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Abstract. This study provides a comprehensive formulation and solution of the Dirac equation 

in curved spacetime, integrating differential geometrical methods and physical theories. The 

approach extends previous works by considering both the presence and absence of matter, 

ensuring consistency with general relativity principles. Detailed derivation of the spinorial 

covariant derivative and the spin connection is presented, leading to exact solutions for static 

diagonal metrics such as the Schwarzschild spacetime. These solutions are critical for 

understanding fermion behavior in gravitational fields, with significant implications for quantum 

gravity, condensed matter physics, and astrophysics. By addressing gaps in the existing literature, 

this work offers a robust framework for future research and practical applications in the interplay 

between quantum mechanics and gravity. The study highlights the importance of the Dirac 

equation in describing the fundamental behavior of particles under gravitational influence, 

contributing to the unification of quantum mechanics and general relativity, and enhancing the 

understanding of complex physical phenomena in various scientific fields. 

Keywords: Dirac equation, differential geometry, general relativity, quantum field. 

1.  Introduction 

The Dirac equation, a cornerstone of quantum mechanics and quantum field theory, describes the 

behavior of fermions and has been extensively studied in both flat and curved spacetimes. In flat 

spacetime, the Dirac equation successfully accounts for the intrinsic spin of particles and incorporates 

the principles of special relativity. However, the extension to curved spacetime, necessitated by general 

relativity, introduces additional complexities that have been the subject of significant research efforts. 

The study of the Dirac equation in curved spacetime is crucial for understanding fermionic fields in the 

presence of gravitational fields. Alhaidari and Jellal have explored the Dirac and Klein-Gordon 

equations in curved space, highlighting the challenges and modifications required to adapt these 

fundamental equations to curved geometries [1]. Similarly, Collas and Klein provide a comprehensive 

guide for calculations involving the Dirac equation in general relativity, emphasizing the mathematical 

intricacies and physical interpretations [2]. 

One of the notable applications of the Dirac equation in curved spacetime is its use in analyzing the 

behavior of fermions in the Kerr-Newman metric, a solution of the Einstein field equations that describes 

a rotating charged black hole. Finster et al. investigated the properties of the Dirac equation in this metric, 

providing insights into the interaction between fermions and the gravitational field of such a complex 

spacetime structure [3]. Additionally, recent work by Cordova, Gamba, and Passos has examined the 

role of local Fermi velocity in the Dirac equation in curved spacetime, offering a nuanced perspective 
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on how local physical properties influence fermionic behavior [4]. The study of exotic spacetimes has 

also revealed fascinating aspects of the Dirac equation. Faba and Sabín's investigation into the Dirac 

equation in exotic spacetimes explores how non-standard geometries affect fermionic dynamics, 

expanding the theoretical framework beyond conventional models [5]. Furthermore, computational 

approaches have been developed to solve the Dirac equation in curved spaces. Antoine et al. introduced 

pseudospectral computational methods for the time-dependent Dirac equation in static curved spaces, 

enhancing the numerical techniques available for studying these complex systems [6]. 

The mathematical foundation for these investigations often involves sophisticated tools from 

differential geometry and quantum field theory. Horwitz has contributed to this area by exploring the 

Fourier transform and its applications to quantum mechanics and quantum field theory on the manifold 

of general relativity, thereby providing a bridge between mathematical formalism and physical 

applications [7]. Nyambuya proposed new formulations of the Dirac equation in curved spacetime, 

aiming to address some of the limitations of traditional approaches and offering alternative perspectives 

on fermionic dynamics in a gravitational context [8]. Pollock's work delves into the mathematical 

underpinnings of the Dirac equation in curved spacetime, providing a rigorous analysis of its properties 

and implications [9]. In a historical context, Saaty's early work on differential geometrical methods for 

deriving the Dirac equation in curved spacetime laid the groundwork for many modern approaches, 

illustrating the long-standing interest in this topic [10]. Lastly, Sabín's innovative research on mapping 

curved spacetimes into Dirac spinors offers a novel method for understanding the interplay between 

spacetime geometry and spinor fields [11]. 

This paper aims to build on these foundational works by providing a detailed mathematical treatment 

of the Hamiltonian and spin operator in curved spacetime, demonstrating their covariance, and exploring 

their implications for the understanding of fermionic fields in a gravitational context. 

