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Abstract. The method of constructing Hankel matrices and using low-rank approximation has 

been demonstrated to be an effective approach to audio denoising. However, the significant 

computational complexity and the trade-off between the denoising quality and the loss of 

effective signal remain open issues. This paper proposes a denoising method based on frequency-

divided Windowed Singular Value Decomposition (WSVD) and exploits the low-rank 
characteristics and frequency features commonly found in audio signals including speech and 

music recordings. The method incorporates an improved Lanczos Bidiagonalization algorithm 

to accelerate the singular value decomposition with low error and high tolerance. Furthermore, 

techniques are added at the window junctions to maintain the continuity and smoothness of the 

final audio, thus achieving denoising efficiently and effectively. This paper also assesses the 

influence of window segmentation length, main frequency domain characteristics, rank selection 

of Hankel matrix and characteristics of different noises on the final denoising effect. Finally, the 

denoising algorithm's robustness and effectiveness are validated through simulations and 

experiments. 

Keywords: Signal Denoising, Low-rank Approximation, Singular Value Decomposition, 

Hankel, Lanczos Bidiagonalization 

1.  Introduction 

The acquisition of digital signal audio data is contingent upon the utilization of a pickup device, which 

inevitably results in the incorporation of a multitude of noise sources. These include airflow sounds, the 

inherent noise of the pickup device itself, and the noise generated by the original recording source, as 
well as the reverberation of the recording space. In order to facilitate the identification and processing 

of these acoustic digital signal data, it is important to exclude noise. The digital signals obtained by 

picking up sound are typically stored as one-dimensional data at the sampling rate Fs: 

𝑋 = (𝑥(1), 𝑥(2), … , 𝑥(𝑛)) (1) 

where 𝑛 is the length of the data signal 𝑋, and 𝑥(𝑡), 𝑡 = 1,2, . . . , 𝑛 represents the amplitude of the sound 

waveform sampled every 
1

𝐹𝑠
 second. And the objective is to obtain another segment of digital signal 𝑌 

that is also of length 𝑛 but contains less noise. The traditional filter denoising method is to remove some 
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components of the signal by intercepting the Fourier coefficients modulus. However, in reality, noise 

and pure signals are typically intertwined in the frequency domain. Filtering methods not only results in 

the loss of useful details but also fails to remove noise in key frequency bands. Other popular denoising 
methods include the wavelet decomposition and reconstruction method [1] and the wavelet threshold 

shrinkage method [2]. However, the selection of the wavelet bases and the construction of mother 

wavelets are not universal in different noise and frequency characteristics. Consequently, it is difficult 
to devise a method that can be easily applied to audio digital signals. 

It is fortunate that the key information in audio data exhibits significant low-rank properties. It is 

possible to construct a range of models from common audio signals. These include the Damped and 

Delayed Sinusoidal model (DDS), the Partial Damped and Delayed Sinusoidal model (PDDS), and the 
Exponentially Damped Sinusoidal model (EDS) [3]. This indicates that some bases can be used to 

represent real sound vibration patterns and can simulate physical properties well. Furthermore, the Low-

Rank Time-Frequency Synthesis model (LRTFS) [4, 5] imposes a low rank on the synthesis coefficients 
of the data signals, thereby transforming the high-dimensional data into a sparse low-rank representation. 

The signal reconstructed by combining and transforming these substrates not only has the low-rank 

property, but also retains the key information. The low-rank structure in high-dimensional data has been 
validated in numerous research studies, including those employing the Principal Component Analysis 

(PCA) technique. These studies have demonstrated that a significant proportion of the energy in high-

dimensional data is concentrated in a few principal directions, often exceeding 95%. 

Due to the low-rank property, denoising effects can be obtained by approximating the original sound 
with a low-rank structure. In the case of a small amount of data, since the rank of the Hankel matrix of 

pure signal is twice the number of harmonics[6], low-rank approximation method that directly constructs 

the Hankel matrix can remove local noise to a large extent[7], like applying low-rank approximation to 
Magnetic Resonance Spectroscopic Imaging (MRSI) for denoising[8]. However, the time series signal 

processed is usually a large dataset, and the Hankel matrix constructed directly from 𝑋 contains 𝑛2 

components. The most common audio files in WAV format have a sample rate of up to 44,100 times 

per second, which presents a significant challenge for data storage and matrix operations. 
This paper proposes the windowed singular value decomposition (WSVD) of frequency division and 

employs low-rank approximation for fast singular value decomposition. The algorithm decomposes the 

signal into different frequency bands and adds a window to segment the digital signal. Furthermore, 
Lanczos bidiagonalization [9] iterations are employed in the key singular value decomposition step, 

thereby enhancing the efficiency of the algorithm. An additional denoising technique is employed in the 

edges of windows to ensure the signal's consistency and coherence. Therefore, this paper is organized 
as follows. Chapter 2 describes the algorithm in detail. Chapter 3 presents numerical simulation and 

experimental results, and analyses the denoising effectiveness, time performance, and robustness of the 

results to different judgment levels using different evaluation Indicators. Chapter 4 further discusses the 

feasibility of low-rank approximation and the role of frequency division. Finally, Chapter 5 presents the 
conclusion. 

2.  Proposed Denoising Method based on Low-Rank Approximation 

2.1.  Foundations of the Low-Rank Models 
Low-rank approximation methods are based on the low-rank characteristics observed in audio digital 

signals. In particular, audio exhibits two aspects of low-rank local characteristics: a stable resonance due 

to a relatively fixed pitch, and a similar formant due to the same timbre and feature information. 

The measured data is denoted as 𝑋 = 𝑌 + 𝛦, where 𝛦 = (𝜖(𝑡))
𝑡=1,2,…,𝑛

represents the component of 

noise, which is typically modeled as additive Gaussian white noise (AGWN) in simulation experiments. 

