
How does the period of a pendulum vary with the number of 

strings? 

Victoria Ziling Yin 

Wuhan Britain-China School, No.10 Gutian Ce Rd., Qiaokou District, Wuhan, Hubei, 
China 

2176526971@qq.com 

Abstract. This article serves as an extension of analysis of a simple pendulum, a typical example 

of simple harmonic motion and a common topic in high school physics syllabus. Since the 

analysis of a simple pendulum ignores the mass of the string in order to model the system as a 

point mass, a more complex pendulum system consisting of heavy strings and a pendulum bob 

is explored in this article. Based on theoretical analysis of the model, a relationship between the 

number of strings and the period of the pendulum is investigated. An experiment was also 

conducted on a pendulum system using copper wire, a glass bob, a stand, clamps, a clip and a 

stopwatch. To obtain more accurate results, time taken for five periods was measured three times 

for each number of strings. A graph is drawn based on data acquired from the experiment and 

the theoretically deduced relationship is therefore verified. Further study of the general 

expression for the period of an object that cannot be modelled as a point mass oscillating about 

a fixed axis is involved. Application of the principle that a change in the position of the center 

of mass of a pendulum causes a change in its period in Big Ben is also discussed along with a 

brief introduction of its pendulum structure. 

Keywords: physics, simple harmonic motion (SHM), pendulum, Big Ben. 

1.  Introduction 

A simple pendulum, a typical model of simple harmonic motion (SHM) in which an object oscillates 
with no energy loss and constant maximum displacement[1] is defined as a system in which a small 
object with uniform mass is suspended from the end of a light string[2]. My interest in investigating the 
relationship between the period of a pendulum and the number of strings originated from my notice 
when studying simple harmonic motion that mass of the string is assumed to be negligible in the 
derivation of the period of a simple pendulum. I was then curious about what the expression would be 

if it was non-negligible. In order to make it more significant compared with mass of the bob, I decided 
to gradually increase the number of strings, which could also assist me in collecting more data and 
therefore obtaining a general relationship between the period of the pendulum and mass of the string. 

In the simplest situation, the expression for the period of a simple pendulum is known as: 

𝑇 = 2𝜋√
𝐿

𝑔
 

Proceedings of  the 2nd International  Conference on Mathematical  Physics and Computational  Simulation 
DOI:  10.54254/2753-8818/36/20240671 

© 2024 The Authors.  This  is  an open access article  distributed under the terms of  the Creative Commons Attribution License 4.0 
(https://creativecommons.org/licenses/by/4.0/).  

241 



where 𝐿 is the length of the pendulum and 𝑔 is the acceleration due to gravity. 
For a simple pendulum, the whole system is treated as a point mass as the mass of the string is ignored. 

However, in a general situation, an object whose motion represents that of a simple pendulum usually 
cannot be regarded as a point mass. The mass distribution should be therefore taken into account[3]. 
Even though the analysis is more complicated, the expression for its period should have the same form 

of 𝑇 = 2𝜋√⋯ as the derivation is similar. 

2.  Theory 

To simplify the whole analysis, I assume each string has equal mass as it is hard to ensure they all have 
equal lengths. Also given that the wire is not perfectly uniform, this assumption becomes more necessary. 
I also ignore the radius of the bob as it could be regarded to be insignificant compared with the length 

of strings. 

 

Figure 1. A simple pendulum, accessed at Britannica.com.[4] 

The moment of inertia of the bob and strings about the pivot is respectively: 

𝐼𝑏𝑜𝑏 = 𝑚𝑙2 

𝐼𝑠𝑡𝑟𝑖𝑛𝑔 =
1

3
𝑛𝑀𝑙2 

The moment of inertia of the system about the pivot is therefore: 

𝐼 = 𝐼𝑠𝑡𝑟𝑖𝑛𝑔 + 𝐼𝑏𝑜𝑏 =
1

3
𝑛𝑀𝑙2 + 𝑚𝑙2 = (

1

3
𝑛𝑀 + 𝑚) 𝑙2 

where l is the length of strings, m represents mass of the bob, M represents mass of each string and n is 
the number of strings. 