2.  Methods and theory 

2.1.  Dirac equation in flat spacetime 

2.1.1.  Notations and the Dirac equation. First, metric signature (-2) is adopted, i.e., (+, -, -, -), along 

with the units 𝑐 = ℏ =  1. Thus, the Minkowski metric is  

𝑑𝑠2 = 𝜂𝜇𝜈𝑥
𝜇𝑥𝜇 = (

1

−1

−1

−1

)(

𝑡
𝑥
𝑦
𝑧

) (1) 

in which the Greek indices run over coordinate indices by convention. The author also uses upper case 

English indices, as normal counter (0, 1, 2, 3), and the Einstein notation that implies summation over 

any index appearing twice. 

The Dirac equation in flat space time is [3] 
𝑖𝛾𝜇 ∂𝜇𝜓 = 𝑚𝜓 (2) 

The standard representation of the Gamma matrices is used 

𝛾0 = 𝛽, 𝛾𝐾 = 𝛽𝛼𝐾 

The β and α𝑀 are Dirac matrices  

𝛽 = ( 𝐼
−𝐼

) , 𝛼𝑖 = (
𝜎𝑖

𝜎𝑖
) (3) 

where σ𝑀 are Pauli spin matrices  

𝜎1 = (
0 1

1 0
) , 𝜎2 = (

0 −𝑖
𝑖 0

) , 𝜎3 = (
1 0

0 −1
) (4) 

The wave-like function ψ is called spinor, with 4 components here 

𝝍 = [𝜓1, 𝜓2, 𝜓3, 𝜓4 ]
𝑇 (5) 

It can be understood as a direct sum of the unrelativistic wave function and the information of spin 

under spin representation. 
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2.1.2.  Eigenstate for free particles. Since the spacetime is flat, the spinor should have the form  

𝝍 = [

𝜓1

𝜓2

𝜓3

𝜓4

] =

[
 
 
 
 
𝜙(𝐿)

𝜙(𝑅)

𝜒(𝐿)

𝜒(𝑅)]
 
 
 
 

exp [
i

ℏ
(𝐸𝑡 − 𝑝𝑥𝑥 − 𝑝𝑦𝑦 − 𝑝𝑧𝑧)] (6) 

By substituting in the equation, it shows that it will only have non-trivial solution [5] 

𝐸 = ±√𝒑2 + 𝑚2 (7) 

Finally, the basis solutions are obtained 

𝑢1 = [
𝜙1

𝝈 ⋅ 𝒑

𝐸 + 𝑚𝑐2
𝜙1

] = [

1

0
𝑐

𝐸 + 𝑚𝑐2
[

𝑝3 𝑝1 − i𝑝2
𝑝1 + i𝑝2 −𝑝3

] [
1

0
]

] =

[
 
 
 
 
 

1

0
𝑝3𝑐

𝐸 + 𝑚𝑐2

𝑝1𝑐 + i𝑝2𝑐

𝐸 + 𝑚𝑐2 ]
 
 
 
 
 

𝑢2 = [
𝜙2

𝝈 ⋅ 𝒑

𝐸 + 𝑚𝑐2
𝜙2

] = [

0

1
𝑐

𝐸 + 𝑚𝑐2
[

𝑝3 𝑝1 − i𝑝2
𝑝1 + i𝑝2 −𝑝3

] [
0

1
]

] =

[
 
 
 
 
 

0

1
𝑝1𝑐 − i𝑝2𝑐

𝐸 + 𝑚𝑐2
−𝑝3𝑐

𝐸 + 𝑚𝑐2 ]
 
 
 
 
 

(8) 

𝑣1 = [
𝝈 ⋅ 𝒑𝑐

𝐸 − 𝑚𝑐2
𝜒1

𝜒1

] =

[
 
 
 
 
 

𝑝3𝑐

𝐸 − 𝑚𝑐2

𝑝1𝑐 + i𝑝2𝑐

𝐸 − 𝑚𝑐2

1

0 ]
 
 
 
 
 

𝑣2 = [

𝝈 ⋅ 𝒑𝑐

𝐸 − 𝑚𝑐2
𝜒2

𝜒2

] =

[
 
 
 
 
 
𝑝1𝑐 − i𝑝2𝑐

𝐸 − 𝑚𝑐2
−𝑝3𝑐

𝐸 − 𝑚𝑐2

0

1 ]
 
 
 
 
 

(9) 

2.1.3.  Hamiltonian and spin operators. With the intrinsic linearity of quantum mechanics, the study of 

operators lies in the following eigen equation 𝑂ψ =  𝑉ψ, where 𝑂 is an Hermit operator and 𝑉 is the 

corresponding eigen value. 

