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Abstract. Multipartite quantum-information transmission has been a key task for practice 

purposes and applications in the past decades. In this paper, we present a novel protocol for the 

multiqubit super dense coding, by using the Greenberger-Horne-Zeilinger (GHZ) states. Our 

protocol involves measurements doable in the current technique of labs, and thus is possibly 

realizable and may be extendable to more complicated cases for many systems. In quantum 

physics, the way the object is measured will affect the code, and the information won’t work like 

puzzles as the condition in general physics which means that, when the divided message is put 

together, the complete information will be obtained. It requires more complex work to get useful 

information, like the cooperation of code accepters. To compare with the way in general physics, 

it is more safe in quantum physics.  

Keywords: quantum information, multiqubit state, GHZ, dense coding. 

1.  Introduction 

Quantum information processing has been a key task in applying quantum mechanics in recent decades. 

Ref. [1] introduced quantum communication using measurements on entangled Bell states. In Ref [2], 

the authors studied Teleporting an Unknown Quantum State through Dual Classical and Einstein-

Podolsky-Rosen Channels. In Ref [3], what kinds of Fundamental limits will repeaterless quantum 

communications have been introduced by authors? The authors talked about a photonic integrated 

quantum secure communication system In Ref [4]. In Ref [5], the author discussed the method of 

quantum teleportation, about Ground-to-satellite. In Ref [6], light-to-motion Quantum teleportation was 

studied by the author. In Ref [7], N. Fiaschi and his team introduced Optomechanical quantum 

teleportation. In Ref [8], T. M. Graham’s team used hyperentangled photons for Superdense 

teleportation. In Ref [9], the way of Probabilistic implementation operation by using a nonminimally 

entangled state introduced by L. Chen and Y.-X. Chen. In Ref [10], A. S. Cacciapuoti and his team 

studied quantum teleportation for the quantum internet, as entanglement meets classical 

communications. In Ref [11], a study of security during quantum dense coding in high-dimensions was 

introduced by Y.-X. Zhang’s team. In Ref [12], A. Fonseca studied when noisy environments, and the 

condition of high-dimensional quantum teleportation. In Ref [13], a team of F. Shi introduced 

information masking in k-uniform quantum. In Ref [14], Y.-H. Luo’s team studied in high dimensions, 

what quantum teleportation will be like. In Ref [15], a team of A. Barenco introduced quantum 

computation’s Elementary gates. 
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2.  Preliminaries 

Here are some useful explanations for the mathematics that will be used. In this section, we introduce 

some useful explanations of the mathematics and notations that will be used in this paper. In Sec. 2.1, 

we review matrix basics and Kronecker products. Then we introduce the basic knowledge from quantum 

mechanics such as quantum states, Ket-bra notations, and entanglement. In Sec. 2.3, we introduce the 

fundamental idea of standard dense coding protocol for two systems. 

2.1.  Matrix basics 

For matrix A n x p, and matrix B m x q,  

       A ⊗ B = [

𝑎1,1𝐵 ⋯   𝑎1,𝑝𝐵

⋮ ⋱ ⋮
𝑎𝑛,1𝐵 ⋯ 𝑎𝑛,𝑝𝐵

].                                              (1) 

Generally,  

 A ⊗ B ≠ B ⊗A,                                           (2) 

Except when a is a scalar: 

           a ⊗ A = A⊗a = aA,                                          (3)           

Or if a and b are vectors.  

 𝑎𝑇 ⊗ b = b𝑎𝑇 = b ⊗ 𝑎𝑇.                   (4) 

Furthermore, these formulas can be proved: 

 A ⊗ (B ⊗ C) = (A⊗ B) ⊗ C.                                                   (5) 

 A⊗(B+C)=(A⊗B)+(A⊗C).                                                   (6) 

 (A+B)⊗C =(A⊗C)+(B⊗C).                                                   (7) 

For a matrix U, it has  

 𝑈†𝑈=𝑈𝑈†=𝐼𝑛                                                           (8) 

2.2.  quantum mechanics basics 

When writing |0>, which is called ket zero, it has: = [
1
0

]. 

 |0> = [
1
0

].                                                                 (9) 

Similarly, for |1>:  

 |1> = [
0
1

]. (10) 

If want to calculate |0>  ⊗ |0>, which is always be written as |00>, according to (11): 

 |00>= |0> ⊗ |0> = [

1
0
0
0

].                                                     (11) 