The distance from the center of mass (CM) of the system to the pivot is: 

𝑟𝐶𝑀 =
∑ 𝑚𝑟

∑ 𝑚
=

𝑛𝑀 ∙
𝑙
2

+ 𝑚𝑙

𝑛𝑀 + 𝑚
=

1
2

𝑛𝑀 + 𝑚

𝑛𝑀 + 𝑚
𝑙 

By definition of torque and according to Newton’s second law in rotational motion, 

𝜏 = 𝑟 × �⃗� = 𝐼𝛼 
therefore: 

𝜏 = − (
𝑙

2
∙ 𝑛𝑀𝑔 + 𝑚𝑔𝑙) sin 𝜃 = 𝐼𝛼 

where 𝛼 is the angular acceleration of the system. 

− (
1

2
𝑛𝑀 + 𝑚) 𝑔𝑙 sin 𝜃 = 𝐼𝛼 
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According to Maclaurin’s series[5], 

sin 𝜃 = 𝜃 −
𝜃3

3!
+

𝜃5

5!
−

𝜃7

7!
+ ⋯ +

(−1)𝑛𝜃2𝑛+1

(2𝑛 + 1)!
+ ⋯ 

When 𝜃 is small, terms 
𝜃3

3!
,

𝜃5

5!
,

𝜃7

7!
, ⋯ ,

(−1)𝑛𝜃2𝑛+1

(2𝑛+1)!
 could all be ignored. Therefore, sin 𝜃 ≈ 𝜃 for 

small values of 𝜃. 
Returning to the equation above, 

𝜏 = − (
1

2
𝑛𝑀 + 𝑚) 𝑔𝑙𝜃 = (

1

3
𝑛𝑀 + 𝑚) 𝑙2𝛼 

− (
1

2
𝑛𝑀 + 𝑚) 𝑔𝜃 = (

1

3
𝑛𝑀 + 𝑚) 𝑙𝛼 

𝛼 = −
𝑔 (

1
2

𝑛𝑀 + 𝑚)

𝑙 (
1
3

𝑛𝑀 + 𝑚)
𝜃 

Since the position function for a particle in simple harmonic motion is: 

𝑥(𝑡) = 𝐴 cos(𝜔𝑡 + 𝜑0) 

where 𝑥 is displacement, 𝐴 is the amplitude of the motion, 𝜔 is angular frequency, and 𝜑0 is the 
initial phase of the motion. 

𝑣(𝑡) =
d𝑥

d𝑡
= −𝐴𝜔 sin(𝜔𝑡 + 𝜑0) 

𝑎(𝑡) =
d𝑣

d𝑡
= −𝐴𝜔2 cos(𝜔𝑡 + 𝜑0) 

It could be clearly seen that 𝑎 = −𝜔2𝑥. In this situation, the system is in rotational motion, therefore 

𝑎 is replaced by 𝛼, the angular acceleration, and 𝑥 is replaced by 𝜃, the angular displacement. Then 

the equation becomes 𝛼 = −𝜔2𝜃. 
Returning to the analysis above, 

𝛼 = −
𝑔 (

1
2

𝑛𝑀 + 𝑚)

𝑙 (
1
3

𝑛𝑀 + 𝑚)
𝜃 

therefore, the angular velocity is expressed as: 

𝜔 = √
𝑔 (

1
2

𝑛𝑀 + 𝑚)

𝑙 (
1
3

𝑛𝑀 + 𝑚)
 

𝑇 =
2𝜋

𝜔
= 2𝜋√

𝑙 (
1
3

𝑛𝑀 + 𝑚)

𝑔 (
1
2

𝑛𝑀 + 𝑚)
 

where 𝑇 is the period of the pendulum. 
The relationship between the period of the system and the number of strings is rearranged as follows. 

𝑇2 = 4𝜋2
𝑙

𝑔
(

1
3

𝑛𝑀 + 𝑚

1
2

𝑛𝑀 + 𝑚
) = 4𝜋2

𝑙

𝑔
(1 −

𝑛𝑀

3𝑛𝑀 + 6𝑚
) 

3.  Hypothesis 

As the number of strings 𝑛 is my independent variable and the period of the pendulum 𝑇  is the 

dependent variable, I decided to plot 𝑇2 against 1 −
𝑛𝑀

3𝑛𝑀+6𝑚
 and I suppose it to be a straight line 

according to the relationship deduced above. 
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4.  Method 

For the set-up of the experiment, I first tried a protractor-nail combination. The protractor could be used 
to measure the released angle and thus ensure that it is constant and small while the string can be held 
on the nail. However, the nail was rusty and extremely dangerous. Also considering that it was hard to 

accurately measure the angle as the pendulum was not perfectly aligned with the 90° scale on the 
protractor due to the clip, I finally gave up this apparatus. Instead, I used a stand, a clamp and a G-clamp. 

