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Abstract. This article establishes the proof of the Schrödinger equation for numerous quantum 

systems, utilizing Heisenberg's uncertainty principle. The Fourier transform connects functions 

in the time and frequency domains, resulting in the mathematical inequality that is the foundation 

of the uncertainty principle. In the part of Methods and Theory, the article derives the uncertainty 

principle through Fourier transforms by defining the mean and variance of angular frequency 

and time, and subsequently expanding the integral. This establishes the fundamental connection 

between time and frequency domains, illustrating the constraints imposed by quantum mechanics. 

In the part of Results and Application, the article applies the uncertainty principle to derive the 

Schrödinger equation under different conditions: free particle, particle in a box, harmonic 

oscillator, and hydrogen atom. For each case, the article assumes wave function solutions, uses 

the uncertainty in position and momentum to estimate kinetic and potential energies, and shows 

that the total energy matches the ground state energy derived from the Schrödinger equation. The 

results highlight the critical role of Heisenberg's uncertainty principle in understanding key 

aspects of quantum mechanics, providing a unified framework for these diverse systems. 

Keywords: Fourier Transform, Heisenberg's Uncertainty Principle, Quantum Mechanics, 

Schrödinger Equation. 

1.  Introduction 

Quantum mechanics is the essential theory that describes particles' behavior at the atomic and subatomic 

levels. It provides a framework for understanding the physical properties of nature at small scales, where 

classical mechanics fails to apply. The development of quantum mechanics has led to numerous 

technological advancements, including semiconductors, lasers, and quantum computing [1]. By 

describing the wave-particle duality of matter and energy, quantum mechanics reveals the probabilistic 

nature of physical phenomena, which is essential for the accurate prediction and manipulation of 

microscopic systems [1]. Heisenberg's uncertainty principle is the core of quantum mechanics, 

underscoring the fundamental limits of measurement and observation in the quantum realm. 

Mathematically, the uncertainty principle can be derived using Fourier transforms, which relate 

functions in the time and frequency domains. The principle can be expressed as Δ𝑝Δ𝑥 ≥
ℏ

2
.  The 

relationship between Heisenberg's uncertainty principle and Fourier transforms emphasizes the 

relationship between time and frequency domains, which is essential for comprehending the behavior 

of quantum systems [2]. The uncertainty principle has diverse applications in quantum mechanics, 

Proceedings of  the 2nd International  Conference on Mathematical  Physics and Computational  Simulation 
DOI:  10.54254/2753-8818/41/2024CH0117 

© 2024 The Authors.  This  is  an open access article  distributed under the terms of  the Creative Commons Attribution License 4.0 
(https://creativecommons.org/licenses/by/4.0/).  

59 



 

 

including elucidating the stability of atoms, the behavior of particles in box, and the quantization of 

energy levels. 

This article is organized as the following. In the part of Methods and Theory, by using Fourier 

Transform to Prove Heisenberg uncertainty principle, it explains how the Heisenberg uncertainty 

principle is derived using the properties of Fourier transforms. The derivation starts with mathematical 

inequality and proceeds through defining the mean and variance of angular frequency and time. By 

interpreting these results, the uncertainty principle is established. The part of Fourier transform in time-

dependent Schrödinger equation discusses the application of Fourier transforms in quantum mechanics, 

specifically in transitioning between the position and momentum representations of the wave function. 

The time-dependent Schrödinger equation, a foundational equation in quantum mechanics, is introduced, 

describing how a physical system's quantum state changes over time [3]. In the results and application, 

using Heisenberg's uncertainty principle to prove Schrödinger equation under free particle condition, it 

assumes a plane wave solution for a free particle and demonstrates how the uncertainty principle leads 

to the time-dependent Schrödinger equation.  

The key steps involve recognizing the relationships between energy, momentum, and the wave 

function's form. When using Heisenberg's uncertainty principle to prove Schrödinger equation under 

particle in a box, it considers a particle confined in a one-dimensional box. It shows how the uncertainty 

in position and momentum aligns with the quantized energy levels obtained from the Schrödinger 

equation. If Heisenberg's uncertainty principle is used to prove Schrödinger equation under Harmonic 

Oscillator, it addresses the harmonic oscillator, verifying the ground state energy using the uncertainties 

in position and momentum. The results are related to the known solutions involving Hermite 

polynomials. By utilizing Heisenberg's uncertainty principle to prove Schrödinger equation for the 

hydrogen atom problem, it deals with the hydrogen atom, using the Bohr radius to estimate the 

uncertainties and derive the ground state energy. The result matches the solution obtained from the 

Schrödinger equation, demonstrating the fundamental role of the uncertainty principle in quantum 

mechanics. 

