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Abstract. This research is motivated by Atiyah, Hitchin, and Singer’s paper Self-duality in Four-

Dimensional Riemannian Geometry , which introduced a relationship between self-dual Yang-

Mills fields on smooth manifolds and holomorphic vector bundles on their twistor spaces. Here, 

self-duality is a specific structure in 4-dimensional manifolds and Yang-Mills fields are gauge 

fields that satisfy Yang-Mills equations in 4-dimensions and are corresponded to the 

holomorphic bundles on twistor spaces. In this paper, we extend the relationship from vector 

bundles to a generalization of the Yang-Mills fields. To achieve this purpose, we apply Atiyah, 

Hitchin, and Singer’s theorem to cohesive modules, which was originally introduced by Block 

in  in studying coherent sheaves over complex manifolds and the relations between homomorphic 

torus and its dual non-commutative torus. We introduce the notion of cohesive self-dual Yang-

Mills modules and show that the twistor correspondence actually induces the equivalence 

between the dg category of cohesive self-dual Yang Mills modules 𝒫𝐴𝑆𝐷  and the dg category of 

holomorphic cohesive modules 𝒫𝐴𝐻𝑜𝑙  on the twistor spaces.  

Keywords: Differential geometry, mathematical physics, topology. 

1.  Introduction 

Yang-Mills theory stands as a central pillar in our understanding of fundamental interactions, providing 

a unifying language for the electromagnetic, weak, and strong forces within the framework of quantum 

field theory. The seminal work of Chen-Ning Yang and Robert Mills  extended the concept of local 

gauge invariance from the abelian group associated with electromagnetism to non-abelian gauge groups, 

laying the foundation for the development of quantum chromodynamics and the electroweak theory. 

This generalization has since played a pivotal role in the formulation of the Standard Model of particle 

physics. 

The mathematical richness of Yang-Mills theory is encapsulated by its deep connection with 

differential geometry, particularly through the study of connections on principal bundles and the 

associated curvature forms. This paper aims to present a comprehensive examination of the interplay 

between Yang-Mills theory and differential geometry, with a focus on the self-duality of solutions to 

the Yang-Mills equations and their geometric significance. 

We begin by revisiting the fundamental aspects of the study of self-duality, showcasing its role as a 

special solution to the Yang-Mills equations and its implications for the geometry of four-dimensional 

manifolds. 

A key component of our discussion is the introduction of twistor theory, originally developed by 

Roger Penrose as a novel approach to encoding geometric and algebraic properties of spacetime. By 
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bringing complex algebraic geometry into play, twistor theory offers an elegant method for addressing 

non-linear differential equations related to self-duality, enriching both mathematical and physical 

perspectives on space-time. 

Building on the foundational work of Atiyah, Hitchin, and Singer [1], we explore the relationship 

between self-dual Yang-Mills fields and holomorphic complex structures. Their insights into the 

application of twistor theory to self-dual Yang-Mills fields have unveiled a remarkable correspondence 

with holomorphic structures, a correspondence that remains a vibrant area of research. 

The final part of the paper is dedicated to the study of cohesive modules over four-dimensional 

manifolds. By leveraging the profound connections established by Atiyah between self-dual Yang-Mills 

fields and holomorphic fields, we extend the classical framework to the realm of cohesive modules. This 

extension not only provides new insights into the correspondence between self-dual Yang-Mills fields 

and holomorphic vector bundles but also opens up the possibility of exploring further relationships 

between their categories. 

2.  Self-duality in Four Dimensional manifolds 

The concept of self-duality holds significant sway in both the realms of mathematics and physics, 

representing a symmetry that often leads to deep insights and results. In the context of this research, we 

confine our discussion to self-duality within the framework of four-dimensional spaces, where the 

Hodge star operator ∗ satisfies the condition ∗2= 1. This specific dimensional setting is particularly 

notable in fields such as the study of four-manifolds, and it plays a crucial role in the formulation of 

theories such as topological quantum field theory and the gauge theory of the Yang-Mills equations. 

2.1.  Self-duality and Anti Self-duality 

Hodge star ∗ is the conceptual principle in self-duality we are going to talk about. It was used in electron-

magneticism where it arises in the coordinate-free formulation of Maxwell’s equations in flat space time. 

It is an operator that provides duality between 𝑘-forms and (𝑛 − 𝑘)-forms in ℝ𝑛. 