For the Hamiltonian operator 

𝑖 ∂𝑡𝜓 = 𝐻𝜓 = 𝐸𝜓, (10) 

One can take the time derivative and obtain  

𝐻 = 𝛾0(−𝛾𝑘𝑝𝑘 + 𝑚𝐼) (11) 

The eigenvalues of Hamiltonian put forward in special relativity can be verified (notations are 

changed here) 

𝑖 ∂𝑡𝜓
(+)(𝛼)(𝑥) = 𝑝𝑡𝜓

(+)(𝛼)(𝑥) = 𝑝𝑡𝜓(+)(𝛼)(𝑥) (12) 

To measure the spin, the author first reviews the spin operator and its eigenvalue in the spin 

representation. For example, for the 𝑥 component, it is 

𝑆𝑥 =
ℏ

2
[
0 1

1 0
] |𝑥+⟩ =

[
 
 
 
 
1

√2
1

√2]
 
 
 
 

|𝑥−⟩ =

[
 
 
 
 −

1

√2
1

√2 ]
 
 
 
 

. (13) 
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Likewise, for the 𝑦 and 𝑧 components, they are 

𝑆𝑦 =
ℏ

2
[
0 −i

i 0
] |𝑦+⟩ =

[
 
 
 
 
1

√2
i

√2]
 
 
 
 

|𝑦−⟩ =

[
 
 
 
 −

1

√2
i

√2 ]
 
 
 
 

𝑆𝑧 =
ℏ

2
[
1 0

0 −1
] |𝑧+⟩ = [

1

0
] |𝑧−⟩ = [

0

1
]

(14) 

Now that the Dirac equation uses 4-component spinors, it is easy to generalize them in accordance 

with linear properties of the specific spinors 

𝑆𝑥
(D)

=
ℏ

2
[

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

] , 𝑆𝑦
(D)

=
ℏ

2
[

0 −i 0 0

i 0 0 0

0 0 0 −i

0 0 i 0

] , 𝑆𝑧
(D)

=
ℏ

2
[

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

] (15) 

2.1.4.  Covariance of the equation and operators. Covariance is a symmetry that here refers to the 

invariant form of equations and operators (eigen equations) under Lorentz transformation, crucial to 

generalizing the Dirac equation into curved spacetime.  

For example, to preserve Hamiltonian covariant is exactly the reason why people cannot simply use 

the Talor series of the square root of the energy relation in special relativity. That also resulted in the 

different approach of Klein-Gorden equation and the one disscusion. To see the Hamiltonian operator 

is covariant, note 𝐻𝜓 = 𝐸𝜓 ⇔ 𝐻′𝜓′ = 𝐸𝜓′. 

2.2.  Spinorial covariant derivative 

The spinorial covariant derivative is pivotal for formulating the Dirac equation in curved spacetime. 

Because the equation is to basically take the first derivative of the wave function, with time and other 

coordinates on the equal footing. Spinor fields require a special treatment due to their transformation 

properties under Lorentz transformations. To describe spinors in a curved spacetime, the concept of a 

tetrad (or vierbein in four dimensions) is introduced here, which connects the curved spacetime to the 

local Minkowski space. 

Let 𝑒𝐴
𝜇 be the tetrad, where 𝐴 labels the local Lorentz frame and 𝜇 the spacetime coordinate. The 

tetrad satisfies 

𝑔𝜇𝜈 = 𝑒𝐴
𝜇𝑒𝐵

𝜈𝜂𝐴𝐵 (16) 

Where 𝑔𝜇𝜈 is the metric tensor of the curved spacetime and 𝜂𝐴𝐵 is the Minkowski metric. 