To calculate  |1>⊗ |1>, similarly, written as |11>,  = |1>⊗ |1>= [

0
0
0
1

] 
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 |11>= |1>⊗ |1>= [

0
0
0
1

].                                                    (12) 

For information 
|00>+|11>

√2
, when it be polluted as cos 𝜃|00> + sin 𝜃|11>, 𝜃 ∈ [0,

𝜋

2
], the expectation 

of getting the correct message from the polluted message is  

 E (𝜑(𝜃) )= −( cos𝜃)2𝑙𝑜𝑔2 ( cos𝜃)2- ( sin𝜃)2𝑙𝑜𝑔2 ( sin𝜃)2.                      (13) 

 

Assume that there exists a space with length x, breadth y, and height z, within time t, and a particle 

is moving inside of it, the cumulation of probability will be 1.    

2.3.  dense coding of two parties 

In this subsection, we introduce the knowledge and terminology used in this paper. We also review the 

standard protocol of dense coding. Source S generates an EPR pair shared by Alice and Bob, who can 

have any distance, for example, which is defined as: 

 |ф+ > =  
1

√2
(|00 >  +|11 >).                                         (14) 

To get this,  

                        𝐶𝑁𝑂𝑇(𝐻 ⊗ I)|00 > =  |ф+ >     .                                    (15) 

It can be shown as:  

 [

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

]
1

√2
[

1 0
0 1

1 0
0 1

1 0
0 1

−1 0
0 −1

] [

1
0
0
0

] =  
1

√2
 [

1
0
0

−1

].                         (16) 

 

The graph of the Quantum Circuit is like this: 

 

Figure 1. graph of the Quantum Circuit 

Alice wants to send two bits to Bob, which could have 4 possible forms: 00, 11, 01 10. To do this, 

she needs to separately do the following Unitary operations:  

 U = I, 𝑖𝜎𝑦, 𝜎𝑥, 𝜎𝑧                                                         (17) 

 

For example, if she wants to pass 01, the operation is:  

 𝜎𝑥 ⊗ 𝐼 |ф+ >= |𝛹+ > .                                                 (18) 
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In the matrix, it can be shown as:  

 [

0 0
0 0

0 1
1 0

1 0
0 1

0 0
0 0

]
1

√2
 [

1
0
0
1

] =  
1

√2
 [

0
1
1
0

].                                          (19) 

To learn about what Alice passed, Alice needs to pass her EPR pair to Bob at first, but if Robert, for 

example, gets only Bob’s pair, without Alice’s, when he tries to learn about the whole system, suppose 

𝑒0 = (
0
1

) , 𝑒1 = (
1
0

), | 𝑎 > = |ф± >, |𝛹± >; and | 𝑎 > = (< 𝑎|)† , where |𝑎 > is the entangled state 

shared by both the pairs. Robert will always obtain 

  𝑇𝑟𝐴|𝑎 >< 𝑎|𝐴𝐵= ∑ (𝐼2 ⊗1
𝑖=0  𝑒𝑖

𝑇) |𝑎 >< 𝑎| (𝐼2 ⊗ 𝑒𝑖) = 𝜌𝐵 =  
1

2
𝐼2.               (20) 

By the way, if Alice’s EPR pair was obtained by Robbert, for example, When he tries to decode it, 

he always obtains 𝜌𝐴 equal to 
1

2
𝐼2 in terms of (7).  

So the formal operation is: Bob transforms the Bell state into the computational basis states, could 

be written as: 

 𝐶𝑁𝑂𝑇(𝐻 ⊗ I)−1 =  (𝐻 ⊗ I)𝐶𝑁𝑂𝑇.                                      (21) 

In matrix: 

               B = 
1

√2
[

1 0
0 1

0 1
1 0

1 0
0 1

0 −1
−1 0

].                                             (22) 

So it is easy to find that: 

 B|𝛹+ > = |01 >, 𝐵 |𝛹− > = |11 >,                                              (23) 

B|ф+ > = |00 >, 𝐵|ф− > = |10 >.                    

In general physics, this dense coding is impossible because no matter how it is measured, the coded 

object will stay the same. Also, in this condition, when the divided message is put together, the complete 

information will be obtained, like puzzles. However, in quantum physics, the way the object is measured 

will affect the code, and the information won’t work like puzzles.  

3.  Multiqubit Dense Coding 

In this section, we introduce a generalized protocol of dense coding in which Alice sends messages to 

both Bob and Charlie.  