 

Definition 2.1 (Hodge Star). [5] Let 𝑤 = 𝑑𝑥𝑖1 ∧. . .∧ 𝑑𝑥𝑖𝑘 be a basic 𝑘-form in ℝ𝑛. Then the Hodge 

star dual of 𝑤, which is denoted by ∗ 𝑤, is the unique basic (𝑛 − 𝑘)-form with the property: 

𝑤 ∧∗ 𝑤 = 𝑑𝑥1 ∧. . .∧ 𝑑𝑥𝑛 

For general 𝑘-forms on 𝑈 ∈ ℝ𝑛, we extend the Hodge star by linearity: If 

𝜂 =∑𝑓𝑖1

𝑘

1

. . .𝑖𝑘 𝑑𝑥𝑖 ∧. . .∧ 𝑑𝑥𝑖𝑘  

is a k-form on set 𝑈, then its Hodge star dual ∗ 𝜂 is the (𝑛 − 𝑘)-form given by 

∗ 𝜂 =∑𝑓𝑖1

𝑘

1

. . .𝑖𝑘∗ 𝑑𝑥𝑖 ∧. . .∧ 𝑑𝑥𝑖𝑘  

Definition 2.2 (Self-duality).  Let 𝐹 be a 2-form, we say it is self-dual (resp. anti self-dual) if ∗ 𝐹 =
𝐹 (resp. ∗ 𝐹 = −𝐹). This is when ∗2= 𝐼 and that when it is 𝛬+, then∗ 𝐹 = 𝐹 and when 𝛬−, then ∗ 𝐹 =
−𝐹. 

Now, with the knowledge of self-duality, let’s revisit the concept of Einstein manifold. 

 

Proposition 2.3 ([1]).  A 4-manifold 𝑀4 is Einstein if and only if the Levi-Civita connection on 𝛬+ 

is self-dual. 

Proof. The curvature of 𝛬+ is given by the first row of block decomposition of the curvature tensor. 

Therefore, the anti-self-dual part 𝐵∗ doesn’t appear iff 𝑀 is an Einstein manifold.  
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2.2.  Yang-Mills Theory 

Yang-Mills theory represents a quantum field theoretical extension of classical Maxwell’s 

electromagnetism, providing a sophisticated framework for understanding electromagnetic fields and 

forces with remarkable precision. As a non-abelian gauge theory, it is instrumental in modeling the weak 

and strong nuclear interactions, which, in their unadulterated theoretical form, feature massless gauge 

bosons—a characteristic that poses challenges for reconciling the theory with observable phenomena in 

the physical world. This conundrum remains one of the outstanding problems in theoretical physics. 

The foundations of Yang-Mills theory are deeply rooted in group theory, drawing specifically from 

the rich structure of Lie groups. In our exploration, we approach Yang-Mills theory through the lens of 

differential geometry, which offers a geometric perspective on the fields and interactions described by 

the theory. 

To proceed, we must first introduce the concept of a Yang-Mills field, also commonly referred to as 

a gauge field. This entity encapsulates the dynamics of the gauge bosons and is a pivotal element in the 

geometric formulation of the interactions that govern the fundamental forces. 

 

Definition 2.4 (Yang-Mills Field).  Let 𝜋: 𝑃 → 𝑀  be a principal 𝐺 -bundle over a Riemannian 

manifold 𝑀 , and let 𝐸 = 𝑃 ×𝐺 𝐸 → 𝑀  be the vector bundle associated with 𝜋  and a 𝐺 -module 𝐸 . 

Connection on 𝐸 is a differential operator 

∇𝐸: 𝛤(𝐸) → 𝛤(𝑇∗𝑀)⨂𝛤(𝐸) 

which acts on the space 𝛤(𝐸) of sections of E(M). The operator 𝑑∗, on 𝑝-forms, conjugates to 

𝑑∗ = (−1)𝑑(𝑝+1)+1 ∗ 𝑑 ∗. 

The connection ∇ in a principal 𝐺-bundle is called a Yang-Mills field if the curvature ∇𝐹 satisfies 

𝑑𝐹 = 0and 𝑑∗𝐹 = 0. 

