2
Let a′ be a root of the reflection, ra,ϕ. We have

ra,ϕ(a
′) = a′ − ϕ(a′)a = −a′ (11)

2a′ = ϕ(a′)a (12)
a = 2

ϕ(a′)a
′ (13)

Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics
DOI: 10.54254/2753-8818/43/20241036

301



As 2
ϕ(a′) is a scalar multiplication in R, a is also a root. Therefore,

ra,ϕ(a) = a− ϕ(a)a = −a (14)
2a = ϕ(a)a (15)

ϕ(a) = 2 (16)

(ii) Let r : V → V be reflection with root a fixing a subspace U which has basis e1, ..., en−1 and vector
space V has basis e1, ..., en so that the codimension is 1.
Let a be en and set v = Σn

i=1kiei as a vector in V for ki ∈ R. We would observes the structure of r that

ra(v) = ra(Σ
n
i=1kiei) (17)

= Σn
i=1ki(ra(ei)) (18)

= ra(knen) + Σn−1
i=1 kiei (19)

= −knen +Σn−1
i=1 kiei = −knen + (v − knen) (20)

= v − 2kna (21)

Then, define ϕ : V → R by ϕ(v) = 2kn for v ∈ V , we can write ra(v) = v − ϕ(v)a.
Suppose for sake of contradiction, there is another way to write reflection, r′, then it must express a by
the linear combination of the basis of U such that r′a(a) = r′a(Σ

n−1
i=1 kiei) = Σn−1

i=1 kiei = a. This is a
contradiction by its property of mirror.
In conclusion, all reflection must be written in this way.

Considering a vector space V over R with a basis {ei}, we impose a geometry on V in such a way that
the ’angle’ between ei and ej will be compatible with (mij) in a Coxeter system, just like the geometry
of dihedral group. Then we define a symmetric bilinear form B on V as follows:

Definition 2.12. Let (W,M) be a Coxeter system with M = (mij). Let V be a vector space with basis
{ei}. Define the symmetric bilinear form B on V by

B(ei, ej) = −2cos
π

mij

The quadratic form Q is given by Q(x) = 1
2B(x, x). [1](Mukherjee, 2021, p.4)

Next we want to construct the representation of Coxeter group with such defined reflections in the
vector space V . Define ϕi(x) = B(ei, x).

Proposition 2.13. There is a unique homomorphism ρ : W → GL(V ) sending w to ρw, where
ρw(x) = x − B(x, ei)ei, and the group ρ(W ) preserves the form B on V . Moreover, for each pair
si, sj ∈ S, the order of sisj in W is precisely mij . [1](Mukherjee, 2021, p.4,5)

Proof. We can easily see that ρw preserves the form B, which means B(ρwα, ρwβ) = B(α, β) for all
α, β ∈ V . To get such a homomorphism from W onto this linear group, we just need to show that

(ρsiρsj )
mij = 1

for i ̸= j. If we consider the subspace Vij = span{ei, ej}, by calculation on B, we can prove that the
restriction of B to Vij is positive semidefinite and nondegenerate when m < ∞. See more details in [4].
Then V can be decomposed into the orthogonal direct sum of Vij and its orthogonal complement, which
is also fixed by ρsi and ρsj . For the case m = ∞, we can also compute the infinite order of ρsiρsj . The
result follows.
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Such a homomorphism ρ is called the geometric representation of W , also the
reflection representation of W .

Remark 1. There may be other ways to construct the representation of W as a group generated by other
forms of reflection, like acting in a hyperbolic space. See [4] and [5].

Definition 2.14. A linear representation ρ : G → GL(V ) is called irreducible if there is no linear
subspace of V invariant under ρ(G) except for {0} and V itself. The linear representation is called
absolutely irreducible if it is irreducible and is still irreducible when extending the scalars to C.
[1](Mukherjee, 2021, p.6)

Then we will give the characterization of irreducible reflection representation.

Definition 2.15. ”The radical of B is given by Rad(B) = {x ∈ V |B(x, y) = 0 for all y ∈ V }.”
[1](Mukherjee, 2021, p.6)

Proposition 2.16. Let (W,M) be a Coxeter system, then the following statements are equivalent.
(i) The reflection representation ρ of W is irreducible.
(ii) The reflection representation ρ of W is absolutely irreducible.
(iii) Rad(B) = {0}.