2.  Methods and Theory 

2.1.  Using Fourier transform to prove Heisenberg uncertainty principle 

A fundamental notion in quantum physics is the Heisenberg Uncertainty Principle, which claims that it 

is difficult to simultaneously know the precise position and momentum of a particle [4]. This principle 

can be mathematically derived using Fourier transforms, which relate functions in time and frequency 

domains. 

The proof starts with the following mathematical inequality: 

∫ |
𝜔 − 𝜔̅

2Δ𝜔2
𝑓(𝜔) +

𝑑𝑓

𝑑𝜔
|

2

𝑑𝜔
∞

−∞

≥ 0 (1) 

This inequality uses properties of the Fourier transform and derives the uncertainty principle. The 

mean and variance can be defined as the following. The Mean and Variance of ω are 𝜔̅ =

∫ 𝜔|𝑓(𝜔)|
2 𝑑𝜔

2𝜋

∞

−∞
 and Δ𝜔2 = ∫ (𝜔 − 𝜔̅)2|𝑓(𝜔)|

2 𝑑𝜔

2𝜋

∞

−∞
. The Mean and Variance of t are 𝑡̅ =

∫ 𝑡
∞

−∞
|𝑓(𝑡)|2𝑑𝑡 = 0 and Δ𝑡2 = ∫ 𝑡2|𝑓(𝑡)|2𝑑𝑡

∞

−∞
. Using the above definitions to expand the integral: 

∫ |
𝜔 − 𝜔̅

2Δ𝜔2
𝑓(𝜔) +

𝑑𝑓

𝑑𝜔
|

2

𝑑𝜔
∞

−∞
= ∫ [(

𝜔 − 𝜔̅

2Δ𝜔2
)

2

|𝑓|
2

+
𝜔 − 𝜔̅

2Δ𝜔2
(𝑓 ∗̂

𝑑𝑓

𝑑𝜔
+

𝑑𝑓 ∗̂

𝑑𝜔
𝑓) + |

𝑑𝑓

𝑑𝜔
|

2

] 𝑑𝜔
∞

−∞

(2) 

By simplifying the right-hand side, it is found that 
Δ𝜔2

4Δ𝜔4 ⋅ 2𝜋 −
2𝜋

2Δ𝜔2 + 2𝜋 ∫ 𝑡2|𝑓(𝑡)|2𝑑𝑡
∞

−∞
≥ 0. 

Combining these results, the Heisenberg uncertainty principle is 

Δ𝜔Δ𝑡 ≥
1

2
. (3) 
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Angular frequency 𝜔 is related to momentum 𝑝 by: 𝜔 =
𝑝

ℏ
. ThereforeΔ𝜔 = Δ𝑝 ℏ⁄ . Substituting into 

the uncertainty principle for angular frequency and time: Δ𝜔Δ𝑡 ≥
1

2
, 

Δ𝑝

ℏ
Δ𝑡 ≥

1

2
. By multiplying both 

sides by ℏ,  Δ𝑝Δ𝑡 ≥
ℏ

2
. Interpreting Δ𝑡 as Δ𝑥, it is found that  Δ𝑝Δ𝑥 ≥

ℏ

2
. 

Hence, the product of the uncertainties in time and frequency domains is bounded below by a 

constant, which is a representation of the Heisenberg uncertainty principle. The derivation emphasizes 

the profound connection between time and frequency domains, as encapsulated by the Fourier transform, 

and their role in understanding the behavior of quantum systems. 