Contemporary signal detection and classification methodologies are capable of accurately constructing 

noise models derived from authentic sources. These include the Gaussian Mixture Model (GMM) [10, 
11] and the α Stable Distribution Noise Model [12], as well as the Middleton Class A noise model (MCA) 

[13], which is a more challenging endeavor. Noise exhibits instability in both the temporal and spatial 
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domains. However, the noise occupies a relatively small amount of energy, with the majority of the 

remaining energy concentrated in the key information. Consequently, a low-rank approximation can be 

employed to extract the subspace in which the main energy is collected. 
The model of a uniformly sampled damped sinusoidal signal can be generally expressed as follows: 

𝑥(𝑡) = 𝑠(𝑡) + 𝜖(𝑡) 

= ∑ 𝐴𝑘𝑒
𝑖Φ𝑘𝑒(−𝛼𝑘+𝑖2𝜋𝑓𝑘)𝑡

𝑁

𝑘=1

+ 𝜖(𝑡) (2) 

where 𝑥(𝑡)  is the measured data, 𝑠(𝑡)  and 𝜖(𝑡)  denote the pure signal and noise, 𝑠(𝑡)  consists of 

damped sinusoidal signal bases, 𝑁 is the total number of harmonics, and 𝐴𝑘 , 𝛼𝑘 , 𝑓𝑘 , and 𝛷𝑘  (𝑘 =
1,2, . . . , 𝑁) denote amplitude intensity, damping rate, frequency, and initial phase of the 𝑘𝑡ℎ harmonic 

component, respectively[6].  

2.2.  Constructing Hankel Matrices for Low-Rank Representations 

In order to facilitate the study of time-series signal data 𝑋 in long strips, the signal can usually be 

constructed in the form of a Hankel matrix: 

𝐻 = [

𝑥(1) 𝑥(2) ⋯ 𝑥(𝐾)

𝑥(2) 𝑥(3) ⋯ 𝑥(𝐾 + 1)
⋮ ⋮ ⋱ ⋮

𝑥(𝑛 − 𝐾 + 1) 𝑥(𝑛 − 𝐾 + 2) ⋯ 𝑥(𝑛)

] (3) 

In general, to better analyze the correlation, 𝐾 = ⌊
𝑛+1

2
⌋ can be chosen. In particular, when 𝑛 is odd, 

𝐻  is a symmetric matrix. The DSS model also shows that time series signals have strong linear 

predictability over time, i.e. 

𝑥(𝑚) = ∑𝛽𝑙

𝑀

𝑙=1

𝑥(𝑚 − 𝑙 ⋅ Δ𝑡) (4) 

where 𝑀 is the predicted order, 𝛽𝑙 is the predicted coefficient, and Δ𝑡 is the sample interval. Due to the 

strong linear predictability, the 𝑚𝑡ℎ component of the signal 𝑋 can also be estimated by the 𝑀 terms 

preceding it. At this juncture, the Hankel matrix constructed has a rank of 𝑀 [8]. 

A proof of the low rank of the undamped and delayed sinusoidal model signal will be given, and it 

will be verified again with simulation in Section 4. For brevity of the proof, it is assumed that the 

waveform is a superposition of sinusoids, and that the waveform of signal can be represented as: 

𝑥(𝑡) = ∑ 𝐴𝑘 sin(𝑓𝑘𝑡)

𝑁

𝑘=1

(5) 

Now 𝑋 represents a noiseless signal, and the damping and delay effects are not considered in this 

case. Assuming that the audio signal is sampled at time intervals of Δ𝑡, starting from 𝑡1, the signal can 

be expressed as 𝑥(𝑡) = ∑ 𝐴𝑘 sin(𝑓𝑘(𝑡1 + (𝑡 − 1)Δ𝑡)) , 𝑡 = 1,2, … , 𝑛𝑁
𝑘=1  and the Hankel matrix can be 

defined as follows: 

𝐻 = [

𝑥(1) 𝑥(2) ⋯ 𝑥(𝑞)

𝑥(2) 𝑥(3) ⋯ 𝑥(𝑞 + 1)
⋮ ⋮ ⋱ ⋮

𝑥(𝑝) 𝑥(𝑝 + 1) ⋯ 𝑥(𝑝 + 𝑞 − 1)

] (6) 

where 𝑝 = ⌈
𝑛+1

2
⌉ , 𝑞 = ⌊

n+1

2
⌋. It can be demonstrated that the rank of the matrix 𝐻 is at most 2𝑁. 

Lemma1. 
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Assuming that 𝐻𝑘 = (ℎ𝑖𝑗
(𝑘)

)
𝑝×𝑞

∈ ℝ𝑝×𝑞 , where ℎ𝑖𝑗
(𝑘)

= sin(𝑓𝑘(𝑡1 + (𝑖 + 𝑗 − 2)𝛥𝑡)) , then  

𝑟𝑎𝑛𝑘(𝐻𝑘) ≤ 2 can be obtained. 

Proof:  

∀1 ≤ 𝑖 ≤ 𝑝, 1 ≤ 𝑗 ≤ 𝑞, the following equation can be derived: 

ℎ𝑖𝑗
(𝑘)

= 𝑠𝑖𝑛(𝑓𝑘𝑡1 + 𝑓𝑘(𝑖 + 𝑗 − 2)𝛥𝑡) 

= 𝑠𝑖𝑛(𝑓𝑘(𝑡1 − 2𝛥𝑡) + 𝑓𝑘𝛥𝑡 ⋅ 𝑖) 𝑐𝑜𝑠(𝑓𝑘𝛥𝑡 ⋅ 𝑗) + 𝑠𝑖𝑛(𝑓𝑘𝛥𝑡 ⋅ 𝑗) cos(𝑓𝑘(𝑡1 − 2𝛥𝑡) + 𝑓𝑘𝛥𝑡 ⋅ 𝑖) 

= 𝜙𝑘
(1)(𝑖) 𝜓𝑘

(1)(𝑗) + 𝜙𝑘
(2)(𝑗)𝜓𝑘

(2)(𝑖) 

where 𝜙𝑘
(1)

, 𝜙𝑘
(2)

, 𝜓𝑘
(1)

, 𝜓𝑘
(2)

 are functions with parameters 𝑓𝑘 , 𝑡1, Δ𝑡. 