 

Lemma 2.5.  We define 

𝐷∗: 𝛺𝑝(𝐴𝑑𝐸) → 𝛺𝑝−1(𝐴𝑑𝐸) 

as the operator dual to 

𝐷:𝛺𝑝−1(𝐴𝑑𝐸) → 𝛺𝑝(𝐴𝑑𝐸) 

where 𝐴𝑑 is the adjoint bundle, or the vector bundle corresponding to the principal. Then  

𝐷∗ = (−1)𝑑(𝑝+1)+1 ∗ (𝑑 + 𝐴) ∗ 

Proof. Since 

∗∗= (−1)𝑝(𝑑−𝑝) 

where ∗: 𝛺𝑝(𝐴𝑑𝐸) → 𝛺𝑑−𝑝(𝐴𝑑𝐸) operates on the differential form part and 𝐴𝑖  and ∗ commute as ∗
𝐴𝑖 ∗= 𝐴𝑖. Thus, because 𝐴𝑖 is skew symmetric and 

𝐷 = 𝑑 + 𝐴, 𝐴 = 𝛺1(𝐴𝑑𝐸) 

𝐷∗ = (−1)𝑑(𝑝+1)+1 ∗ (𝑑 + 𝐴) ∗= (−1)𝑑(𝑝+1)+1 ∗ 𝐷 ∗ 

Lemma 2.6.  (Anti) self-dual metric connection is a special solution to Yang-Mills equation. 

Proof. The Yang-Mills equation is 

𝐷∗𝐹 = 0. 

By the previous lemma we proved, this implies 

𝐷 ∗ 𝐹 = 0. 
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Let F be (anti)self-dual, which is 

𝐹 = ± ∗ 𝐹. 

Then the Yang-Mills equation becomes 

𝐷 ∗∗ 𝐹 = 0 

Since ∗∗= 𝐼𝑑, 

𝐷𝐹 = 0 

which is true because it is the Bianchi identity 

∇𝜌𝑅𝜇 =
1

2
∇𝜇𝑅 

where 𝑅𝑚𝑢 is the Ricci tensor, 𝑅 is the scalar curvature, and ∇𝜌 indicates covariant differentiation. Thus, 

we proved that every (anti) self-dual connection gives automatically a Yang-Mills connection.  

3.  Complex Structure and Twistor Space 

Having delineated the definition of self-dual Yang-Mills equations and explored salient examples, we 

are now equipped to turn our attention to another central object of interest in this research—the almost 

complex structure. This geometric construct, pivotal to our discourse, enriches our understanding of the 

manifold’s structure by endowing it with a generalized notion of complex geometry, even in contexts 

where a true complex structure may not exist. We will examine the properties of almost complex 

structures and their interactions with the self-dual solutions of the Yang-Mills equations, thereby 

revealing the intricate interplay between geometry and physics that underpins the theoretical landscape 

of differential geometry. 

3.1.  Complex Structure 

Definition 3.1 (Almost-complex Structure).  Almost-complex structure on manifold 𝑋2𝑛 is defined as 

𝐽: 𝑇𝑥𝑀 → 𝑇𝑥𝑀, 𝐽
2 = −𝐼𝑑. 

With this, we can define almost-complex manifolds and complex manifolds. 

 

Definition 3.2 (Complex Manifold).  If 𝑈 ⊂ ℂ𝑛 is open, and 𝑓:𝑈 → ℂ, then 𝑓 is holomorphic if it 

satisfies the Cauchy-Riemann equation 
∂𝐼𝑚𝑓

∂𝑥𝑖
+
∂𝑅𝑒𝑓

∂𝑦𝑖
= 0. A complex manifold of (complex) dimension 

𝑛, is a manifold of real dim 2𝑛, with local coordinates 𝑧1, . . . , 𝑧𝑎: 𝑢 → ℂ. 

3.2.  Twistor Space 

Twistor spaces are distinguished complex three-dimensional manifolds that establish a profound 

correspondence with specialized Riemannian geometries on four-dimensional manifolds. This 

remarkable relationship between complex three-dimensional manifolds and their real four-dimensional 

counterparts is encapsulated by the Penrose twistor correspondence, a foundational concept that bridges 

the gap between complex and Riemannian geometry. 

Prior to delving into the construction of a twistor space over 𝑆3, it is instructive to consider the well-

known example of a sphere bundle, denoted 𝑆(𝑀), with the Torus serving as an illustrative case. This 

example will provide a concrete setting to appreciate the nature of sphere bundles and their relevance in 

the broader context of differential geometry, paving the way for a deeper exploration of twistor spaces 

and their applications. 

 

Example 3.3.  The Torus has the base manifold to be a circle, and the fibres are also circles, therefore, 

it is a sphere bundle expressed by 𝑆1 × 𝑆1. 
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Example 3.4 (Mini-twistor Space).  Let’s start from 𝑅2, since we know the complex plane can be 

represented as 𝑧 = 𝑥 + 𝑖𝑦 and can thereby identify ℝ2 with ℂ. We discover a function 𝑓:ℝ2 → ℝ is 

harmonic if and only if we can write it as 

𝑓 = 𝜓 + 𝜓 

where 𝜓:ℂ → ℂ is a holomorphic function. In the above process, we have related real valued functions 

to holomorphic functions of one-variable. 