The G-clamp is used to fix the stand on the table. A clip was also applied to fix the string-bob system 
on the clamp. The main drawback of this set-up is that the released angle cannot be measured. 

The pendulum bob is a glass ball with a piece of tape so that strings can be tied to it. As for the string, 
I used thick copper wire whose mass is significant compared to the pendulum bob. 

 

Figure 2. Set-up of the experiment 

I changed the number of strings each time and kept the length of strings, mass of the bob and the 

released angle constant. The strings were about 1m  and the same bob was used throughout the 
experiment. To make sure the released angle was not changed, I placed a ruler close to the stand on the 
table, held the system near the ruler, made it aligned with the same scale on the ruler each time, and 

released it. The released angle was roughly 10° by estimate. As I observed that the strings would collide 
with the ruler every time they swung back, I removed the ruler after releasing the system and replaced 
it after collecting a value of the period. 

I first conducted the experiment with only one piece of copper wire and gradually increased the 

number of pieces to change the number of strings. To achieve this, tape was applied to stick pieces of 
wire together. Since one period is too short to be accurately measured, I used a stopwatch to measure 
five periods of the system and repeated the steps three times for each number of strings to calculate 
average values of periods for simpler measurement and to reduce error. 

5.  Results 

Raw data I obtained is shown in the table below. 
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Table 1. Raw data of mass 

Total mass/g Mass of bob/g 

43.27 21.38 

Table 2. Raw data of periods 

Number of strings 𝑇1/s 𝑇2/s 𝑇3/s 

1 9.40 9.37 9.44 

2 9.16 9.22 9.22 

3 9.15 9.12 9.16 

4 9.09 9.09 9.06 

5 8.97 8.97 9.03 

6 8.87 8.88 8.91 

 
Total mass of strings, or in other words, mass of six strings, is calculated using total mass minus 

mass of the bob. 

𝑚𝑠𝑖𝑥 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 = 43.27 − 21.38 = 21.89g 

Mass of each piece of wire is then: 

𝑚 =
21.89

6
≈ 3.65g 

I used a stopwatch to measure my reaction time by counting 2.00s five times. 

Table 3. Countings of 2.00s on a stopwatch 

time/s 1.97 2.09 2.02 1.94 2.04 

∆𝑡 =
𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛

2
=

2.09 − 1.94

2
= 0.075s ≈ 0.08𝑠 

which is also the absolute uncertainty for 5 periods. 
Average values of 5 periods for each number of strings are calculated. 

Table 4. Average values of 5 periods 

Number of strings 𝑇1/s 𝑇2/s 𝑇3/s 𝑇𝑎𝑣𝑔/s ± 0.08 

1 9.40 9.37 9.44 9.40 

2 9.16 9.22 9.22 9.20 

3 9.15 9.12 9.16 9.14 

4 9.09 9.09 9.06 9.08 

5 8.97 8.97 9.03 8.99 

6 8.87 8.88 8.91 8.89 

 

Since the reaction time is relatively constant, absolute uncertainty for each period is calculated by 
dividing the reaction time by 5, which is: 

∆𝑇 =
0.075

5
= 0.015s ≈ 0.02s 
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Table 5. Values of 1 period 

Number of strings 𝑇/s ± 0.02 

1 1.88 

2 1.84 

3 1.83 

4 1.82 

5 1.80 

6 1.78 

Since when 𝑇 = 1.88s, percentage uncertainty in 𝑇2 is 2 × (
0.02

1.88
× 100%) ≈ 2% and when 𝑇 =

1.78s, percentage uncertainty in 𝑇2 is 2 × (
0.02

1.78
× 100%) ≈ 2%, percentage uncertainty for all values 

of 𝑇2 is about 2%. 
Values needed to plot the graph along with the uncertainty are included in the table below. 

Table 6. Processed data 

𝑛 1 −
𝑛𝑀

3𝑛𝑀 + 6𝑚
 𝑇2/s2 ± 2% 

1 0.974 3.54 

2 0.951 3.39 

3 0.932 3.34 

4 0.915 3.30 

5 0.900 3.23 

6 0.887 3.16 

 
A graph is drawn based on the processed data. 