Therefore, 

𝐻𝑘 = (ℎ𝑖𝑗
(𝑘)

)
𝑝×𝑞

=

[
 
 
 
 
 𝜙𝑘

(1)(1) 𝜓𝑘
(2)(1)

⋮ ⋮

𝜙𝑘
(1)(𝑖) 𝜓𝑘

(2)(𝑖)

⋮ ⋮

𝜙𝑘
(1)(𝑝) 𝜓𝑘

(2)(𝑝)]
 
 
 
 
 

𝑝×2 

[
𝜓𝑘

(1)(1) ⋯ 𝜓𝑘
(1)(𝑗) ⋯ 𝜓𝑘

(1)(𝑞)

𝜙𝑘
(2)(1) ⋯ 𝜙𝑘

(2)(𝑗) ⋯ 𝜙𝑘
(2)(𝑞)

]

2×𝑞

= 𝑃1𝑃2 

Since 𝑃1 has only two columns and 𝑃2 has only two rows, the rank of 𝑃1 and 𝑃2 satisfy: 

𝑟𝑎𝑛𝑘(𝑃1) ≤ 2, 𝑟𝑎𝑛𝑘(𝑃2) ≤ 2 

So 
𝑟𝑎𝑛𝑘(𝐻𝑘) = 𝑟𝑎𝑛𝑘(𝑃1𝑃2) ≤ min{𝑟𝑎𝑛𝑘(𝑃1), 𝑟𝑎𝑛𝑘(𝑃2)} = 2 □ 

Theorem1. 

Let 𝑋 be a signal acquired at a constant sampling rate that is consistent with an undamped and 

delayed sinusoidal model, whose highest order of resonance is 𝑁. Then, the rank of the Hankel matrix 

𝐻 constructed by the signal is at most 2𝑁. 

Proof: 

Assuming that 𝐻 = (ℎ𝑖𝑗)𝑝×𝑞
 is of the form as (6), then in accordance with equation (5) and Lemma 

1, the Hankel matrix can be expressed as a linear combination of specific matrices.: 

𝐻 = (ℎ𝑖𝑗)𝑝×𝑞
= (∑ 𝐴𝑘ℎ𝑖𝑗

(𝑘)

𝑁

𝑘=1

)

𝑝×𝑞

= ∑ 𝐴𝑘 (ℎ𝑖𝑗
(𝑘)

)
𝑝×𝑞

𝑁

𝑘=1

= ∑ 𝐴𝑘𝐻𝑘

𝑁

𝑘=1

 

Since 𝐴𝑘 is an invariant coefficient, 𝑟𝑎𝑛𝑘(𝐴𝑘𝐻𝑘) = 𝑟𝑎𝑛𝑘(𝐻𝑘). 

So, the rank of the constructed Hankel matrix can be obtained: 

𝑟𝑎𝑛𝑘(𝐻) = 𝑟𝑎𝑛𝑘 (∑ 𝐴𝑘𝐻𝑘

𝑁

𝑘=1

) = 𝑟𝑎𝑛𝑘 (∑(𝐴𝑘𝐻𝑘

𝑁

𝑘=1

)) 

≤ ∑ 𝑟𝑎𝑛𝑘(𝐴𝑘𝐻𝑘)

𝑁

𝑘=1

≤ 2𝑁 □ 

2.3.  Low-rank Approximation Methods 

It is assumed that the Hankel matrix 𝐻 ∈ ℝ𝑝×𝑞  is formed from the audio signal, with 𝑝 ≥  𝑞. The 

denoising effect is then achieved by applying low-rank approximation. The objective is to obtain an 

approximate optimal Hankel matrix 𝐻∗, for which the corresponding regularization problem is: 

min
H∗

‖𝐻∗ − 𝐻‖𝐹  s. t. 𝑟𝑎𝑛𝑘(𝐻∗) ≤ 𝐿1 (7) 

The solution to this problem is the hard threshold algorithm for singular value decomposition (SVD). 

The initial step is to decompose the matrix 𝐻 into the following form: 
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𝐻 = 𝑈𝑆𝑉𝑇 = [𝒖1|𝒖2| … |𝒖𝑝]𝑝×𝑝

[
 
 
 
 
𝜎1    
 𝜎2   
  ⋱  
   𝜎𝑞

0 ]
 
 
 
 

[
 
 
 
𝒗1

𝑇

𝒗2
𝑇

⋮
𝒗𝑞

𝑇
]
 
 
 

𝑞×𝑞

 

= 𝜎1𝒖1𝒗1
𝑇 + 𝜎2𝒖2𝒗2

𝑇 + ⋯+ 𝜎𝑞𝒖𝑞𝒗𝑞
𝑇 (8) 

where 𝑈, 𝑉 are orthogonal matrices and 𝑆 is a diagonal matrix consisting of singular values 𝜎𝑘(1 ≤ 𝑘 ≤
𝑞) arranged from largest to smallest. 𝒖𝑖 , 𝒗𝑗(1 ≤ 𝑖 ≤ 𝑝, 1 ≤ 𝑗 ≤ 𝑞) are left and right singular vectors 

respectively. Now the first 𝐿1 singular values are selected and the rest of the singular values are set to 0 

to obtain a new diagonal matrix 𝑆∗ , and the matrix is reconstructed as follows: 