2.2.  Fourier Transform in Quantum Mechanics and Time-Dependent Schrödinger Equation 

The Fourier transform can be used to turn a function of time or space into a function of frequency or 

momentum [5]. In quantum mechanics, the Fourier transform is used to switch between the position 

representation and the momentum representation of the wave function. The Fourier transform of a wave 

function 𝜓(𝑡) is given by 

𝜓̃(𝜔) =
1

√2𝜋
∫ 𝜓(𝑡)𝑒𝑖𝜔𝑡

∞

−∞

 𝑑𝑡 (4) 

The inverse Fourier transform is:  

𝜓(𝑡) =
1

√2𝜋
∫ 𝜓̃(𝜔)𝑒−𝑖𝜔𝑡

∞

−∞

 𝑑ω (5) 

The time-dependent Schrödinger equation describes how the quantum state of a physical system 

evolves over time [6]. It is a foundational equation in quantum mechanics and is given by: 

𝑖ℏ
𝜕𝜓(𝑥, 𝑡)

𝜕𝑡
= 𝐻̂𝜓(𝑥, 𝑡) (6) 

where 𝜓(𝑥, 𝑡) is denoted by the wave function of the system, ℏ is denoted by the reduced Planck constant, 

and 𝐻̂  is denoted by the Hamiltonian operator. For a particle in a potential 𝑉(𝑥), the Hamiltonian 

operator can be expressed as: 

𝐻̂ = −
ℏ
2

2𝑚

𝜕2

𝜕𝑥2
+ 𝑉(𝑥). (7) 

3.  Results and Application 

3.1.  Prove Schrödinger equation under the free particle condition  

Assume a plane wave solution for a free particle 

𝜓(𝑥, 𝑡) = 𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡) (8) 

where 𝑘 is the wave number, and ω is the angular frequency. Using the de Broglie relation 𝑝 = ℏ𝑘 and 

𝐸 = ℏ𝜔, the time-dependent Schrödinger equation for a free particle is 

𝑖ℏ
𝜕𝜓

𝜕𝑡
= −

ℏ
2

2𝑚

𝜕2𝜓

𝜕𝑥2
. (9) 

Compute the time derivative: 
𝜕𝜓

𝜕𝑡
= −𝑖𝜔 and compute the second spatial derivative: 

𝜕2𝜓

𝜕𝑥2
= −𝑘2, the 

author can relate 𝜔 and 𝑘 to Energy and Momentum. 

For a free particle, the energy E is purely kinetic: 𝐸 =
𝑝2

2𝑚
=

ℏ
2𝑘2

2𝑚
. The angular frequency ω is related 

to the energy by 𝐸 = ℏ𝜔. Thus, ℏ𝜔 =
ℏ
2𝑘2

2𝑚
 . This implies 𝜔 =

ℏ𝑘2

2𝑚
. Substitute ω into the time derivative 

equation: 
𝜕𝜓

𝜕𝑡
= −𝑖 (

ℏ𝑘2

2𝑚
). Rewrite the equation: 𝑖ℏ

𝜕𝜓

𝜕𝑡
=

ℏ
2𝑘2

2𝑚
, and using the second spatial derivative: 

ℏ
2

2𝑚

𝜕2𝜓

𝜕𝑥2
=

ℏ
2𝑘2

2𝑚
, it is found that the Schrödinger equation is: 
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𝑖ℏ
𝜕𝜓

𝜕𝑡
= −

ℏ
2

2𝑚

𝜕2𝜓

𝜕𝑥2
(10) 

By assuming the wave nature of particles and using the Heisenberg uncertainty principle, it arrives 

at the Schrödinger equation for a free particle. The key steps involve recognizing the relationships 

between energy, momentum, and the wave function's form, which are all consistent with the constraints 

imposed by the uncertainty principle [7]. 

3.2.  Prove Schrödinger equation under particle in a box 

Consider a particle confined in a one-dimensional box of width 𝑎. The potential 𝑉(𝑥) is given by 

𝑉(𝑥) = {
0, if 0 < x < a

∞, 𝑖𝑓 𝑥 ≤ 0 𝑜𝑟 𝑥 ≥ 𝑎
(11) 

The time-independent Schrödinger equation for a particle of mass 𝑚 in a potential V(x) is given by 

Eq. (6). When 𝑉(𝑥)  =  0, the equation simplifies to 

ℏ
2

2𝑚

𝑑2𝜓

𝑑𝑥2
= 𝐸 (12)  