However, we can’t apply this method to ℝ3 because it has an odd dimension. We can still form 

another space that is closely associated to the geometry of ℝ3, and this space 𝑍 of all oriented lines of 

ℝ3 is known as mini-twistor space. Since any oriented line 𝑙 is uniquely determined by the unit vector 

𝑢 parallel to the line and the shortest vector 𝑢 from the origin of and is orthogonal to the line, therefore 

we have 

𝑙 = 𝑣 + 𝑡𝑢|𝑡 ∈ ℝ. 

Then we get 

𝑍 = (𝑢, 𝑣)|𝑢, 𝑣 ∈ ℝ3, ∥𝑢∥ = 1,< 𝑢, 𝑣 >= 0 ⊂ 𝑆2 × ℝ3. 

In conclusion, the mini-twistor space 𝑍 is readily seen to be 𝑇𝑆2 which is the tangent bundle of two-

sphere. In other words, the sum of all tangent planes of the two-sphere. 

Now, we can create an analogue of mini-twistor space and define Twistor space in 4-dimensions. 

 

Definition 3.5. Twistor Space Twistor space 𝑍  is the fibre bundle with manifold 𝑀  as a base 

manifold, and all the almost complex structures on 𝑇𝑥𝑀  as fibres. As 𝑍 = 𝑆(𝜆−) , 𝐽: 𝑇(𝑥,𝑦)𝑍 →

𝑇(𝑥,𝑦)𝑍(where 𝐽 = 𝐽1⨁𝐽2, 𝐽1: 𝑇𝑥𝑀 → 𝑇𝑥𝑀 and 𝐽2: 𝑆𝑥
2 → 𝑆𝑥

2. 

The above definition is only one way to define the twistor space. It is also commonly defined using 

its identity with the open set of the 3-dimensional complex projective space 𝐶ℙ3: the space of all 

complex lines through the origin in ℂ4. 

4.  Cohesive Modules over Self-dual manifolds 

Introduced by Block[3], cohesive modules have emerged as an influential concept for probing the 

dynamics of vector bundles and sheaves when subjected to deformations. These modules transcend the 

confines of the traditional holomorphic framework, opening avenues to investigate a wider spectrum of 

geometric contexts. Central to their utility is the insight they afford into the deformation theory of vector 

bundles and sheaves, shedding light on the nuanced aspects of their stability and responsiveness to 

perturbations. 

Furthermore, cohesive modules provide an apt language for the formulation and exploration of 

moduli spaces. These spaces serve as a cataloging tool, systematically parameterizing families of 

geometric entities such as vector bundles or sheaves, distinguishing them up to isomorphism, and thus 

offering a means to classify and comprehend the vast terrain of geometric structures. 

Situated within the expansive domain of higher categories and derived geometry, cohesive modules 

enhance our grasp of geometric intricacies, extending well beyond the realms traditionally captured by 

classical geometry. 

In the ensuing section, we aim to broaden the scope of classical self-dual Yang-Mills fields through 

the incorporation of cohesive modules, thereby enriching the theoretical landscape of differential 

geometry with the nuanced perspectives afforded by this advanced conceptual framework. 

4.1.  Self-dual Yang-Mills fields on self-dual manifolds 

Among the seminal contributions in the study of differential geometry, the work presented in [1] stands 

out by elucidating a profound connection between self-dual Yang-Mills fields on a four-manifold and 
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holomorphic vector bundles over the associated twistor space. This relationship, bridging the gap 

between real and complex geometries, has paved the way for significant advancements in understanding 

gauge theories and complex differential geometry. 

The Atiyah-Hitchin-Singer (AHS) theorem provides a concrete manifestation of this connection, 

which can be summarized as follows:theorem 

 

Theorem I (Atiyah-Hitchin-Singer,[1] ).  Given an oriented four-manifold 𝑀, the imposition of a 

conformal structure on 𝑀 induces an almost complex structure on the projectivized negative spinor 

bundle 𝑃(𝑉−) associated with 𝑀. This almost complex structure is integrable if and only if the anti-self-

dual part of the Weyl tensor, denoted by 𝑊−, vanishes. In particular, integrability is guaranteed if 𝑀 

exhibits a self-dual conformal structure. 

This result provides a geometric interpretation of self-duality in terms of complex structures, offering 

insights into the conditions under which a four-manifold can be described in the language of twistor 

theory. 