𝐻∗ = 𝑈𝑆∗𝑉𝑇 (9) 

Then the optimal approximation for problem (7) is obtained. And 

𝐻∗ = 𝜎1𝒖1𝒗1
𝑇 + 𝜎2𝒖2𝒗2

𝑇 + ⋯+ 𝜎𝐿1
𝒖𝐿1

𝒗𝐿1

𝑇 = (ℎ𝑖𝑗
∗ )

𝑝×𝑞
(10) 

Subsequently, the signals are extracted from 𝐻∗ by merging the transpose of the first column of 𝐻∗ 

and the last row with the first component removed, and then recomposing it into a new vector 𝑌, where 

each element of 𝑌 is 

𝑦(𝑡) = {
    ℎ𝑡1

∗  ,                       1 ≤ 𝑡 ≤ 𝑝

ℎ𝑝,𝑡−𝑝+1
∗  , 𝑝 + 1 ≤ 𝑡 ≤ 𝑛

(11) 

Thus, the optimal solution for the low-rank approximation vector is obtained. The space and time 

complexity of the computation is now considered. According to the traditional method, the following 

theorem can be demonstrated: 
Theorem2. 

A complete SVD of a matrix 𝐻 is computationally equivalent to computing the eigenvalues and 

eigenvectors of the matrices 𝐻𝑇𝐻 and 𝐻𝐻𝑇 . 

Proof: 

Noting that 𝐻𝑇𝐻  and 𝐻𝐻𝑇  are all semi-positive definite symmetric matrices, they are all 

diagonalizable and have non-negative eigenvalues, so 

𝐻𝑇𝐻 = (𝑈𝑆𝑉𝑇)𝑇(𝑈𝑆𝑉𝑇) 

= (𝑉𝑆𝑇𝑈𝑇)(𝑈𝑆𝑉𝑇) 

= 𝑉𝑆𝑇𝑈𝑇𝑈𝑆𝑉𝑇  

= 𝑉𝑆𝑇𝑆𝑉𝑇  

Let 𝐿 = 𝑆𝑇𝑆 ∈ ℝ𝑞×𝑞 as a diagonal matrix as well, the components of which are 𝜆𝑘 = 𝜎𝑘
2(1 ≤ 𝑘 ≤

𝑞), then 

𝐻𝑇𝐻 = 𝑉𝐿𝑉𝑇  

𝐻𝑇𝐻𝑉 = 𝑉𝐿 

which satisfies ∀𝑘 ∈ {1,2, … , 𝑞}, 
𝐻𝑇𝐻𝑣𝑘 = 𝜆𝑘𝑣𝑘 

Therefore, the eigenvectors of 𝐻𝑇𝐻 are the right singular vectors, and squaring their eigenvalues 

gives the singular values 𝜎𝑘 = √λ𝑘. 

Similarly, there exists 𝐿̃ ∈ ℝ𝑝×𝑝 such that the eigenvalues and eigenvectors satisfy 𝐻𝐻𝑇𝑈 = 𝑈𝐿̃, 

which is fulfilled by ∀𝑘 ∈ {1,2, … , 𝑝}, 
𝐻𝐻𝑇𝑢𝑘 = 𝜆𝑘𝑢𝑘 

Therefore, the eigenvectors of 𝐻𝐻𝑇  are the left singular vectors.    □ 

According to Theorem 2, the computational complexity should be extremely high when 𝑛 is large. 

The size of the Hankel matrix generated by a signal 𝑋 of length 𝑛 is about 𝑛2/4 . On the one hand, this 
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size is enormous. For example, a one-minute audio signal (which is usually much longer in practice) 

with a sampling rate of 44,100 has (44100 × 60)2 ≈ 7 × 10
12

 components in the constructed matrix, 

which would require more than the limit of memory in double precision data, not to mention 

transformation and transition matrices. On the other hand, the computational complexity is high, e.g. the 

Golub-Reinsch SVD algorithm and the R-SVD algorithm require at least 4𝑝𝑞2 − 4𝑞3/3 and 2𝑝𝑞2 + 2𝑞3 

steps respectively. 

Noticing that only the first 𝑘  singular values and singular vectors are needed, Lanczos 

bidiagonalization can be used to compute SVD, which exploits the principle that singular values of a 

matrix are invariant in orthogonal transformations. The algorithm is as follows: 

Firstly, turn 𝐻 into an upper bidiagonal form by orthogonal transformations: 

𝑈𝑇𝐻𝑉̃ =

[
 
 
 
 
 
 
 
 
 
 𝛼1 𝛽1    

 𝛼2 𝛽2   

  ⋱ ⋱  

   𝛼𝑞−1 𝛽𝑞−1

    𝛼𝑞

0 ]
 
 
 
 
 
 
 
 
 

(12) 

In practice, instead of applying Householder transform for diagonalization, which produces dense 

submatrices in the middle, the Golub-Kahan upper diagonalization is applied to directly solve for 𝑈𝑘 ∈

ℝ𝑝×𝑘 , 𝐵𝑘 ∈ ℝ𝑘×𝑘 , Vk ∈ ℝ𝑞×𝑘 such that 

𝐻∗ = 𝑈𝑘𝐵𝑘𝑉𝑘
𝑇 = [𝒖1̃|𝒖2̃| … |𝒖𝑘̃]𝑝×𝑘

[
 
 
 
 
 
 
 
 
𝛼1 𝛽1    

 𝛼2 𝛽2   

  ⋱ ⋱  

   𝛼𝑘−1 𝛽𝑘−1

    𝛼𝑘 ]
 
 
 
 
 
 
 
 

[
 
 
 
 𝒗1

𝑇̃

𝒗2
𝑇̃

⋮

𝒗𝑘
𝑇̃]
 
 
 
 

𝑘×𝑞

(13) 

This algorithm employs the Lanczos bidiagonalization to directly generate the bidiagonal entries, 

circumventing the intermediate material of the conventional Householder bidiagonalization. The process 
is described as follows: 

ALGORITHM 1: Golub-Kahan Bidiagonalization 

Initialization: The first column of 𝑉𝑘, designated 𝑣𝑐, is to be formed by selecting a set of normal 

distributed random numbers. 