Considering a situation if S generates a three EPR pair shared to Alice, Bob, and Charlie, who can 

have any distance, for example, which is defined as: 

|𝛹+ > =  
1

√2
(|000 >  +|111 >). 

Depending on which kind of information Alice wants to pass, she can make following operations: 

𝐼2 ⊗ 𝐼4 |𝐺𝐻𝑍 >=
1

√2
(|000 >  +|111 >) , 

𝜎𝑥 ⊗ 𝐼4 |𝐺𝐻𝑍 >=
1

√2
(|100 >  +|011 >), 

𝜎𝑧 ⊗ 𝐼4 |𝐺𝐻𝑍 >=
1

√2
(|000 >  −|111 >), 

𝑖𝜎𝑦 ⊗ 𝐼4 |𝐺𝐻𝑍 >=
1

√2
(|011 >  −|100 >), 
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After Alice making the similar operation like before, when Robert get Bob and Charlie’s EPR pair, 

without Alice’s. And when he tries to get the whole system, similar as formula 20, Robert will always 

get: 

  𝑇𝑟𝐴|𝑎 >< 𝑎|𝐴𝐵𝐶= ∑ (𝑒𝑖
𝑇 ⊗ 𝐼4 ⊗ 𝐼4

1
𝑖=0  ) |𝑎 >< 𝑎| (𝑒𝑖 ⊗ 𝐼4 ⊗ 𝐼4) = 𝜌𝐵𝐶.  

The expression of 𝜌𝐵𝐶 depends on that of |𝑎 >. If Robert takes |𝑎 > as |𝑎 > = 
1

√2
(|000 >  ±|111 >

) , then 𝜌𝐵𝐶 =  
1

2
[

1 0

0 0

0 0

0 0
0 0

0 0

0 0

0 1

] . If he takes | 𝑎 >  as | 𝑎 >  = 
1

√2
(|100 >  ±|011 > ), 𝑡ℎ𝑒𝑛 𝜌𝐵𝐶 =

 
1

2
[

0 0

0 1

0 0

0 0
0 0

0 0

1 0

0 0

]. So he can’t find out which one is the actually value of |a> according to the 𝜌𝐵𝐶 he get.  

Forget about Robert. When Bob gets Alice’s pair after Alice finishes her operation, which keeps the 

pair as |𝛹+ >, for example, he doesn’t need to get Charlie’s pair, he just needs to communicate with 

Charlie to learn about the condition.  

Bob can use the machine in the lab to measure the two pairs he gets. He may get 𝑃1 = |00 >< 00| +
|11 >< 11|, or 𝑃2 = |01 >< 01| + |10 >< 10|, no matter what 𝑃1 and 𝑃2 is,  

𝑃1 + 𝑃2 = 𝐼4. 

We have two cases (i) and (ii), namely Bob obtains the measurement results P1 and P2, respectively.  

(i) Assume that Bob gets 𝑃1, and as he has no idea if the pair is equal to what, he will do the 

following operation, for example, he takes the pair equal to 
1

√2
(|100 >  ±|011 >): 

(𝑃1 ⊗ 𝐼4)
1

√2
(|100 >  ±|011 >) = 0. 

As the result is equal to 0, the pair will not be equal to 
1

√2
(|100 >  ±|011 >). But if he tries 

1

√2
(|000 >  +|111 >), or 

1

√2
(|000 >  −|111 >), he will get: 

(𝑃1 ⊗ 𝐼4)
1

√2
(|000 >  +|111 >) = 

1

√2
(|00 >  +|11 >) ⊗

1

√2
(|0 >  +|1 >), 

(𝑃1 ⊗ 𝐼4)
1

√2
(|000 >  −|111 >) = 

1

√2
(|00 >  +|11 >) ⊗

1

√2
(|0 >  −|1 >). 

So, it can be one of 
1

√2
(|000 >  +|111 >), or 

1

√2
(|000 >  −|111 >). To learn about which one is 

the real value, Bob once again sent his pairs to the machine, then he will get one value from 𝑄1, 𝑄2, 𝑄3. 

Similarly, no matter how,  

𝑄1 + 𝑄2 + 𝑄3 = 𝐼4. 

Assume that 

𝑄1 =  
|00>+|11>

√2

<00|+<11|

√2
, 

𝑄2 =  
|00>−|11>

√2

<00|−<11|

√2
, 

𝑄3 = |01><01| + |10><10|. 