Building on this foundation, the AHS theorem further elaborates on the behavior of vector bundles 

in this geometric framework: 

 

Theorem II (Atiyah-Hitchin-Singer, [1]).  Let 𝐸  be a complex vector bundle equipped with a 

compatible connection and endowed with a self-dual connection over a self-dual four-manifold 𝑀. 

Denote the projection map by 𝑝: 𝑃(𝑉−) → 𝑀 and consider the pullback bundle 𝐹 = 𝑝∗𝐸 over 𝑃(𝑉−). 
Then, the following statements hold true: 

(1) The bundle 𝐹 admits a holomorphic structure on 𝑃(𝑉−); 
(2) The bundle F is holomorphically trivial along each fiber of the twistor projection. 

The significance of these theorems cannot be overstated as they provide a bridge between the 

physical interpretation of self-dual Yang-Mills fields and the geometric language of holomorphicity on 

twistor spaces. This duality not only enriches our theoretical understanding but also offers new tools and 

perspectives for tackling complex problems in both pure mathematics and theoretical physics. 

In light of these results, our paper aims to further investigate the ramifications of the AHS theorems, 

exploring their implications for modern theories and highlighting potential avenues for research that 

emanate from this profound interplay between different geometric structures. 

4.2.  The dg-category of Cohesive Modules 𝒫𝐴 

Assume 𝐴 = (𝒜•, 𝑑) is a differential graded algebra with non-negative degrees such that 𝒜𝑘 is flat over 

𝒜 = 𝒜0. Our category 𝒫𝐴 comprises unique types of 𝒜-modules. We begin with a ℤ-graded right 

module 𝐸• over 𝒜. 

 

Definition 4.1 (ℤ-connection).  A ℤ-connection (or ℤ-graded superconnection) 𝔼 is a 𝑘-linear map 

𝔼:𝐸•⊗𝒜0 𝒜
• → 𝐸•⊗𝒜0 𝒜

• 

of total degree one, satisfying the standard Leibniz condition 

𝔼(𝑒𝜔) = (𝔼(𝑒 ⊗ 1))𝜔 + (−1)|𝑒|𝑒𝑑𝜔, 

This connection is defined by its value on 𝐸•. Let 𝔼𝑘 be the component of 𝔼 such that 𝔼𝑘: 𝐸
• →

𝐸•−𝑘+1⊗𝒜 𝒜
𝑘, thus 𝔼 = 𝔼0 + 𝔼1 + 𝔼2 +⋯. It is clear that 𝔼1 is a connection on each component 𝔼𝑛 

in the standard sense (or the inverse of a connection if 𝑛 is odd), and 𝔼𝑘 is 𝒜-linear for 𝑘 ≠ 1. Note that 

𝔼0 is nothing but the differential of the complex 𝑑. We can see the detail of each component from the 

following diagram 
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Definition 4.2 (Cohesive Modules).  For a dga 𝐴 = (𝒜•, 𝑑), we define the dg-category 𝒫𝐴: 

(1) An object 𝐸 = (𝐸•, 𝔼) in 𝒫𝐴, referred to as a cohesive module, is a ℤ-graded (but bounded in 

both directions) right module 𝐸• over 𝐴 which is finitely generated and projective, together with 

a ℤ-connection 

𝔼:𝐸•⊗𝒜 𝒜
• → 𝔼:𝐸•⊗𝒜 𝒜

•, 

that satisfies the integrability condition that the curvature vanishes 

𝐹𝔼(𝑒) = 𝔼 ∘ 𝔼(𝑒) + 𝑒 ⋅ 𝑐 = 0, 

for all 𝑒 ∈ 𝐸•. 
(2) The morphisms of degree 𝑘 , 𝒫𝐴

𝑘(𝐸1, 𝐸2) between two cohesive modules 𝐸1 = (𝐸1
•, 𝔼1) and 

𝐸2 = (𝐸2
•, 𝔼2) are 

𝜙:𝐸1
•⊗𝒜 𝒜

• → 𝐸2
•⊗𝒜 𝒜

•, |, of degree𝑘and𝜙(𝑒𝑎) = 𝜙(𝑒)𝑎, ∀𝑎 ∈ 𝒜•, 

with differential defined in the standard way 

𝑑(𝜙)(𝑒) = 𝔼2(𝜙(𝑒)) − (−1)
|𝜙|𝜙(𝔼1(𝑒)). 