𝑘 = 0, 𝑝0 = 𝑣𝑐 , 𝛽0 = ‖𝑝0‖, 𝑢0 = 0  

while 𝛽𝑘 ≠ 0 do 

𝑣𝑘+1 = 𝑝𝑘/𝛽𝑘  

         𝑘 = 𝑘 + 1 

         𝑟𝑘 = 𝐻𝑣𝑘 − 𝛽𝑘−1𝑢𝑘−1 

         𝛼𝑘 = ‖𝑟𝑘‖ 
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         𝑢𝑘 = 𝑟𝑘/𝛼𝑘 

         𝑝𝑘 = 𝐻𝑇𝑢𝑘 − 𝛼𝑘𝑣𝑘 

         𝛽𝑘 = ‖𝑝𝑘‖ 

end 

After 𝑘  iterations, this algorithm will eventually yield 𝑈𝑘 = [𝑢1| … |𝑢𝑘], 𝑉𝑘 = [𝑢1| … |𝑢𝑘]  and a 

upper bidiagonal matrix 𝐵𝑘, which satisfies 

𝐻𝑉𝑘 = 𝑈𝑘𝐵𝑘 

𝐻𝑇𝑈𝑘 = 𝑉𝑘𝐵𝑘
𝑇 + 𝑝𝑘𝑒𝑘

𝑇 (14) 

where 𝑒𝑘 denotes the 𝑘𝑡ℎ column of the identity matrix. According to the Lanczos convergence theory 

of symmetric matrices, good approximations to large singular values of 𝐻 emerge at an early stage. 

Subsequently, compute the SVD of 𝐵𝑘: 

𝐹𝑘
𝑇𝐵𝐾𝐺𝑘 = 𝑆𝑘 = 𝑑𝑖𝑎𝑔(𝑠1, … , 𝑠𝑘) (15) 

Then final result is obtained: 

𝑌𝑘 = 𝑈𝑘𝐹𝑘 = [𝑦1,… , 𝑦𝑘] 

𝑍𝑘 = 𝑉𝑘𝐺𝑘 = [𝑧1, … , 𝑧𝑘] (16) 

In accordance with the Ritz Approximations theorem, by setting 𝑘 = 𝐿1, the first 𝑘 largest singular 

values 𝜎𝑖 of 𝐻 are approximated as 𝑠𝑖(1 ≤ 𝑖 ≤ 𝑘), and the corresponding first 𝑘 columns of the singular 

vector matrices 𝑈 and 𝑉 are approximated as 𝑌𝑘 and 𝑍𝑘. The procedure outlined above describes the 

method for computing the first 𝑘 largest singular values and the first 𝑘 singular vectors using Lanczos 
bidiagonalization. 

In order to guarantee the precision of the outcomes and to prevent the algorithm from skipping over 

larger singular values and converging on smaller ones, a loop was set up to restart Lanczos 

bidiagonalization for 𝑘 + 1 until the first 𝑘 singular values had converged. The workload of applying 

the Lanczos bidiagonalization method is 𝑂(𝑘3), which is considerably less than the original 𝑂(𝑝2𝑞). 

2.4.  Rank Determination 

One simple method is to set 𝐿1 based on the number of harmonics. However, in practice, it is preferable 

to select a larger 𝐿1 in consideration of the impact of amplitude, damping and delay. Another approach 

is to determine 𝐿1 using autoregressive models[8, 14], which let 𝑚𝑖𝑛
𝐿̂

|𝐴𝐼𝐶(𝐿̂) − 𝐴𝐼𝐶(𝐿̂ + 1)| to be the 

optimal choice of 𝐿1 , where 𝐴𝐼𝐶(𝐿̂) = 𝑀 log 𝑒(𝐿̂) + 2𝐿̂ . In order to deal with various noises, an 

empirical rank can also be selected for approximation. In the algorithms, the ratio of singular values is 

specified as a parameter, which reflects the rank proportion selected. 

2.5.  Core Improvement Methodology 

To accommodate noises with different frequency characteristics, the sounds in each band of 𝑋  are 

separated over a period of time with an interval of 𝑛 before subsequent processing. 

ALGORITHM 2: Modulus Classification 

Initialization: 𝑛 is the length of 𝑋, Fs is the sampling rate, and set 𝑓𝑖
(1), 𝑓𝑖

(2)
 as the upper and lower 

bounds of each frequency band,  

𝐹𝑋 = 𝑓𝑓𝑡𝑠ℎ𝑖𝑓𝑡 (𝑓𝑓𝑡 (
𝑋

𝑛
))  
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𝑓 = 𝑎𝑏𝑠 (𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒 (−
𝑓𝑠

2
,
𝑓𝑠

2
− 1, 𝑛))  

while 0 ≤ 𝑓𝑖
(1)

< 𝑓𝑖
(2)

≤ 2.2 × 10
4 do 

        𝑋𝑓𝑖
= 𝐹𝑋 ⊙ (𝑓𝑖

(1)
< 𝑓 < 𝑓𝑖

(2)) i.e. set modulus of the other bands to 0 

        𝑋𝑖 = 𝑅𝑒𝑎𝑙 (𝑖𝑓𝑓𝑡 (𝑖𝑓𝑓𝑡𝑠ℎ𝑖𝑓𝑡(𝑋𝑓𝑖
))) i.e. reconstruct the signal 

end while 

To further increase the computational speed and make use of the locally low-rank nature of the audio, 

a low-rank approximation method is applied in a small window of fixed length per segment. 