 

Figure 3.  𝑇2 against 1 −
𝑛𝑀

3𝑛𝑀+6𝑚
 

The line of best fit in blue is generated by Numbers and its equation is 𝑦 = 3.98𝑥 − 0.36. The worst 
acceptable line with the potential minimum gradient in orange is drawn by connecting error bars and it 

is 𝑦 = 2.82𝑥 + 0.72. 

The relationship between 𝑇2 and 1 −
𝑛𝑀

3𝑛𝑀+6𝑚
 is therefore given by: 

𝑦 = (4 ± 1)𝑥 − (0 ± 1) 
It is rewritten as: 
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𝑇2 = (4 ± 1) (1 −
𝑛𝑀

3𝑛𝑀 + 6𝑚
) − (0 ± 1) 

In theory, the gradient of the function is 4𝜋2 𝑙

𝑔
. In such a way, 𝑔, the gravitational field strength, 

could be calculated. 

𝑔 =
4𝜋2𝑙

gradient
=

4𝜋2 × 1

4
= 9.87m/s2 

The real value of 𝑔 is approximately 9.81m/s2. Percentage error is: 
9.87 − 9.81

9.81
× 100% = 0.61% 

When 𝑛 = 0, which means that there is no string, or in other words, mass of the string is negligible, 

1 −
𝑛𝑀

3𝑛𝑀+6𝑚
= 1, 𝑇2 = 4s2. 

As derived above, 𝑇2 = 4𝜋2 𝑙

𝑔
(

1

3
𝑛𝑀+𝑚

1

2
𝑛𝑀+𝑚

) = 4𝜋2 𝑙

𝑔
(1 −

𝑛𝑀

3𝑛𝑀+6𝑚
).  

Substitute 𝑛 = 0 into this equation, 

𝑇2 = 4𝜋2
𝑙

𝑔
=

4𝜋2 × 1.0

9.81
= 4.02s2 

which is included in the range of 𝑇2 when 𝑛 = 0 according to the expression obtained through my 
experiment. 

6.  Evaluation 

In the graph of 𝑇2 against 1 −
𝑛𝑀

3𝑛𝑀+6𝑚
, the line of best fit passes through all error bars and the 𝑅2 

value, a coefficient that “measures how well a statistical model predicts a result”[6], is 0.97, which is 
fairly close to 1. These results indicate that the experimental result is rather precise.  As the values of 
periods are gained by measuring 5 periods, error is divided by five and is therefore reduced. Also 
considering that I repeated the experiment with each number of strings three times and calculated 
average values, data I obtained should be relatively accurate. 

However, weaknesses still exist in the experiment. I applied tape to tie strings together, but its mass 
was not taken into account even though it seemed insignificant compared with total mass of the system. 

Due to imperfect measurement, the length of strings was not exactly 1m and there are slight differences 
between lengths of each string. Based on this, the approach of dividing the mass of six strings to calculate 
mass of each string is not accurate. Besides, as the number of strings increased, strings became harder 
to be straightened. This definitely has some impact on my final results.  
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Figure 4. Strings are not straight. 

The percentage uncertainty was calculated by dividing the average reaction time by the average 

values of period and was approximated to be 2% for all numbers of strings. In fact, the real percentage 

uncertainties were between 2% and 2.5% exclusively and were different in values to 2 decimal places. 
The real error bars should be larger in such a case, causing greater ranges of results. 

As the experiment progresses, I felt that I became more proficient in using the stopwatch, which 
means that the reaction time and absolute uncertainties for greater numbers of strings should be lower 
than predicted. The method of using the same percentage uncertainty for all values of period is therefore 
not so accurate. 

Furthermore, as I held the system besides the stand and released it without measuring the released 
angle, the result is not accurate enough even though the angle is small by estimate. The ruler method to 
keep the released angle constant is also imprecise due to slight changes in the position of the ruler each 
time after it is replaced. 

This experiment could be further improved by ensuring each string has approximately equal length 
and mass before measuring periods for each number of strings, but it is difficult to straighten the wire 
as it is firm, which means that the phenomenon of curved strings is inevitable. To address the problem 

of stopwatch usage, I could practice recording time several times before the experiment so that the 
reaction time would be more consistent. As for the problem of the tape, pieces of wire could be twisted 
together instead of being stuck so that the usage of tape could be avoided. However, it may complicate 
steps of the experiment and slightly reduce the length of the system, which may cause further errors in 
the length of strings. Meanwhile, if they are not evenly twisted together, the position of the center of 
mass may be changed, thereby generating more inaccuracies. 