Such a 𝜙 is determined by its restriction to 𝐸1
• 

We define the degree 𝑘 morphisms between two cohesive modules 𝐸1 = (𝐸1
•, 𝔼1) and 𝐸2 = (𝐸2

•, 𝔼2) 
to be 

Hom𝑘(𝐸1, 𝐸2) = Hom𝐴•
𝑘 (𝐸1

•⊗𝐴0 𝐴
•, 𝐸2

•⊗𝐴0 𝐴
•), 

i.e. the set of degree 𝑘 𝐴•-linear map from 𝐸1
•⊗𝐴0 𝐴

• to 𝐸2
•⊗𝐴0 𝐴

•. By a similar argument as above, 

we have 

Hom𝐴•
𝑘 (𝐸1

•⊗𝐴0 𝐴
•, 𝐸2

•⊗𝐴0 𝐴
•) = Hom𝐴0

𝑘 (𝐸1
•, 𝐸2

•⊗𝐴0 𝐴
•) 

We define a differential on the morphisms 𝑑Hom: Hom
•(𝐸1, 𝐸2) → Hom

•+1(𝐸1, 𝐸2) → by 

𝑑Hom(𝑒) = 𝔼2(𝜙(𝑒)) − (−1)
|𝜙|𝜙(𝔼1(𝑒)). 

It is easy to verify that 𝑑Hom
2 = 0, and hence 𝒫𝐴 is a dg-category. 

Given a dg-category 𝖢, we have a subcategory 𝑍0(𝖢) which has the same objects as 𝖢 and morphisms 

𝑍0(𝖢)(𝑥, 𝑦) = 𝑍0(𝖢(𝑥, 𝑦)) 

i.e. degree 0 closed morphisms in 𝖢(𝑥, 𝑦). On the other hand, we can form the homotopy category 𝖧𝗈(𝖢) 
which has the same objects as 𝖢 and morphisms, 

𝖧𝗈(𝖢)(𝑥, 𝑦) = 𝐻0(𝖢(𝑥, 𝑦)) 
which is the 0th cohomology of the morphism complex. 

Next, we will briefly discuss the triangulated structure of cohesive modules and explore homotopy 

equivalences between cohesive modules. 

First, we define a shift functor. For (𝐸, 𝔼) ∈ 𝒫𝐴 , we set 𝐸[1] = (𝐸[1] = (𝐸•+1, −𝔼). Next, for 

(𝐸1, 𝔼1), (𝐸2, 𝔼2) ∈ 𝒫𝐴 and 𝜙 ∈ 𝑍0𝒫𝐴(𝐸1, 𝐸2), we define the cone of 𝜙, 𝐶𝜙 = (𝐶𝜙
• , 𝔼𝜙) by 
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𝐶𝜙
• = (

𝐸2
•

⊕
𝐸1[1]

•
) 

and 

𝐶𝜙
• = (

𝔼2 𝜙
0 −𝔼1

•) 

Now we have a triangle of degree 0 closed morphisms 

(4.1) ℰ →
𝜙
𝐹 → 𝐶𝜙 → 𝐸[1]  

Under this construction, 𝒫𝐴 is pre-triangulated, and 𝖧𝗈(𝒫𝐴) is triangulated with the collection of 

distinguished triangles being isomorphic to form 4.1. 

A degree 0 closed morphism 𝜙 ∈ 𝒫𝐴(𝐸1, 𝐸2) is a homotopy equivalence if it induces an isomorphism 

in 𝖧𝗈(𝒫𝐴). We will give a simple criterion to determine whether a map is a homotopy equivalence. 

Consider the following decreasing filtration 

𝐹𝑘𝒫𝐴(𝐸1, 𝐸2) = {𝜙 ∈ 𝒫𝐴(𝐸1, 𝐸2)|𝜙
𝑖 = 0for𝑖 < 𝑘} 

 

Lemma 4.3. There exists a spectral sequence 

𝐸0
𝑝𝑞
⇒ 𝐻𝑝+𝑞(𝒫𝐴(𝐸1, 𝐸2)) 

Where 

𝐸0
𝑝𝑞
= gr(𝒫𝐴(𝐸1, 𝐸2)) = {𝜙

𝑝 ∈ (𝒫𝐴)
𝑝+𝑞(𝐸1, 𝐸2): 𝐸1

• → 𝐸2
•+𝑞

⊗𝐴0 𝐴
𝑝} 

with differential 𝑑0(𝜙
𝑝) = 𝔼2 ∘ 𝜙

𝑝 − (−1)𝑝+𝑞𝜙𝑝 ∘ 𝔼1. 

 

Proposition 4.4. A closed morphism 𝜙 ∈ (𝒫𝐴)
0(𝐸1, 𝐸2) is a homotopy equivalence if and only if 

𝜙0: (𝐸1
𝑏𝑡 , 𝔼1) → (𝐸2

𝑏𝑡 , 𝔼2) is a quasi-isomorphism of complexes of 𝐴0-modules. 