ALGORITHM 3: Windowed Singular Value Decomposition (WSVD) 

Initialization: For each segment 𝑋𝑖, choose 𝑤𝑖 as the length of the window and 𝐿𝑖 as the order for 

the approximation. 

for 𝑘 = 1,2, … , ⌊
𝑛

𝑤𝑖
⌋ loop 

        𝐻 ← 𝑋𝑖(𝑘𝑤𝑖 − 𝑤𝑖 + 1: 𝑘𝑤𝑖) 

        𝐵𝑘 , 𝑌𝑘 , 𝑍𝐾 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑆𝑉𝐷 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 𝑘 𝑜𝑓 𝐻 𝑏𝑦 𝐿𝑎𝑛𝑠𝑧𝑜𝑠 𝑏𝑖𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

        𝐻∗ ← 𝑌𝑘𝐵𝑘𝑍𝑘
𝑇  

        𝑌𝑖(𝑘𝑤𝑖 − 𝑤𝑖 + 1: 𝑘𝑤𝑖) ← 𝐻∗ 

end loop 

Remark: If the window length 𝑤𝑖 does not divide 𝑛 integrally, extend the last window to the end. 

Ultimately, the reconstruction 𝑌 = Σ𝑖𝑌𝑖 is the final result. The overall process of denoising algorithm 

with WSVD of frequency division is as follows, the first step is to select 𝑛 as length of each audio 

segment and select the nodes for dividing the frequency bands, then apply Algorithm 1 to obtain the 
divided signal; the second step is to determine the length of the window for each band and select the 

ratio of the singular values, and apply Algorithm 2 to obtain the denoised signal; and the last step is to 

reconstruct the final signal by summing the resulting signals. 

2.6.  Smoothness Techniques 
Because audio often has different characteristics over time, the continuity of the denoising can be 

affected, especially when a high level in one window is followed by a low level in another. Such a 

situation can lead to unevenness around the boundary between the two windows, such as the resulting 
“spikes” in the waveform. 

One possible approach is to apply a mean filter at each junction, which entails a minimal additional 

computational expense. An alternative is to perform a two-window interleaved WSVD of frequency 
division denoising of the original X and replace it with another segment near the window edges. 

Applying this smoothing technique after each denoising step effectively avoids the appearance of noise, 

even though the probability of a large difference in nature between the two windows is very small. 

3.  Results and Analysis 

3.1.  Evaluation Indicators 

3.1.1.  Signal-to-Noise Ratio (SNR). 

𝑆𝑁𝑅 = 10 log10

‖𝑋0‖

‖𝑌 − 𝑋0‖
(17) 
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Where 𝑋0 and 𝑌 represent the original useful signal and the denoised signal respectively. SNR is the 

ratio of the power of the original signal to the power of the error signal. In the simulation results, higher 

SNR indicates better denoising effects. 

3.1.2.  Normalized Correlation Coefficient (NCC). 

𝑁𝐶𝐶 =
∑ 𝑥(𝑘)𝑦(𝑘)𝑛

𝑘=1

√(∑ 𝑥2(𝑘)𝑛
𝑘=1 )(∑ 𝑦2(𝑘)𝑛

𝑘=1 )
(18) 

𝑥(𝑘), 𝑦(𝑘)(1 ≤ 𝑘 ≤ 𝑛) denote the original and denoised signals, respectively. NCC reflects the overall 
similarity before and after denoising, independent of the details of the waveform oscillatory variations. 

The closer NCC is to 1, the more similar the two signals are, and the less shifted and uncorrelated they 

are. 

3.1.3.  Root-mean-square Error (RMSE). 

𝑅𝑀𝑆𝐸 = √
∑ (𝑥0(𝑘) − 𝑦(𝑘))

2𝑛
𝑘=1

𝑛
(19) 

𝑥0(𝑘), 𝑦(𝑘)(1 ≤ 𝑘 ≤ 𝑛)  denote the pure and denoised signals, respectively. RMSE reflects the 
difference between the pure signal and the signal after denoising, and a smaller RMSE reflects better 

denoising effects. 

3.1.4.  Noise Reduction Ratio (NRR). 

𝑁𝑅𝑅 = 10 log10 (
𝜎𝑋

2

𝜎𝑌
2) (20) 

where 𝜎𝑥  and 𝜎𝑌 are the standard deviation of the detected signal and denoised signal, respectively. 

NRR is used to evaluate the denoising effect without using the pure signal as a reference.  

3.1.5.  Time Ratio (TR). 

𝑇𝑅 =
𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒

𝑇0

(21) 

where 𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒  is the time for computation and 𝑇0  is defined as the time required to compute 10
10

 
additions. All the numerical simulations in this paper are implemented by MATLAB R2024a in a PC 

with 16.0 GB RAM and 4 CPUs of 3.10 GHz. All measured times will be divided by 𝑇0 for reference. 

3.2.  Simulation and Experiment 

In simulations, an analogue signal or dry voice is selected as the pure signal 𝑋0 , and noise 𝛦  is 

introduced into different models to obtain 𝑋. Algorithms are then applied to obtain 𝑌. In experiments, 

𝑋 is directly detected, and a comparison is made with denoised 𝑌. 

3.2.1.  Evaluation of Denoising Performance. For Simulation 1, a guitar audio signal and a normally 
distributed random signal are selected as AGWN to compare the effect of frequency-divided WSVD 

with wavelet denoising and Gaussian filter denoising. 