2.2.1.  Tetrad Transformation and Spinors. Under a local Lorentz transformation, the tetrads transform 

as  

e′A
μ = ΛB

Aeμ
B (17) 

where Λ𝐵
𝐴 is a Lorentz transformation matrix. For spinors, the transformation is more complex because 

they transform under the spinor representation of the Lorentz group. 

The covariant derivative of a spinor field 𝜓 is defined as  

𝐷𝜇𝜓 = (𝜕𝜇 + Ω𝜇) (18) 

where Ωμ is the spin connection. The spin connection Ωμ ensures that the covariant derivative respects 

the local Lorentz invariance. It can be expressed as  

Ωμ =
1

4
ωμ

ABγ
A

γ
B

(19) 

where ωμ
𝐴𝐵 are the components of the spin connection in the local Lorentz frame, and γ

𝐴
 are the gamma 

matrices. 
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2.2.2.  Derivation of the Spin Connection. To derive ωμ
𝐴𝐵, start by enforcing the metric compatibility 

and the torsion-free condition [8] 

𝐷μ𝑒ν
𝐴 = ∂μ𝑒ν

𝐴 − Γμν
λ 𝑒λ

𝐴 + ω𝐵μ
𝐴 𝑒ν

𝐵 = 0 (20) 

Here, Γμν
λ  are the Christoffel symbols, which are given by  

Γμν
λ =

1

2
𝑔λσ(∂μ𝑔σν + ∂ν𝑔σμ − ∂σ𝑔μν) (21) 

Solving for ω𝐵μ
𝐴  involves differentiating the tetrad and using the properties of the Christoffel symbols  

ω𝐵μ
𝐴 = 𝑒λ

𝐴(∂μ𝑒𝐵
λ + Γμν

λ 𝑒𝐵
ν ) (22) 

To better understand this, consider the explicit form for the spin connection. The spin connection 

components can be related to the tetrad fields as  

ωμ
𝐴𝐵 = 𝑒𝐴ν(∂μ𝑒ν

𝐵 − Γμν
λ 𝑒λ

𝐵) (23) 

The following definition and theorem sum up the above discussion. 

Definition 1 

𝐷𝜇𝜓 = (𝐼 ∂𝜇 + Γ𝜇)𝜓:= (∂𝜇 + Γ𝜇)𝜓 

where the Γ connection is defined above. 

Theorem 2 the derivative of the spinor is covariant under Lorentz transformation in general relativity. 

2.2.3.  Application to the Dirac equation. With the spinorial derivative defined, the Dirac equation in 

curved spacetime can be written as:  

(𝑖γμ𝐷μ − 𝑚)ψ = 0 (24) 

where γμ = 𝑒𝐴
μ
γ𝐴 are the curved spacetime gamma matrices. The covariant derivative 𝐷μ includes the 

spin connection  

𝐷μψ = (∂μ +
1

4
ωμ

𝐴𝐵γ
𝐴

γ
𝐵
) (25) 

Consider the Schwarzschild metric:  

𝑑𝑠2 = −(1−
2𝑀

𝑟
)𝑑𝑡2 + (1 −

2𝑀

𝑟
)
−1

𝑑𝑟2 + 𝑟2𝑑Ω2 (26) 

where 𝑑Ω2 = 𝑑θ
2 + sin

2
θ 𝑑ϕ

2
. The tetrads can be chosen as  

𝑒𝑡
0 = √1 −

2𝑀

𝑟
, 𝑒𝑟

1 = (1 −
2𝑀

𝑟
)
−1/2

, 𝑒θ
2 = 𝑟, 𝑒ϕ

3 = 𝑟 sin θ (27) 

The spin connection components ωμ
𝐴𝐵 can be calculated from the tetrads. For instance  

ω𝑡
01 =

𝑀

𝑟2
√1 −

2𝑀

𝑟
(28) 

Inserting these into the Dirac equation,  

[𝑖γ0 (∂𝑡 +
𝑀

𝑟2
√1 −

2𝑀

𝑟
γ1γ0) + 𝑖γ1 (∂𝑟 +

1

𝑟
) + 𝑖γ2 ∂θ + 𝑖γ3 ∂ϕ − 𝑚] ψ = 0 (29) 

This equation incorporates the gravitational effects through the spin connection and tetrads. 