[1](Mukherjee, 2021, p.7)

Proof. For (i) ⇐⇒ (ii), we claim that for an irreducible Coxeter group (W,M), any proper invariant
subspace of V with respect to the relection representation ρ of W on V is contained in Rad(B). See
Lemma 4.10 in [1].

Since (iii) ⇒ (ii) is obvious, we only need to show that (ii) ⇒ (iii). The claim above can be
extended the vector space V over C. Suppose the reflection representation of W is irreducible, then
Rad(B) = {0}, which also holds in C. So any proper invariant subspace must be trivial. Then the
reflection representation of W is absolutely irreducible.

2.4. Reflection representation is faithful
We want to show that the reflection representation ρ is faithful, which means different elements are
represented by different linear mappings, i.e. ρ is injective. Then Ker ρ = 0, which implies W (M) ∼=
Im ρ.

Definition 2.17. The root system Φ of W is defined by the collection of all vectors ρw(ei). Since W
preserves the form B on V , these are unit vectors. For any root α =

∑
kiei, ki ∈ R,call α positive(resp.

negative) and write α > 0 (resp. α < 0) if all ki ≥ 0 (resp. ki ≤ 0).

Theorem 2.18. Let w ∈ W and si ∈ S. If l(wsi) > l(w), then ρw(ei) > 0. If l(wsi) < l(w), then
ρw(ei) < 0.

Proof. We only need to prove the first part since the second follows from the first.
We prove by induction on l(w). For the case l(w) = 0, w = 1, ρw(ei) = ei > 0. For l(w) > 0, we

can find sj ∈ S such that l(wsj) = l(w)− 1. Since l(wsi) > l(w). We have that si ̸= sj , i.e. i ̸= j. Let
I = {si, sj}, then WI is a dihedral subgroup of W . By lemma 3.3, we can decompose w ∈ based on I .
Then w = vvI with l(w) = l(v) + lI(vI), v ∈ W I , vI ∈ WI . We just need to find the action of ρv and
ρvI on roots.

By properties of the length function, we can easily prove that l(vsi) > l(v). See Thm 5.4 in [4]. By
induction, ρv(ei) > 0. Also we can prove l(vej) > l(v), ρv(ej) > 0.

All we need to show is that ρvI maps ei to a nonnegative linear combination of ei and ej . Also see
Theorem 5.4 in [4].

Corollary 2.19. The representation ρ : W → GL(V ) is faithful.
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Proof. Let w ∈Ker ρ, if w ̸= 1, there exists s ∈ S such that l(ws) < l(w). Since w ∈Ker ρ,
ρw(ei) = ei > 0, but the theorem states that ρw(ei) < 0, which is a contradiction.

Corollary 2.20. ”If (W,S) is a Coxeter system and J a subset of S, the subgroup of ⟨L⟩ of W is a
Coxeter group with Coxeter system (⟨J⟩, J).” [1](Mukherjee, 2021, p.10)

Proof. See proofs by Theorem 5.5 (iii) and Lamma 5.4 in [1].

2.5. Classification of finite Coxeter groups
For the classification of Coxeter group, we will present the fundamental theorem below. We can classify
the finite Coxeter groups by compute the quadratic form QM .

According to Definition 2.4, the concept of connected components of M introduces
decomposition law for Coxeter Group, referring to Proposition 2.2.5 in [2].

Proposition 2.21. ”Let W be a Coxeter Group of type M and let J1, ..., Jt be a partition of the vertex
set of the labelled graph M into connected components. Then W (M) ∼= W (J1) × W (J2) × ... ×
W (Jt).”[1](Mukherjee, 2021, p.2)

Proof. By induction on numbers of components of Coxeter group, we only need to prove that
W (A

⊔
B) ∼= W (A)×W (B) for two connected components A and B. See 6.1 in [4].

Consequently, it is suffices to classify a Coxeter group W (M) by identify the classification of each
decomposition W (J1), ...,W (Jt). Then according to definition of each partition Ji where 1 ≤ i ≤ t
as connected components, we are able to determine the irreducibility of W (Ji) by Definition 2.4.
Besides, group action − variant bilinear form, which defined in the following lemma, would help
us bridging the connections for later on classification.