The solution to the Schrödinger equation where 𝑉(𝑥)  =  0  is given by 𝜓𝑛(𝑥) = √
2

𝑎
sin (

𝑛𝜋𝑥

𝑎
) , 

 where n is a positive integer. The corresponding energy levels are: 

𝐸𝑛 =
𝑛2𝜋2ℏ

2

2𝑚𝑎2
. (13) 

For a particle in the ground state 𝑛 = 1, the wave function is: 

𝜓1(𝑥) = √
2

𝑎
sin (

𝜋𝑥

𝑎
) (14) 

The uncertainty in position, Δ𝑥, can be approximated as: Δ𝑥 ≈
𝑎

2
. The uncertainty in momentum,  Δ𝑝, 

can be estimated using the uncertainty principle: Δ𝑝 ≥
ℏ

2Δ𝑥
=

ℏ

𝑎
 

To relate these uncertainties to the Schrödinger equation, the expression for the kinetic energy of the 

particle is: 𝐸 =
𝑝2

2𝑚
. The uncertainty in energy due to the uncertainty in momentum is:  Δ𝐸 ≈

Δ𝑝2

2𝑚
=

ℏ
2

2𝑚𝑎2
. 

This energy uncertainty matches the ground state energy 𝐸1 =
𝜋2ℏ

2

2𝑚𝑎2
. Thus, the Heisenberg uncertainty 

principle is consistent with the energy levels from the Schrödinger equation for a particle in a box. The 

ground state energy and demonstrated its alignment with the Schrödinger equation. It serves to illustrate 

that the uncertainty principle forms a fundamental basis for comprehending the quantization of energy 

levels within confined systems [8]. 

3.3.  Prove Schrödinger equation under harmonic oscillator  

The one-dimensional harmonic oscillator is given by: 𝑉(𝑥) =
1

2
𝑚𝜔2𝑥2 . The time-independent 

Schrödinger equation for a particle of mass in 𝑉(𝑥) is 
ℏ

2

2𝑚

𝑑2𝜓

𝑑𝑥2
+ 𝑉(𝑥)𝜓 = 𝐸. For a harmonic oscillator, 

substituting 𝑉(𝑥) =
1

2
𝑚𝜔2𝑥2 gives: 

ℏ
2

2𝑚

𝑑2𝜓

𝑑𝑥2
+

1

2
𝑚𝜔2𝑥2𝜓 = 𝐸. The solutions to this equation involve 

Hermite polynomials: 𝜓𝑛(𝑥) = 𝑁𝑛𝑒−𝛼2𝑥2/2𝐻𝑛(𝛼𝑥), where α= √
𝑚𝜔

ℎ
. 𝑁𝑛 is a normalization constant, 

and 𝐻𝑛 are the Hermite polynomials. The corresponding energy levels are: 

𝐸𝑛 = (𝑛 +
1

2
) ℏ (15) 

For the ground state (𝑛 = 0), the wave function is: 
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𝜓0(𝑥) = (
𝛼

𝜋1/2
)
1/2

𝑒−𝛼2𝑥2/2 (16) 

The uncertainties in position 𝛥𝑥  and momentum 𝛥𝑝  for the ground state are given by: Δ𝑥 =

√⟨𝑥2⟩ − ⟨𝑥⟩2 = √
ℏ

2𝑚𝜔
,  Δ𝑝 = √⟨𝑝2⟩ − ⟨𝑝⟩2 = √

ℏ𝑚𝜔

2
. For the ground state of the harmonic oscillator, it 

verifies the uncertainty principle Δ𝑥Δ𝑝 = √
ℏ

2𝑚𝜔
√

ℏ𝑚𝜔

2
=

ℏ

2
. The uncertainties in position and 

momentum are related with the energy of the harmonic oscillator: 𝐸 =
⟨𝑝2⟩

2𝑚
+

1

2
𝑚𝜔2⟨𝑥2⟩. For the ground 

state: ⟨𝑥2⟩ =
ℏ

2𝑚𝜔
, ⟨𝑝2⟩ =

ℏ𝑚𝜔

2
. Substituting these into the energy expression: 

𝐸 =
ℏ𝑚𝜔

4𝑚
+
1

2
𝑚𝜔2

ℏ

2𝑚𝜔
=

ℏ𝜔

2
. (17) 

Thus, the energy matches the ground state energy 𝐸0 =
1

2
ℏ𝜔 obtained from the Schrödinger equation. 