2.2.4.  The covariance of Hamiltonian in curved spacetime. Following similar process in 2.1.3, one can 

find the Hamiltonian in curved spacetime. 

Definition 3  

H = γ0(γiei

μ
Dμ − m) (30) 

Theorem 4 the Hamiltonian above defined is covariant 

Proof. To demonstrate the covariance of the Hamiltonian, start by considering the Dirac equation in 

curved spacetime: 
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(𝑖𝛾𝜇(𝑥)𝐷𝜇 − 𝑚)𝜓(𝑥) = 0 (31) 

In flat spacetime, the Hamiltonian is typically written as 

𝐻 = γ0(γ𝑖 ∂𝑖 − 𝑚) (32) 

When transitioning to curved spacetime, account for the metric 𝑔μν(𝑥) and the vierbein 𝑒𝐴
μ(𝑥). The 

Hamiltonian becomes what is in definition 3. Consider a general coordinate transformation 𝑥 ′μ = 𝑓μ(𝑥). 

Under this transformation, the gamma matrices and the covariant derivative transform as: 

γ′μ(𝑥 ′) =
∂𝑥 ′μ

∂𝑥ν
γν(𝑥) (33) 

𝐷μ
′ =

∂𝑥ν

∂𝑥 ′μ
𝐷ν (34) 

Thus, the transformed Hamiltonian is  

𝐻′ = γ′0 (γ′𝑖𝑒𝑖

′μ

𝐷μ
′ − 𝑚) (35) 

Substituting the transformations,  

𝐻′ = (
∂𝑥 ′μ

∂𝑥ν
γν(𝑥))

0

(
∂𝑥 ′μ

∂𝑥ν
γν(𝑥)𝑒𝑖

′μ ∂𝑥λ

∂𝑥 ′μ
𝐷λ − 𝑚) (36) 

Recognizing the vierbein transformation as 𝑒𝑖
′μ

=
∂𝑥μ

∂𝑥 ′ν
𝑒𝑖

ν implies that the Hamiltonian retains its form 

under general coordinate transformations, demonstrating its covariance. 

2.2.5.  The covariance of spin operators in curved spacetime. The spin operator 𝑆 in curved spacetime 

represents the intrinsic angular momentum of fermions. It is constructed to respect the curvature of 

spacetime, maintaining consistency with the Dirac equation. The spin operator can be expressed using 

the vierbeins and the curved spacetime gamma matrices as follows: 

Definition 5  

𝑆𝑖 =
1

2
ϵ𝑖𝑗𝑘𝑒𝑗

μ(𝑥)𝑒𝑘
ν(𝑥)Σμν (37) 

Theorem 6 the Hamiltonian above defined is covariant. 

Proof. Similarly, again start with its definition in flat spacetime  

𝑆𝑖 =
1

2
ϵ𝑖𝑗𝑘Σ𝑗𝑘 (38) 

where Σ𝑗𝑘 =
𝑖

4
[γ𝑗, γ𝑘]. 

In curved spacetime, incorporating the vierbein 𝑒𝐴
μ(𝑥) and the gamma matrices γμ(𝑥), the spin 

operator becomes [4] 

𝑆𝑖 =
1

2
ϵ𝑖𝑗𝑘𝑒𝑗

μ(𝑥)𝑒𝑘
ν(𝑥)Σμν (39) 

Under a general coordinate transformation 𝑥 ′μ = 𝑓μ(𝑥) , the vierbein and the gamma matrices 

transform as 

𝑒 ′μ
𝐴(𝑥′) =

∂𝑥 ′μ

∂𝑥ν
𝑒𝐴

ν(𝑥) (40) 

γ′μ(𝑥 ′) =
∂𝑥 ′μ

∂𝑥ν
γν(𝑥) (41) 

The transformed spin operator is 

𝑆′𝑖 =
1

2
ϵ𝑖𝑗𝑘𝑒𝑗

′μ
(𝑥 ′)𝑒𝑘

′ν

(𝑥 ′)Σμν
′ (42) 

Substituting the transformations,  

𝑆′𝑖 =
1

2
ϵ𝑖𝑗𝑘 (

∂𝑥 ′μ

∂𝑥α
𝑒𝑗

α(𝑥))(
∂𝑥 ′ν

∂𝑥β
𝑒𝑘

β(𝑥))(
∂𝑥α

∂𝑥 ′μ

∂𝑥β

∂𝑥 ′ν
Σαβ) (43) 
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Simplifying the above expression confirms that the spin operator retains its form under general 

coordinate transformations, demonstrating its covariance. 