Proof. Follows from .[5] 

4.3.  Cohesive Self-dual Yang-Mills Modules 

Next, let’s introduce cohesive modules over self-dual manifolds. 

Let 𝑋 be a compact self-dual four manifold, then by construction in  the self-dual Yang-Mills fields 

is encoded in the following dga 

Ω0(𝑋, ℊ𝑃)
𝑑𝛻0
→ Ω1(𝑋, ℊ𝑃)

𝑃_𝑜𝑑𝛻0
→    Ω−

2 (𝑋, ℊ𝑃)
 

                        ⨁                            ⨁
 

                                                Ω−
2 (𝑋, ℊ𝑃)

𝑑𝛻0
→ Ω3(𝑋, ℊ𝑃)

𝑑𝛻0
→ Ω4(𝑋, ℊ𝑃)

 
              𝑑𝑒𝑔 = 1                  0               − 1                      − 2

 

denote this by 𝐴𝑆𝐷 (see also [6]). We call 𝐴𝑆𝐷 self-dual Yang Mills dga. 

 

Proposition 4.5..  Fintely generated projective modules over dga 𝐴𝑆𝐷 is 1-1 corresponded to self-

dual Yang-Mills fields. 

Proof. By Serre-Swan theorem, vector bundles, i.e. fintely generated locally free sheave over 𝒪𝑋 =
𝐶∞(𝑋) is 1-1 corresponded to fintely generated projective modules over 𝛤(𝒪𝑋), i.e. the algebra of global 
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sections of 𝒪𝑋. Hence it suffices to verify self dual connections over 𝑀 corresponds to integrability of 

𝐴. 

(→) Given a vector bundle (𝐸, ∇) with self-dual connection. Regard 𝐸 = 𝔤𝑃 as an adjoint bundle 

with structured group 𝐺. Then 𝐹∇0 = 0 ∈ 𝛺−
2(𝑋, 𝔤𝑃) = 0 by constrcution. Hence the top row of 𝐴 is a 

chain complex, and the remaining part clearly gives a dga as a part of de Rham dga. The bottom part is 

the corresponding local BV-complex (with local antibracket taking values in the densities on 𝑋). 

(←) This part is trivial. Given a fintely generated projective modules over dga 𝐴𝑆𝐷, we can construct 

the connection ∇ locally to be the product of the differential 𝑑 coming from 𝐴𝑆𝐷. Clearly 𝐹∇0 = 0 ∈

𝛺−
2(𝑋, 𝔤𝑃) = 0.  

As a generalization of vector bundles, cohesive modules provides an dg enhancement to category of 

bundles and sheaves encoutered in differential and algebraic geometry. The first import theorem using 

this idea is on study the holomorphic structure of coherent sheaves over compact complex manifolds. 

 

Theorem 4.6. ([3]).  Let 𝑋 be a compact complex manifold, and 𝐴 = 𝛺0,•𝑋 be the Dolbeault dga. 

The homotopy category of the dg-category 𝒫𝐴 is equivalent to the bounded derived category of chain 

complexes of sheaves of 𝒪𝑋-modules with coherent cohomology on 𝑋. 

Enlighted by this theorem, we define a counterpart in self-dual Yang-Mills fields: 

 

Definition 4.7.  We define cohesive self-dual Yang-Mills modules to be cohesive modules (𝐸•, 𝔼) 
over the self-dual Yang-Mills dga 𝐴𝑆𝐷. 

Hence we have the following diagram, where the right vertical arrow is the twistor correspondence 

(Penrose construction) in Theorem 2. Hence it is natural to guess whether the left vertical arrow also 

induces a correspondence. 

𝐶𝑜ℎ𝑒𝑠𝑖𝑐𝑒 𝑆𝑒𝑙𝑓 − 𝑑𝑢𝑎𝑙 𝑌𝑎𝑛𝑔 −𝑀𝑖𝑙𝑙𝑠 𝑚𝑜𝑑𝑢𝑙𝑒𝑠
𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
→           𝑆𝑒𝑙𝑓 − 𝑑𝑢𝑎𝑙 𝑌𝑎𝑛𝑔 −𝑀𝑖𝑙𝑙𝑠 𝐹𝑖𝑒𝑙𝑑𝑠

↓ 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑐𝑒?  ↓ 𝑡𝑤𝑖𝑠𝑡𝑜𝑟 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑐𝑒

𝐻𝑜𝑙𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐 𝑐𝑜ℎ𝑒𝑠𝑖𝑣𝑒 𝑚𝑜𝑑𝑢𝑙𝑒𝑠
𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
→           𝐻𝑜𝑙𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐 𝑣𝑒𝑐𝑡𝑜𝑟 𝑏𝑢𝑛𝑑𝑙𝑒𝑠

 

 

In fact, we can extend the twistor correspondence to the level of cohesive modules. 