One can verify that Bob cannot obtain 

𝑄3 𝑑𝑢𝑒 𝑡𝑜 𝑧𝑒𝑟𝑜 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦. 𝑆𝑜 𝑤𝑒 𝑓𝑜𝑐𝑢𝑠 𝑜𝑛 𝑡𝑤𝑜 𝑐𝑎𝑠𝑒𝑠, 𝑄1 𝑎𝑛𝑑 𝑄2. 
If Bob gets 𝑄1, then he obtains 
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(𝑄1 ⊗ 𝐼2)𝐴𝐵⊗C |𝑎1 > =
|00>+|11>

√2

1

2
(|0 >  +|1 >) =

|00>+|11>

√2

1

2
(
1

1
), 

(𝑄1 ⊗ 𝐼2)𝐴𝐵⊗C |𝑎2 > =
|00>+|11>

√2

1

2
(|0 >  −|1 >) =

|00>+|11>

√2

1

2
(
1

−1
), 

After that he communicates with Charlie to learn about what the state is. 

If Bob gets 𝑄2, then he obtains 

(𝑄2 ⊗ 𝐼2)𝐴𝐵⊗C |𝑎1 > =
|00>−|11>

√2

1

2
(|0 >  −|1 >) =

|00>+|11>

√2

1

2
(
1

−1
), 

(𝑄2 ⊗ 𝐼2)𝐴𝐵⊗C |𝑎2 > =
|00>−|11>

√2

1

2
(|0 >  +|1 >) =

|00>+|11>

√2

1

2
(
1

1
), 

After that he communicates with Charlie to learn about what the state is. 

(ii) Assume that bob get 𝑃2 = |01 >< 01| + |10 >< 10|, and as he has no idea of the pair is equal 

to what, he will do the following operation, for example, he takes the pair equal to 
1

√2
(|000 >  ±|111 >): 

(𝑃2 ⊗ 𝐼4)
1

√2
(|000 >  ±|111 >) = 0. 

As the result is equal to 0, the pair will not be equal to 
1

√2
(|000 >  ±|111 >). But if he tries 

1

√2
(|100 >  +|011 >), or 

1

√2
(|100 >  −|011 >), he will get 

(𝑃2 ⊗ 𝐼4)
1

√2
(|100 >  +|011 >) = 

1

√2
(|10 >  +|01 >) ⊗

1

√2
(|0 >  +|1 >), 

(𝑃2 ⊗ 𝐼4) 
1

√2
(|100 >  −|011 >)= 

1

√2
(|10 >  +|01 >) ⊗

1

√2
(|0 >  −|1 >). 

So, it can be one of 
1

√2
(|100 >  +|011 >), or 

1

√2
(|100 >  −|011 >). To learn about which one is 

the real value, Bob once again sent his pairs to the machine, then he will get one value from 𝑅1, 𝑅2, 𝑅3. 

Similarly, no matter how,  

𝑅1 + 𝑅2 + 𝑅3 = 𝐼4. 

Assume that 

𝑅1 =  
|01>+|10>

√2

<01|+<10|

√2
, 

𝑅2 =  
|01>−|10>

√2

<01|−<10|

√2
, 

𝑅3 = |00><00| + |11><11|. 

One can verify that Bob cannot obtain  

𝑅3 due to the zero probability, so we focus on 𝑅1, 𝑅2 : 

If Bob gets 𝑅1, then he obtains 

(𝑅1 ⊗ 𝐼2)𝐴𝐵⊗C |𝑎1 > =
|10>+|01>

√2

1

2
(|0 >  +|1 >) =

|10>+|01>

√2

1

2
(
1

1
), 

(𝑅2 ⊗ 𝐼2)𝐴𝐵⊗C |𝑎2 > =
|10>+|01>

√2

1

2
(|0 >  −|1 >) =

|10>+|01>

√2

1

2
(
1

−1
), 

After that he communicates with Charlie to learn about what the state is. 

If Bob gets 𝑄2, then he obtains 

(𝑅1 ⊗ 𝐼2)𝐴𝐵⊗C |𝑎2 > =
|10>−|01>

√2

1

2
(|0 >  −|1 >) =

|10>−|01>

√2

1

2
(
1

−1
), 
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(𝑅2 ⊗ 𝐼2)𝐴𝐵⊗C |𝑎1 > =
|10>−|01>

√2

1

2
(|0 >  +|1 >) =

|10>−|01>

√2

1

2
(
1

1
), 

After that he communicates with Charlie to learn about what the state is. 