Table 1. Comparison of Denoising Effect 

Signal Type & Algorithm SNR NRR RMSE NCC 

Original signal (AGWN) 24.1367 0 0.0100 0.9981 

3rd order db3 wavelet 28.8582 21.7561 0.0058 0.9993 
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4th order db3 wavelet 24.2816 0.7879 0.0098 0.9981 

3rd order sym4 wavelet 29.7465 25.8449 0.0052 0.9995 

Gaussian filter 29.0999 23.2949 0.0056 0.9994 

WSVD of frequency division 30.1656 27.7473 0.0050 0.9995 

 

In this simulation, 1000Hz and 3500Hz are selected as nodes according to the original spectrum, the 
window sizes are set to 150, 100 and 100 respectively, and the selected singular value ratios are set to 

0.08, 0.12 and 0.01. According to Table 1, the result shows that WSVD of frequency division can 

denoise effectively while maintaining the waveform similarity and the trend of change, and also show 
that the WSVD of frequency division has a better performance compared with other denoising methods.  

For Simulation 2, a segment of vocal audio signal is selected and AWGN is added to analyze the 

effect of the choice of window width and singular value ratio on the results. In this case, the frequency 

division operation is not performed, and instead, the effect of the window length and the choice of the 
singular value ratio are considered. As can be seen from Table 2, it is important to choose the correct 

window length and the appropriate singular values ratio. If the window size is too large, not only will 

the computation time be longer, but the denoising effect may also be worse because of the weakening 
of the local low-rank property. If the window size is insufficient, the regularity of the signal may not be 

adequately captured, resulting in a poor separation from the subspace of noise. Likewise, if the number 

of singular values is excessive, the noise components will be entrained, and if the number is insufficient, 

critical information will be lost. 

Table 2. Comparison of Results for Window Width and Choice of Singular Values Ratio 

Width Ratio SNR NRR NCC RMSE TR 
100 1 16.3197 0 0.9883 0.0100 0.2811 
300 0.3 16.7799 0.2883 0.9895 0.0094 1.4494 
200 0.3 16.5447 0.2887 0.9889 0.0097 1.0826 
100 0.3 16.5206 0.2955 0.9888 0.0097 0.6930 
300 0.5 16.6945 0.0903 0.9892 0.0095 0.5971 
200 0.5 16.6262 0.0852 0.9891 0.0096 0.5015 
100 0.5 16.6607 0.0881 0.9892 0.0096 0.3541 
300 0.7 16.4265 0.0236 0.9885 0.0099 0.6109 
200 0.7 16.4042 0.0220 0.9885 0.0099 0.4537 
100 0.7 16.4196 0.0232 0.9885 0.0099 0.3447 

3.2.2.  Evaluation of Denoising Efficiency. In Experiment 1, musical instrument audio signals of 

different time lengths with a sampling rate of 44100 are selected to compare the temporal performance 
and results of full SVD denoising, full WSVD denoising, and WSVD denoising with the application of 

Lanczos bidiagonalization (as shown in Table 3). 

Table 3. Comparison of TR for Audio of Different Time Lengths 

Denoising 

Algorithm 

0.05s 0.1s 0.15s 0.2s 0.5s 1s 5s 10s 30s 

𝐹𝑢𝑙𝑙 𝑆𝑉𝐷 0.0559 0.5174 1.7805 4.8339 63.8087 Inf Inf Inf Inf 

𝐹𝑢𝑙𝑙 𝑊𝑆𝑉𝐷 0.0231 0.0318 0.0544 0.0728 0.1368 0.2642 1.3864 3.2937 10.2439 

𝐿𝑎𝑛𝑐𝑧𝑜𝑠-𝑊𝑆𝑉𝐷 0.0126 0.0277 0.0449 0.0639 0.0986 0.2080 1.1517 2.7376 8.0213 

 

The first row of the Table 3 shows the duration of the processed audio, with a window of length 1000 

for the signal and the ratio of the selected singular values set to 0.1. Full SVD denoising terminates the 
computation early for audio with a duration of 1s or more, as the memory required to construct the 

Hankel matrix exceeds the limit. On the contrary, WSVD effectively avoids the problem of memory 

shortage. The temporal performance of applying Lanczos bidiagonalization WSVD for denoising is 

Table 1. (continued). 
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significantly better than that of full WSVD denoising. The superiority of Lanczos bidiagonalization 

becomes even more obvious if a longer window width is set and smaller singular values ratio are chosen. 

3.2.3.  Evaluation of robustness. Simulation 3 shows the denoising effect on special audios. 

 
                                             (a)                                                                   (b) 

Figure 1. Denoising the “Noisbump” Signal Using WSVD (a. The waveforms of the signal with noise, 

the waveform of the denoised signal directly using WSVD, the spectrum of the signal with noise and 

the waveform of the denoised signal using WSVD of frequency division based on the spectrum (from 
top to bottom); b. The waveforms of the three frequency bands after denoising with 100 Hz and 900 Hz 

as the dividing points, and the waveform of the reconstructed signal, where the vertical lines in the graph 

represent the boundaries of the windows) 

The simulation denoise the ‘Noisbump’ signal using WSVD (as shown in Figure 1). Typically, the 

vibrational form of audio signals is not so chaotic, as it resembles noise. However, in order to assess the 

resilience of the algorithm, WSVD and frequency-divided WSVD were tested. The results demonstrate 

that WSVD produces suboptimal outcomes in certain windows where noise energy constitutes a 
significant portion. However, the denoising efficacy of frequency-divided WSVD is considerably 

superior (a. as shown in the second panel and the last panel of Figure 1.a). In this simulation, WSVD 

was employed on three signal bands with 100Hz and 900Hz as the frequency division node and the ratio 
of singular values was selected as 0.4, 0.2 and 0.03, respectively. The final reconstructed signals were 

able to extract signal features of different frequency bands. In this instance, the window width of each 

band was set to 130. In a practical application, a smaller window could be employed, with a greater 

number of singular values selected in the frequency bands where the features are concentrated. 
For Simulation 4, the speech signals are selected and non-additive noise (GMM noise, α-stable 

distribution noise, and MCA noise) is added to test the applicability of WSVD. 