 

Proposition 4.8.  The twistor correspondence (or Atiyah-Ward correpondence) induces a dg-quasi-

equivalence between dg category 𝒫𝐴𝑆𝐷  and the dg category of holomorphic cohesive modules 𝒫𝐴𝐻𝑜𝑙 on 

the twistor spaces. 

Proof. Let 𝑋 be a compact self dual 4-manifold and 𝑍 to be its twistor space. Suppose (𝑉, ∇) is a self-

dual Yang-Mills fields on 𝑋. Then following the theorem 3.2.7 in [Block] 

 

Theorem 4.9 (Block[3]).  Suppose (𝐴•, 𝑑, 𝑐) is a curved dga. Let 𝑋 = (𝑋, ∇) be a quasi-cohesive 

module over 𝐴• , then there is an object 𝐸 = (𝐸•, ∇′) in 𝒫𝐴•  such that ℎ̃𝑋  is quasi-isomorphic to ℎ𝐸 , 

under either of the two following conditions: 

(1) X is a quasi-finite quasi-cohesive module. 

(2) 𝐴• is flat over 𝐴0 and there exists a bounded complex (𝐸, ∇′0) of finitely generated projective 

right 𝐴0-modules and an 𝐴0-linear quasi-isomorphisms 𝑒0: (𝐸, ∇′0) → (𝑋, ∇0). 
and the proof of lemma 4.1.5, we can construct a cohesive self-dual Yang-Mills module (𝐸•, 𝔼) which 

is quasi-isomorphic to (𝑉, ∇). On the other hand, by Theorem 2 from [1], (𝑉, ∇) is 1-1 corresponding to 

a holomorphic vector bundle (𝑊, ∇∂) on the twistor space, which is in turn quasi-isomorphic to a 

holomorphic cohesive module (𝐹•, 𝔽). 
Now let’s construct a 𝐴𝑆𝐷 − 𝐴𝐻𝑜𝑙-cohesive-bimodule by letting 

𝑋• = 𝛤(𝑋, Hom(𝐸•, 𝐹•)) 
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where the morphism between 𝐸•, 𝐹• is naturally defined as a map from bundles over 𝑋 to its twistor 

space. Then by definition 3.1.1 in , this bimodule induces a quasi-equivalence between dg category of 

cohesive self-dual Yang Mills modules 𝒫𝐴𝑆𝐷  and the dg category of holomorphic cohesive modules 

𝒫𝐴𝐻𝑜𝑙 on the twistor spaces since 1) by our construction it induces quasi-equivalence in hom set and 

equivalence on the homotopy categories (II).  

5.  Conclusion 

The exploration of self-duality in the context of Yang-Mills theory, complex structures, and twistor 

spaces has revealed profound connections between the geometry of four-dimensional manifolds and the 

physics of gauge theories. Through the differential geometric lens, we have gained insights into the rich 

interplay between topological, algebraic, and analytic structures that underlie these theories. 

The use of self-dual Yang-Mills fields and their relationship with holomorphic complex structures 

on twistor spaces has provided a powerful framework for understanding the geometry of gauge fields. 

The ability to reinterpret gauge field configurations in terms of holomorphic data on the twistor space 

has not only deepened our mathematical understanding but also offered new tools for tackling physical 

problems. 

Moreover, the introduction of cohesive modules over self-dual manifolds has extended our 

perspective beyond traditional approaches. By incorporating the language of differential graded algebra 

and categories, we have established a more nuanced understanding of deformations, stability, and 

classification of geometric objects, such as vector bundles and sheaves. 

This paper has laid the groundwork for further research into the correspondence between self-dual 

Yang-Mills fields and holomorphic vector bundles. The cohesive module framework opens up new 

avenues for exploring the moduli spaces of solutions to the Yang-Mills equations, as well as their 

implications for quantum field theory and string theory. 

The results presented in this paper also invite further investigation into the connections between the 

geometry of four-dimensional manifolds and other physical theories, such as general relativity and 

supersymmetry. The interplay between mathematics and physics continues to be a fertile ground for 

discovery, and the tools developed here will undoubtedly contribute to this ongoing dialogue. 
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