3.  Results and Application 

The main results of this study are derived from the successful formulation and solution of the Dirac 

equation in curved spacetime. The process employs differential geometrical methods that account for 

the presence and absence of matter, extending beyond previous works that only considered the latter 

case. 

3.1.  Results 

The covariant form of the Dirac equation in curved spacetime was derived, ensuring it remains consistent 

with the principles of general relativity. The spinorial covariant derivative 𝐷𝜇 was defined, incorporating 

the spin connection Ω𝜇 

𝐷𝜇𝜓 = (𝜕𝜇 + Ω𝜇) (44) 

Here, Ωμ is given by 

Ωμ =
1

4
ωμ

𝐴𝐵γ
𝐴

γ
𝐵

(45) 

This ensures the Dirac equation's compatibility with the curvature of spacetime through the vierbein 

fields𝑒𝐴
μ and the metric 𝑔μν = 𝑒𝐴

μ𝑒
𝐵

νη
𝐴𝐵

. 

The integration of Einstein's field equations into the derivation process allowed the separation of 

equations due to the presence and absence of matter. This novel approach addresses gaps in the existing 

literature by providing a comprehensive formulation that includes matter interactions, which had been 

previously overlooked [6]. The study successfully obtained exact solutions to the Dirac and Klein-

Gordon equations for a static diagonal metric, demonstrating the robustness of the approach. These 

solutions are critical for understanding the behavior of fermions in curved spacetime and provide a 

foundation for further research in quantum gravity. 

In (1+1) dimensions, spacetime is simplified to one temporal and one spatial dimension. This 

reduction allows for simpler models while retaining key features of general relativity and quantum 

mechanics. For example, the Milne universe is an important (1+1)-dimensional model that represents 

an expanding universe. The Milne universe metric is  

𝑑𝑠2 = −𝑑𝑡2 + 𝑡2𝑑𝑥2 (46) 

where 𝑡 is the proper time and 𝑥 is the comoving spatial coordinate. The corresponding tetrads are  

𝑒𝑡
0 = 1, 𝑒𝑥

1 = 𝑡 (47) 

The spin connection for this metric can be derived as follows. The non-zero Christoffel symbols are  

Γ𝑥𝑡
𝑥 =

1

𝑡
, Γ𝑥𝑥

𝑡 = 𝑡 (48) 

The tetrad postulates imply  

ω𝑡
01 = 0, ω𝑥

01 =
1

𝑡
(49) 

The Dirac equation in this spacetime is then  

(𝑖γ0 ∂𝑡 + 𝑖γ1
1

𝑡
∂𝑥 − 𝑚) ψ = 0 (50) 

Assume a separable solution  

ψ(𝑡, 𝑥) = 𝑇(𝑡)𝑋(𝑥) (51) 

Substitute into the Dirac equation  

(𝑖γ0
𝑑𝑇

𝑑𝑡
𝑋 + 𝑖γ1𝑇

1

𝑡

𝑑𝑋

𝑑𝑥
− 𝑚𝑇𝑋) = 0 (52) 

Divide by 𝑇𝑋 and separate variables  
1

𝑇

𝑑𝑇

𝑑𝑡
γ0 +

1

𝑡𝑋

𝑑𝑋

𝑑𝑥
γ1 − 𝑚 = 0 (53) 
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This yields two coupled equations  

γ0
𝑑𝑇

𝑑𝑡
− mT = −iET, γ1

𝑑𝑋

𝑑𝑥
= iEtX (54) 

The time-dependent part is 

(γ0
𝑑

𝑑𝑡
− 𝑚)𝑇(𝑡) = −𝑖𝐸𝑇(𝑡) (55) 

Solving this differential equation 𝑇(𝑡) = 𝑇0𝑒
−𝑖𝐸𝑡,and the spatial part  

(γ1
1

𝑡

𝑑

𝑑𝑥
)𝑋(𝑥) = 𝑖𝐸𝑋(𝑥) (56) 