We stress that, if Alice does not trust Bob, then Alice may ask Charlie to stop the communication 

with Bob so that Bob has no way to figure out the code from Alice. In this sense, the security of three-

party dense coding is again guaranteed by the basic rules of quantum mechanics.  

In the following, we extend the above scheme to a multiqubit case. For this purpose, we introduce 

the multipartite GHZ state as follows.  

Considering a situation if S generates a multiple EPR pair shared to Alice, Bob, Charlie and etc.., 

who can have any distance, for example, which is defined as: 

|𝛹+ > =  
1

√2
(|0 … … 0 >  +|1 … … 1 >). 

Depending on which kind of information Alice wants to pass, she can make following operations: 

𝐼2 ⊗ 𝐼2𝑛  |𝐺𝐻𝑍 >=
1

√2
(|00… … 0 >  +|11… … 1 >) , 

𝜎𝑥 ⊗ 𝐼2𝑛  |𝐺𝐻𝑍 >=
1

√2
(|100… … 0 >  +|011… … 1 >), 

𝜎𝑧 ⊗ 𝐼2𝑛  |𝐺𝐻𝑍 >=
1

√2
(|00… … 0 >  −|11… … 1 >), 

𝑖𝜎𝑦 ⊗ 𝐼2𝑛  |𝐺𝐻𝑍 >=
1

√2
(|011… 1 >  −|100… … 0 >), 

After Alice making the similar operation like before, when Robert get Bob and Charlie’s EPR pair, 

without Alice’s. And when he tries to get the whole system, 

After Alice making the similar operation like before, when Robert get everyone’s EPR pair, but 

without Alice’s. And when he tries to get the whole system, similar as formula 20, Robert can’t find out 

which one is the actually value of |a> according to the 𝜌𝐵𝐶… he gets. 

Forget about Robert. Set Bob’s pair as 𝐵1, others as but not including Alice, as 𝐵𝑛. When Bob gets 

Alice’s pair after Alice finishes her operation, which keeps the pair as |𝛹+ >, for example, he doesn’t 

need to get others pair, he just needs to communicate with them to learn about the condition.  

Bob can use the machine in the lab to measure the two pairs he gets. He may get 𝑃1 =
|000 >< 0 … 0| + |11 >< 11|, or 𝑃2 = |01 >< 01| + |10 >< 10|, no matter what 𝑃1 and 𝑃2 is,  

𝑃1 + 𝑃2 = 𝐼4. 

We have two cases (i) and (ii), namely Bob obtains the measurement results P1 and P2, respectively.  

(i) Assume that Bob gets 𝑃1, and as he has no idea if the pair is equal to what, he will do the 

following operation, for example, he takes the pair equal to 
1

√2
(|100 >  ±|011 >): 

(𝑃1 ⊗ 𝐼4)
1

√2
(|100 >  ±|011 >) = 0. 

As the result is equal to 0, the pair will not be equal to 
1

√2
(|100 >  ±|011 >). But if he tries 

1

√2
(|000 >  +|111 >), or 

1

√2
(|000 >  −|111 >), he will get: 

(𝑃1 ⊗ 𝐼4)
1

√2
(|000 >  +|111 >) = 

1

√2
(|00 >  +|11 >) ⊗

1

√2
(|0 >  +|1 >), 

(𝑃1 ⊗ 𝐼4)
1

√2
(|000 >  −|111 >) = 

1

√2
(|00 >  +|11 >) ⊗

1

√2
(|0 >  −|1 >). 

So, it can be one of 
1

√2
(|000 >  +|111 >), or 

1

√2
(|000 >  −|111 >). To learn about which one is 

the real value, Bob once again sent his pairs to the machine, then he will get one value from 𝑄1, 𝑄2, 𝑄3. 

Similarly, no matter how,  
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𝑄1 + 𝑄2 + 𝑄3 = 𝐼4. 

Assume that 

𝑄1 =  
|00>+|11>

√2

<00|+<11|

√2
, 

𝑄2 =  
|00>−|11>

√2

<00|−<11|

√2
, 

𝑄3 = |01><01| + |10><10|. 

One can verify that Bob cannot obtain 𝑄3 due to zero probablity. So we focus on two cases, 𝑄1 and 

𝑄2. 