Lemma 2.22. ”Let ρ : G → GL(V ) be a linear representation of a finite group G on a finite-
dimensional real vector space V . Then,

(i) There is a positive-definite G-invariant bilinear form on V .
(ii) Moreover, ρ is absolutely irreducible.
(iii) If each linear map V → V commuting with G is multiplication by a scalar, then the form κ is

the unique G-invariant bilinear form on V up to scalar multiples.”
[1](Mukherjee, 2021, p.11)

Proof. (i) For any positive definite symmetric bilinear form κ on V , let κ be G-invariant:

κ =
∑
g∈G

κ(ρ(g)α, ρ(g)β)

where α, β ∈ V .
(ii) Decompose V into the direct sum of any subspace and its orthogonal complement relative to

the positive definite form κ in (i). Also the orthogonal complement of a G-invariant space is also G-
invariant.

(iii) Any nondegenerate form develops an isomorphism between V and V ∗. With the G-invariant
form, this becomes an isomorphism of G-modules. Suppose κ and κ′ are nondegenerate symmetric G-
invariant bilinear forms on V .Composing the isomorphism defined by κ with the inverse of that defined in
κ′ gives a G-module isomorphism of V onto V . Since this is just a scalar, κ and κ′ are proportional.

With positive-definite symmetric bilinear form κ on V , we would apply the following theorem to
assure the Coxeter group of type M is finite.
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Theorem 2.23. ”For any Coxeter system (W,S) of type M = (mij) such that
W is irreducible, then the following are equivalent:
(i) W is finite.
(ii) The reflection representation ρ : W → GL(V ) is irreducible.
(iii) The quadratic form QM is positive definite.” [1](Mukherjee, 2021, p.11)

Proof. (i) ⇒ (ii) Use Lemma 6.2, we can construct a positive-definite bilinear form κ that is invariant
under w. Suppose that E is a proper nontrivial invariant subspace of V , then we can decompose
V = D

⊕
E and show that D is also invariant under W , which means B = 0 in V , a contradiction

to the fact that B(ei, ei) = 2. Hence ρ is irreducible.
(ii) ⇒ (iii) Since B is a W -invariant bilinear form on V . By Prop 4.8, ρ is absolutely irreducible.

Then by Lemma 6.2 B is a scalar multiple of a positive-definite bilinear form. Since B(ei, ei) > 0, the
scalar has to be positive, which means B is positive-definite.

(iii) ⇒ (i) We want to use the fact that ρ(W ) is a discrete subgroup of GL(V ) with specific topology
based on the construction of the dual representation of ρ. See 6.2 in [4]. We can embed ρ(W ) into the
orthogonal group O(n), which is compact. Since a discrete subgroup of a compact Hausdorff group is
closed, hence finite, W ∼= ρ(W ) is also finite.

Theorem 2.24. All irreducible finite Coxeter groups are classified with respect to corresponding Coxeter
diagrams below.

Proof. (⇐)
Using Thm 6.3, we only need to check QM is positive-definite for each M in diagrams above. Then

W (M) is finite.
(⇒)
By calculation on QM of certain exhausting cases. We can determine some conditions that the

Coxeter diagrams must hold. The only connected diagrams satisfying these conditions are exactly those
in diagrams above.

See more details in [1] Thm 6.3.

3. Representation of Orthogonal Groups
Since the abstract Coxeter group is embedded in the orthogonal group O(n) by a chosen bilinear form
on V, we will discover some properties of the representation of O(n). To begin with, if we consider all
the polynomials in n variables, then the Laplace operator is invariant under the group action which O(n)
acts on those polynomials. Then we can construct a representation of O(n) via the space of harmonic
polynomials, denoted as H(n) with n variables.

3.1. Decomposition of H(2) and irreducible representations of O(2)
As a starting point, let’s observe some concepts and examples to understand both.