In addition, I did not take the uncertainty in lengths and masses into consideration as I supposed they 
are insignificant compared with the reaction time, which is the greatest source of error. However, for 

better and more precise results, they should not be ignored. To draw a more general conclusion, I could 
repeat the whole experiment with strings with other values of length or strings made of other material 
instead of copper. 
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7.  Conclusion 

Since data I collected is fairly close to the theoretical relationship between 𝑇2 and 1 −
𝑛𝑀

3𝑛𝑀+6𝑚
, a 

conclusion could be drawn that the period of a simple pendulum to the power of two is proportional to 

1 −
𝑛𝑀

3𝑛𝑀+6𝑚
. The relationship is expressed as: 

𝑇2 = (4 ± 1) (1 −
𝑛𝑀

3𝑛𝑀 + 6𝑚
) − (0 ± 1) 

8.  General result 

For a pendulum system oscillating within small values of angle, and in the situation above, the bob and 
strings, the expression for the period could be derived using a similar approach. 

𝜏 = 𝐼𝛼 = −𝑚𝑔𝑟 sin 𝜃 

where 𝑟 is the distance from the center of mass to the pivot and 𝑚 is mass of the system (different from 

𝑚 in the previous situation, which is the mass of the pendulum bob). 

𝛼 = −
𝑚𝑔𝑟 sin 𝜃

𝐼
 

As previously derived, sin 𝜃 ≈ 𝜃 for small values of 𝜃 and 𝛼 = −𝜔2𝜃, 
Therefore, 

𝛼 = −
𝑚𝑔𝑟 sin 𝜃

𝐼
= −

𝑚𝑔𝑟𝜃

𝐼
= −𝜔2𝜃 

𝜔 = √
𝑚𝑔𝑟

𝐼
 

𝑇 =
2𝜋

𝜔
= 2𝜋√

𝐼

𝑚𝑔𝑟
 

This equation could be verified by substituting 𝐼 = (
1

3
𝑛𝑀 + 𝑚) 𝑙2 , 𝑚 = 𝑛𝑀 + 𝑚  and 𝑟 =

1

2
𝑛𝑀+𝑚

𝑛𝑀+𝑚
𝑙. The same expression for the period in the previous situation will be obtained. 

This expression for the period is not limited to a simple pendulum in which the oscillating object is 
approximated as a point mass. Instead, it can be applied in all situations in which an object oscillates 
about a fixed axis, especially when it cannot be considered as a point mass. 

9.  Application 

The reason why the number of strings changes the period of the pendulum is that additional mass of 
each additional string changes both the total mass and the position of the center of mass of the system. 
According to the general result above, changes in those two quantities cause a change in the value of the 
period. 

This principle could be applied in various situations. For instance, Big Ben, or Elizabeth Tower built 
in 1859 in London, England, is the most accurate chiming clock in the world[7]. To adjust its period, 
pre-decimal pennies are added onto the pendulum bob. Each penny increases the period of Big Ben by 

0.4𝑠 per day[8]. Extra weight in the bob lowers the center of mass of the whole pendulum system and 
the period is therefore changed. 

Table 7. Figures of the pendulum system 

Mass of the pendulum system 310 kg[9] 

Mass of the pendulum bob 203 kg 

Length of the pendulum 4.4 m 

Mass of a pre-decimal penny 9.45 g[10] 
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Figure 5. Double legged gravity escapement[12]. 

However, even though figures of mass of the penny and mass of components of the pendulum could 
be accessed, the change in period cannot be calculated by applying the equation derived above. The 
reason is that the pendulum system of Big Ben does not freely move under gravity. In fact, the motion 
of a pendulum in reality is not perpetual due to air resistance and friction among components. Instead, 
a double legged gravity escapement is used inside Big Ben to convert the energy of falling weight into 
impulses that retain the motion of the pendulum[11] and to prevent the pendulum from being susceptible 
to external factors like wind and thereby improving accuracy. Every time the pendulum swings to its 

highest position, it is pushed by one of the gravity arms. In other words, there is a reaction on it by the 
gravity arm. In such a case, the situation above cannot be applied. 
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