If Bob gets 𝑄1, then he obtains 

(𝑄1 ⊗ 𝐼2)𝐴𝐵⊗C |𝑎1 > =
|00>+|11>

√2

1

2
(|0 >  +|1 >) =

|00>+|11>

√2

1

2
(
1

1
), 

(𝑄1 ⊗ 𝐼2)𝐴𝐵⊗C |𝑎2 > =
|00>+|11>

√2

1

2
(|0 >  −|1 >) =

|00>+|11>

√2

1

2
(
1

−1
), 

After that he communicates with others to learn about what the state is. 

If Bob gets 𝑄2, then he obtains 

(𝑄2 ⊗ 𝐼2)𝐴𝐵⊗C |𝑎1 > =
|00>−|11>

√2

1

2
(|0 >  −|1 >) =

|00>+|11>

√2

1

2
(
1

−1
), 

(𝑄2 ⊗ 𝐼2)𝐴𝐵⊗C |𝑎2 > =
|00>−|11>

√2

1

2
(|0 >  +|1 >) =

|00>+|11>

√2

1

2
(
1

1
), 

After that he communicates with others to learn about what the state is. 

(ii) Assume that bob get 𝑃2 = |01 >< 01| + |10 >< 10|, and as he has no idea of the pair is equal 

to what, he will do the following operation, for example, he takes the pair equal to 
1

√2
(|000 >  ±|111 >): 

(𝑃2 ⊗ 𝐼4)
1

√2
(|000 >  ±|111 >) = 0. 

As the result is equal to 0, the pair will not be equal to 
1

√2
(|000 >  ±|111 >). But if he tries 

1

√2
(|100 >  +|011 >), or 

1

√2
(|100 >  −|011 >), he will get 

(𝑃2 ⊗ 𝐼4)
1

√2
(|100 >  +|011 >) = 

1

√2
(|10 >  +|01 >) ⊗

1

√2
(|0 >  +|1 >), 

(𝑃2 ⊗ 𝐼4) 
1

√2
(|100 >  −|011 >)= 

1

√2
(|10 >  +|01 >) ⊗

1

√2
(|0 >  −|1 >). 

So, it can be one of 
1

√2
(|100 >  +|011 >), or 

1

√2
(|100 >  −|011 >). To learn about which one is 

the real value, Bob once again sent his pairs to the machine, then he will get one value from 𝑅1, 𝑅2, 𝑅3. 

Similarly, no matter how,  

𝑅1 + 𝑅2 + 𝑅3 = 𝐼4. 

Assume that 

𝑅1 =  
|01>+|10>

√2

<01|+<10|

√2
, 

𝑅2 =  
|01>−|10>

√2

<01|−<10|

√2
, 

𝑅3 = |00><00| + |11><11|. 

One can verify that Bob cannot obtain  
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𝑅3 due to the zero probability, so we focus on 𝑅1, 𝑅2 : 

If Bob gets 𝑅1, then he obtains 

(𝑅1 ⊗ 𝐼2)𝐴𝐵⊗C |𝑎1 > =
|10>+|01>

√2

1

2
(|0 >  +|1 >) =

|10>+|01>

√2

1

2
(
1

1
), 

(𝑅1 ⊗ 𝐼2)𝐴𝐵⊗C |𝑎2 > =
|10>+|01>

√2

1

2
(|0 >  −|1 >) =

|10>+|01>

√2

1

2
(
1

−1
), 

After that he communicates with others to learn about what the state is. 

If Bob gets 𝑄2, then he obtains 

(𝑅2 ⊗ 𝐼2)𝐴𝐵⊗C |𝑎2 > =
|10>−|01>

√2

1

2
(|0 >  −|1 >) =

|10>−|01>

√2

1

2
(
1

−1
), 

(𝑅2 ⊗ 𝐼2)𝐴𝐵⊗C |𝑎1 > =
|10>−|01>

√2

1

2
(|0 >  +|1 >) =

|10>−|01>

√2

1

2
(
1

1
), 

After that he communicates with others to learn about what the state is. 

We stress that, if Alice does not trust Bob, then Alice may ask Charlie to stop the communication 

with Bob so that Bob has no way to figure out the code from Alice. In this sense, the security of 

three-party dense coding is again guaranteed by the basic rules of quantum mechanics.  

4.  Conclusion 

We have presented a new protocol of multiqubit super dense coding, by using the multiqubit 

Greenberger-Horne-Zeilinger states. We have given details for the three-qubit case, and we extended it 

to the multiqubit case in a more succinct way. The next step in this paper is to study whether one can 

similarly construct more quantum-information processing tasks by using a similar idea, such as 

multipartite quantum secret sharing and masking.  
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