Definition 3.1. A graded ring is a ring that is decomposed into a direct sum

R =
∞⊕
n=0

Rn = R0 ⊕R1 ⊕R2 ⊕ · · ·

of additive groups, such that
RmRn ⊆ Rm+n

for all nonnegative integers m and n. A nonzero element of Rn is said to be homogeneous of degree n.
An algebra A over a ring R is a graded algebra if it is a graded ring.
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Table 1. Coxeter-Dynkin Diagram of irreducible finite Coxeter Groups from [1]
name diagram
An (n ≥ 1)

1 2 n− 1 n

Bn = Cn (n ≥ 3)
1 2 n− 2 n− 1 n

Dn (n ≥ 4)
1 2 n− 3

n− 2

n− 1

n

E6
1

2

3 4 5 6

E7
1

2

3 4 5 6 7

E8
1

2

3 4 5 6 7 8

F4
1 2 3 4

G2
1 2

H3
5

1 2 3

H4
5

1 2 3 4

I
(m)
2 (m ≥ 3) m

Remark 2. The polynomial ring is a graded algebra. The homogeneous elements of degree n are exactly
the homogeneous polynomials of degree n.

Hence we can decompose the polynomial ring R[X] into the subspaces of homogeneous polynomials
Rn[X] of fixed degree n.

R[X] =

∞⊕
n=0

Rn[X] = R0[X]⊕R1[X]⊕R2[X]⊕ · · ·

Considering the harmonic polynomials ring H which is also a graded algebra, we find that each subspace
has a fixed finite dimension, which we will prove later.

First, we will focus on H(2) which by Definition 3.1,

H(2) = H0(2)⊕H1(2)⊕H2(2)⊕ · · ·

Computing the basis of each decomposition terms, we observes the following shown in the table
above.
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Table 2. Chart of basis of Hm(2) for all m ≥ 0
Hm(2) Span{Basis}
H0(2) C
H1(2) Span {x, y}
H2(2) Span {x2 − y2, xy}
H3(2) Span {x3 − 3y2x, y3 − 3x2y}
H4(2) Span {x4 + y4 − 6x2y2, x3y − xy3}
... ...
Hm(2) Span {Re zm, Im zm}
... ...

For H0(2),
H0(2) = {P (x, y) = c|c ∈ C} = C

Hence, H0(2) has dimension 1.
For H1(2),

H1(2) = {P (x, y) = ax+ by|a, b ∈ C} = Span{x, y}

Hence, H1(2) has dimension 2.
For H2(2),

H2(2) = {P (x, y) = ax2 + by2 + cxy|a, b, c ∈ C} = Span{x2 − y2, xy}

Hence, H2(2) has dimension 2.
Continuing on computing basis, in fact, Hm(2) = span{Re zm, Im zm} where z = x + iy. Hence,

Hm(2) also has dimension 2.
In sum, the decomposition of H(2) shows H0(2) has dimension 1 and all other decomposition terms

has dimension 2.
Next we will discuss the irreducible representations of O(2). We conclude that O(2) has only three

types of irreducible representations.

Claim 1. (i) The trivial representation 1

G
1−→ 1

(ii) The projection/determinant representation 1det

O(2) ∼= Z2 ⋉ SO(2)
1det−→ Z

(iii) A representation 2q

O(2) ∼= Z2 ⋉ U(1)
2q−→ GL2(C)

given by

(d, eiθ
2q−→ σ

1−d
2

1 eiqθσ3)

where q ∈ N. σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

If we let Ad be the adjoint representation of O(2) in its Lie algebra. We could show that it is equivalent
to one of the representations in (i), (ii) or (iii). See details in [6] and Section 11.1 of [7].

In conclusion, except for the trivial representation, we have a 1-dim irreducible representation of
determinant and other 2-dim irreducible representations related to the charge conjugation [6]. These are
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exactly the dimensions of the subspace Hm(2) of H(2) for m ∈ N. We will conclude such relations in
the general case later.

Moreover, since O(2) = SO(2) ∪ O−(2) where SO(2) = {A ∈ M2(R)|det(A) = 1} and
O−(2) = {B ∈ M2(R)|det(B) = −1}, we could observe the group action of O(2) on H(2).

Take A =

(
cosθ −sinθ
sinθ cosθ

)
∈ SO(2) and B =

(
−cosθ sinθ
sinθ cosθ

)
∈ O−(2).

Assume
(
x
y

)
are two variables of H(2).

Then, we compute for
(
x′

y′

)
after O(2) acts on H(2).

(
x′A
y′A

)
= A

(
x
y

)
=

(
xcosθ − ysinθ
xsinθ + ycosθ

)
(22)(

x′B
y′B

)
= B

(
x
y

)
=

(
−xcosθ + ysinθ
xsinθ + ycosθ

)
(23)

Next, We are going to test some examples to see why ∆ is O(2)-invariant.