 
(a) 
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(b)                                                                (c) 

 

Figure 2. Denoising Results on Signals with Non-additive Noise with Frequency-divided WSVD (a. 

Adding GMM noise; b. Adding strong α-stable distribution noise; c. Adding MCA noise.) 

The WSVD of frequency division can be adapted to different types of noise. In the case of GMM 

noise, where the noise energy is concentrated at high frequencies, a smaller singular values ratio is 

chosen in the high frequency band. The noise is effectively attenuated whilst the key signal is retained 
intact (as shown in Figure 2.a). Even though the α-stable distribution noise and MCA noise with transient 

impacts are difficult to deal with, the noise occupies a subspace with fewer dimensions and is almost 

uncorrelated with the subspace in which the signal is located. Therefore, a large portion of the noise can 
be removed by low-rank approximation (as shown in Figure 2.b, 2.c). The results show that the algorithm 

is effective for non-additive noise, but in any case, the WSVD works best only when there is a small 

amount of AWGN. 

4.  Discussion 

In order to ascertain the potential of low-rank approximation in a variety of contexts, this paper conducts 

an experiment using Monte Carlo cast points to generate random signals. 

 
(a)                                                                (b) 

Figure 3. Results on random signals (a. Cubic spline interpolated digital signal generated from equally 
spaced random samples. b. Relationship between the number of singular values selected and the 

Frobenius norm of error according to the signal, at a sampling interval d, with d increasing from the 

smallest to the largest. The uppermost curve represents the outcome for completely random noise.) 

This cubic spline interpolation produces a signal that mimics the vibrational pattern of real audio and 
retains a good degree of smoothness (as shown in Figure3.a). The obtained signal sample rates range 

from large to small, representing regular to irregular signals. It can be demonstrated that the selected 
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singular value ratio has a significant impact on the reconstruction quality of the Hankel matrix. 

According to Figure3.b, for vibrationally regular signals, only a very small number of singular values 

and singular vectors are needed to reconstruct them. The Frobenius norm of the error of the reconstructed 
signal is almost linearly related to that of a purely noisy signal. Given that low-rank signals exhibit a 

high degree of concentration in a limited number of principal directions, it can be reasonably assumed 

that the scope for optimization in denoising is considerable, provided that the signal is not entirely noise. 
For Simulation 5, The Hankel matrix data constructed from the pure sine wave analogue signals are 

analyzed, which is sampled at 10 intervals for 10
4
 data points (as shown in Figure4.a). The harmonic 

amplitudes are corresponding to the harmonics of the piano sound measured (as shown in Figure4.b). 

The harmonic components increase from the top to the bottom of the graph. Results show that the rank 

of the Hankel matrix is not affected by machine error although the harmonics of the simulated sinusoidal 
signal gradually increase. Each time the harmonics increase by 1, the Hankel matrix constructed from 

the signal increases by 2. In the full rank case of the Hankel matrix with 𝑟𝑎𝑛𝑘 = 500, the effective 

information of a signal with 10th harmonics requires only 20 dimensions to reconstruct it completely. 
Then envelope of the volume was added to the original waveform, modelling the amplification and 

attenuation of the signal sampled at 10 intervals for 5 × 10
3
 data points (as shown Figure 4.c). At this 

point, the frequency is concentrated in the region of the formant (as shown in Figure4.d). The full rank 

case of the Hankel matrix is 𝑟𝑎𝑛𝑘 = 250, only 197 dimensions are needed to fully reconstruct the key 

information of a 10th harmonic signal. Thus, an increase in number of formants corresponds to an 
increase of only a few dimensions. Furthermore, the harmonic properties of signals that have distinctive 

features have led to the low-rank structure. This is the reason why low-rank approximation is effective 

for audio denoising. 

 
(a)                               (b)                                 (c)                                (d)    

Figure 4. Low rank properties in audio signals. (a. Wave form of sine wave analogue signals. b. 

Frequency of sine wave analogue signals. c. Wave form of sine wave analogue signals with envelopes. 

d. Frequency of sine wave analogue signals with envelopes) 

The information perceived by the human ear comes from the frequency domain in which the formants 
are concentrated, and the formants represent the most direct source of articulatory information, as well 

as the main feature of speech recognition and the basic information conveyed by speech coding. 

Accordingly, the low-rank approximation is considered an appropriate methodology for denoising. 
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(a)                                                                 (b) 

Figure 5. Memory Space Required for full SVD and WSVD. (a. Data with n = 104; b. Data with n =
106) 

The main idea of this paper is the frequency partitioning of the signal, coupled with the Lanczos 

bidiagonalization of the SVD over windows. The former exploits the frequency property of the noise 

distribution, while the latter exploits the local low-rank nature of the audio signal. Comparing with full 

SVD, the computational complexity changes from the originally O(n2) to O(λwn), where λ , w are the 

number of frequency intervals and the window length. Figure 6 represents the actual Hankel matrix sizes 

that were calculated. Since the denoising process of each window is independent, parallel computations 

are allowed to further improve the denoising efficiency if the requisite device is available. 

5.  Conclusion 

In this paper, an audio denoising method with WSVD of frequency division is proposed and accelerated 

by the Lanczos bidiagonalization algorithm for decomposing the first 𝑘  large singular values. The 

algorithm separates noise with audio of different frequency characteristics by splitting the frequency 
bands, and achieves local low-rank approximation and computational reduction by locally adding 

windows.  Simulation and experimental results show that the frequency-divided WSVD can effectively 

denoise audio data. Therefore, the algorithm can be applied to many real-life scenarios. Considering that 
the low-rank approximation of WSVD is a locally linear approximation method, nonlinear 

approximation of can also be considered in future research. 
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