It demonstrates that the limits placed on the precise position and momentum of the particle lead directly 

to the quantized energy levels of the harmonic oscillator [9]. 

3.4.  Prove Schrödinger equation for the hydrogen atom problem 

The energy for an electron in a hydrogen atom is given by the Coulomb potential: 𝑉(𝑟) = −
𝑒2

4𝜋𝜖0𝑟
. The 

time-independent Schrödinger equation for the hydrogen atom in spherical dimensions is:  

ℏ
2

2𝑚
∇2𝜓 + 𝑉(𝑟)𝜓 = 𝐸 (18) 

By separating variables, the radial part of the Schrödinger equation is:  

ℏ
2

2𝑚
(

𝑑2𝑢

𝑑𝑟2
−

𝑙(𝑙 + 1)

𝑟2
𝑢) −

𝑒2

4𝜋𝜖0𝑟
𝑢 = 𝐸𝑢 (19) 

For the hydrogen atom, let's assume the uncertainty in the electron's position 𝛥𝑟 is on the order of 

the Bohr radius 𝑎0: Δ𝑟 ≈ 𝑎0 

The uncertainty in momentum 𝛥𝑝 can be estimated using Heisenberg's uncertainty principle: 

Δ𝑝𝑟 ≈
ℏ

Δ𝑟
≈

ℏ

𝑎0

(20) 

The kinetic energy T can be approximated as: 𝑇 ≈
(Δ𝑝𝑟)2

2𝑚
=

ℏ2

2𝑚𝑎0
2. The potential energy V is: 𝑉 ≈

−
𝑒2

4𝜋𝜖0𝑎0
. The total energy 𝐸 is the sum of kinetic and potential energy 

𝐸 ≈
ℏ

2

2𝑚𝑎0
2

−
𝑒2

4𝜋𝜖0𝑎0

(21) 

To find the ground state energy, minimize 𝐸 with respect to 𝑎0: 
𝑑𝐸

𝑑𝑎0
= 0. Then,  

ℏ2

𝑚𝑎0
3 +

𝑒2

4𝜋𝜖0𝑎0
2 = 0. 

Solving for 𝑎0, it is found that 𝑎0 =
4𝜋𝜖0ℏ2

𝑚𝑒2 . Substitute 𝑎0 back into the expression for 𝐸: 

𝐸 = −
𝑒2

8𝜋𝜖0𝑎0

(22) 

This is the ground state energy of the hydrogen atom, which matches the result obtained from solving 

the Schrödinger equation [10]. 

4.  Conclusion 

This article demonstrates the application of Heisenberg's uncertainty principle to derive the Schrödinger 

equation for various quantum systems, including free particles, particles in a box, harmonic oscillators, 

and the hydrogen atom. By using the fundamental limits imposed by the uncertainty principle, it shows 
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how the quantization of energy levels arises naturally within these systems. The proof underscores the 

connection between the principles of quantum mechanics and the Fourier transforms used to describe 

them. The derivations presented provide a clear and coherent framework for understanding the 

foundational aspects of quantum mechanics. With the uncertainty principle, it derives the Schrödinger 

equation, which manages the behavior of quantum systems. The article offers a unified approach to 

deriving the Schrödinger equation for different quantum systems using Heisenberg's uncertainty 

principle. This helps in understanding the common underlying principles that govern these systems. The 

use of Fourier transforms to derive the uncertainty principle and subsequently apply it to different 

quantum systems adds a level of mathematical rigor to the derivations, ensuring that the results are 

robust and consistent. However, the article has the limitations. Some derivations rely on simplifying 

assumptions, such as approximating uncertainties or assuming certain forms of wave functions. These 

assumptions, while useful for illustrative purposes, are not fully capture the complexity of real-world 

quantum systems. When considering the methods in more complex quantum systems, such as those with 

several interacting particles or external fields, it reduces constraints in the future study. Combining the 

analytical framework offered with numerical simulations makes it possible to provide deeper 

understanding and more precise predictions for a wider variety of quantum phenomena. 
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