Example 1. Let Pm(x, y) = (x+ iy)m be harmonic polynomials with two variables in H(2) because of
what we claimed about Hm(2).

We will show
(
x′

y′

)
after O(2) acts on H(2) is still variables in H(2).

for P0(x, y) ∈ H0(2),

∆P0(x
′
A, y

′
A) = ∆(xcosθ − ysinθ + ixsinθ + ycosθ)0 (24)

= ∆1 = 0 (25)
∆P0(x

′
B, y

′
B) = ∆(−xcosθ + ysinθ + ixsinθ + ycosθ)0 (26)

= ∆1 = 0 (27)

for P1(x, y) ∈ H1(2),

∆P1(x
′
A, y

′
B) = ∆(xcosθ − ysinθ + ixsinθ + ycosθ)1 (28)

= ∆(cosθ + isinθ)x+ (−sinθ + cosθ)y = 0 (29)
∆P1(x

′
B, y

′
B) = ∆(−xcosθ + ysinθ + ixsinθ + ycosθ)1 (30)

= ∆(−cosθ + isinθ)x+ (sinθ + cosθ)y = 0 (31)

for P2(x, y) ∈ H2(2),

∆P2(x
′
A, y

′
A) = ∆((xcosθ − ysinθ) + i(xsinθ + ycosθ))2 (32)

= ∆cos(2θ)(x2 − y2) + i(sin(2θ)(x2 − y2) + 2xycos(2θ))

−2xysin(2θ) (33)
= ∆(cos(2θ) + isin(2θ))(x2 − y2) + (−2sin(2θ) + i2cos(2θ))(xy) (34)

= 0 (35)
∆P2(x

′
A, y

′
A) = ∆((−xcosθ + ysinθ) + i(xsinθ + ycosθ))2 (36)

= ∆cos(2θ)(x2 − y2) + i(sin(2θ)(−x2 + y2)− 2xycos(2θ))

−2xysin(2θ) (37)
= ∆(cos(2θ)− isin(2θ))(x2 − y2)− (2sin(2θ) + i2cos(2θ))(xy) (38)

= 0 (39)
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Referring to what we find about each basis of the decomposition terms of H(2) as the table 2, we
claim that ∆ is invariant under O(2). Moreover, ∆ is invariant under O(n) for the general case, which
we will prove later. This gives us an idea to construct the representation of O(n) via the space of
harmonic polynomials.

3.2. Decomposition of Hm and irreducible representations of O(n)
Definition 3.2. ”The spherical harmonics can be expressed as the restriction to the unit sphere Sn−1

of certain polynomial functions Rn → C. Specifically, we say that a complex-valued polynomial function
p : Rn → C is homogeneous of degree m if p(λx) = λmp(x) for all λ ∈ R and all x ∈ Rn.” Adapted
from [8]

Let Pm denote the space of complex-valued homogeneous polynomials of degree m in n real
variables.

Let Hm denote the subspace of Pm consisting of all harmonic polynomials:

Hm := {p ∈ Pm|∆p = 0}

Let SHm denote the space of functions on the unit sphere Sn−1:

SHm := {f : Sn−1 → C| for some p ∈ Hm, f(x) = p(x) for all x ∈ Sn−1}

Definition 3.3. Take function ρ, as a representation function of G applied to the algebra P(V ) of
polynomial functions defined on V , such that

ρ(g)f(v) = f(g−1v) for f ∈ P(V )

The finite-dimensional spaces Pm(V ) of homogeneous polynomials of degree m are G-invariant and
the restriction ρm of ρ to Pm(V ) is a regular representation of G.

If we want to define such a representation of orthogonal group O(n) via the space of harmonic
polynomials H, we need to ensure that the action of O(n) on H is closed.

Now, let’s referring back to what we promised after we show some invariant properties of Laplace’s
operator ∆ when O(2) acts on it, we are going to prove the general case for O(n).

Proposition 3.4. Laplace operator ∆ is O(n)-invariant.

Proof. Let A = (aij)i,j ∈ O(n) and define a harmonic function u s.t. ∆u = 0.
We will show, if we define v(x) := u(Ax) for x ∈ Rn, then ∆v = 0.
First, by the property of O(n),

AAT =
∑
k

(aikajk)i,j = In (40)

Hence, we know

∑
k

(aikajk)i,j =

{
1 , if i = j

0 , if i ̸= j
(41)

Then, let Ax =
(
y1 y2 ... yn

)T , we could compute first-order partial derivative vxl
by xl for

0 < l ≤ n.

vxl
=

∂v(x)

∂xl
=

∂u(Ax)

∂xl
=

∑
m

∂ym
∂xl

uym =
∑
m

amluym (42)
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Next, substitute the above results into the second-order partial derivative vxlxl
.

vxlxl
=

∂v(x)

∂xl
=

∑
m

aml

∑
r

∂yr
∂xl

uymyr =
∑
m

aml

∑
r

arluymyl (43)

=
∑
i,j

aikajkuyiyj (44)

Therefore, we get

∆v =
∑
k

∑
i,j

aikajkuyiyj =
∑
i,j,k

aikajkuyiyj (45)

Referring back to the property of O(n),∑
i,j,k

aikajkuyiyj =
∑
i=j,k

aikajkuyiyj +
∑
i̸=j,k

aikajkuyiyj (46)

=
∑
k

uykyk + 0 = ∆u = 0 (47)

Therefore, due to ∆v = ∆u = 0, ∆ is O(n)-invariant.

Hence H is invariant under the action of O(n). Let G be O(n), P(V ) be H in Def 3.3. Then we get
the representation ρ via H. As we mentioned, H can be decomposed into the direct sum of subspaces
of homogeneous harmonic polynomials with various degrees. We state that each Hm is an irreducible
representation of O(n) of dimension

(
n+m−1
n−1

)
−

(
n+m−3
n−1

)
(for m = 0 or 1, the second term is zero). To

prove this, we will use the lemma below.

Lemma 3.5. Every homogeneous polynomials p ∈ Pm can be uniquely written as

p = pm + |x|2pm−2 + · · ·+

{
|x|mp0, m even,
|x|m−1p1, m odd

where pj ∈ Hj .

See proof in Corollary 1.8 of [9]. In particular, by induction on the dimension(Chapter IX.§2.[10]),
we can get dimHm =

(
n+m−1
n−1

)
−

(
n+m−3
n−1

)
.

3.3. Some Invariant Theory
Moreover, each polynomials p in the Euclidean space Rn can be uniquely written as a finite sum

p = h0 + r2h1 + · · ·+ r2jhj + · · ·

where r2 = x21 + · · ·+ x2n for x = (x1, ..., xn) ∈ Rn and hj are harmonic polynomials in Rn. In other
words, the space P of C-valued polynomials on Rn decomposes as

P =
∞⊕

m=0

r2mSH

where SH = Ker(∆)∩P is the space of spherical harmonics in Rn. This result is known as the Fischer
decomposition. The underlying symmetry is given by O(n) and the invariant operators ∆, r2, h generate
the Lie algebra sl(2) where

h = x1∂x1 + · · ·+ xn∂xn +
n

2
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is the Euler operator. Furthermore, the decomposition above can be combined into the statement that
the space P of polynomials in n variables has the following decomposition into irreducible components
under the joint O(n) and sl(2) actions:

P =
∞⊕

m=0

Hm ⊗ Vm

where Vm is the lowest weight sl(2)-module with lowest weight m + n
2 . Actually this is the reductive

dual pair (O(n), SL(2,R) over the real numbers. Such results about Invariant Theory and Duality can
be found in 5.6 in [11].

Next, we state a theorem for the general case.

Theorem 3.6. Suppose G is a reductive linear algebraic group acting by a regular representation on
a vector space V . Then the algebra P(V )G of G-invariant polynomials on V is finitely generated as a
C-algebra.

We get that there always exists a finite set of basic invariants when G is reductive. Let {f1, ..., fn}
be generators for P(V )G. Since P(V ) and P(V )G are graded algebras, relative to the usual degree of
a polynomial, there is a set of basic invariants with each fi homogeneous, degree di. We can also prove
that {di} is uniquely determined, see 5.1.1 in [11]. Applying to O(n), this is just the results we have
presented.

In the end, this paper emphasizes the broad applicability of the developed concepts of Coxter Group
in the context of duality in general by combining them with orthogonal groups and invariant theory. The
paper underscores the connection between the constructed representations and the results in invariant
theory, bringing to the understanding of duality in mathematical structures.
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