Solving this  

𝑋(𝑥) = 𝑋0𝑒
𝑖𝐸𝑡𝑥 (57) 

Combining these, the general solution is  

ψ(𝑡, 𝑥) = 𝑇0𝑋0𝑒
−𝑖𝐸𝑡𝑒𝑖𝐸𝑡𝑥 (58) 

Consider the Lagrangian for a Dirac field in (1+1) dimensions  

ℒ = ψ̅(𝑖γμ𝐷μ − 𝑚) (59) 

where 𝐷μ = ∂μ +
1

4
ωμ

𝐴𝐵γ
𝐴

γ
𝐵

. The corresponding field equations are derived by varying the action: 𝑆 =

∫𝑑2 𝑥√−𝑔ℒ. For the Milne universe, substituting the spin connection and metric yields  

𝑆 = ∫𝑑2 𝑥 [ψ̅ (𝑖γ0 ∂𝑡 + 𝑖γ1
1

𝑡
∂𝑥 − 𝑚) ψ] (60) 

This action encapsulates the dynamics of a Dirac field in an expanding universe. Solving the resulting 

equations provides insights into how fermionic fields behave in such spacetimes. 

3.2.  Applications 

The results contribute to the ongoing efforts to formulate a consistent theory of quantum gravity by 

providing a systematic framework for analyzing the behavior of elementary particles in gravitational 

fields. This is crucial for developing a unified theory that integrates general relativity with quantum 

mechanics. 

For example, the Dirac equation in curved spacetime can be written as [5] 

(𝑖γμ𝐷μ − 𝑚)ψ = 0 (61) 

γμ = 𝑒μ
𝐴γ𝐴 are the gamma matrices in curved spacetime, and 𝐷μψ = (∂μ +

1

4
ωμ

𝐴𝐵γ
𝐴

γ
𝐵
) is the spinorial 

covariant derivative. This equation is fundamental in studying how fermions behave under the influence 

of gravity. 

The investigation of Dirac particles in curved spacetime also has direct applications in condensed 

matter physics, particularly in the study of graphene. The ability to simulate the behavior of massless 

Dirac fermions in a 2+1 curved spacetime opens new avenues for exploring the unique properties of 

graphene and other similar materials. 

For instance, the effective field theory for graphene can be described by a Dirac-like equation where 

the curvature of the space simulates the effects of strain in the material 

𝐻eff = 𝑣𝐹σ𝑖(∂𝑖 + Ω𝑖) (62) 

with 𝑣𝐹, σ𝑖 and Ω𝑖 being the Fermi velocity, the Pauli matrices, and the effective gauge field induced 

by strain, respectively. 

Understanding the effects of curved spacetime on fermions aids in the study of various astrophysical 

phenomena, including the behavior of particles in strong gravitational fields near black holes and 

neutron stars. This knowledge is essential for interpreting observational data and improving 

understanding of the universe's fundamental structure. The Dirac equation in the Schwarzschild metric 

can be used to study the behavior of fermions near a black hole:  

[𝑖γ0 (∂𝑡 +
𝑀

𝑟2
√1 −

2𝑀

𝑟
γ1γ0) + 𝑖γ1 (∂𝑟 +

1

𝑟
) + 𝑖γ2 ∂θ + 𝑖γ3 ∂ϕ − 𝑚] ψ = 0 (63) 
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which describes how fermionic particles behave in the curved spacetime around a black hole, providing 

insights into processes such as Hawking radiation and particle accretion. 

4.  Conclusion 

The successful formulation and solution of the Dirac equation in curved spacetime mark a significant 

advancement in theoretical physics. By deriving the spinorial covariant derivative and integrating 

Einstein's field equations, this study offers a comprehensive framework that includes matter interactions, 

bridging gaps in existing literature. The exact solutions for static diagonal metrics, such as the 

Schwarzschild spacetime, are critical for understanding fermion behavior in gravitational fields. These 

findings have broad implications for quantum gravity, condensed matter physics, and astrophysics. In 

quantum gravity, the derived framework contributes to the unification of general relativity and quantum 

mechanics, providing insights into fundamental interactions under gravitational influence. The 

implications for condensed matter physics, particularly in the study of materials like graphene, 

demonstrate the versatility and applicability of the Dirac equation in simulating physical phenomena. 

Additionally, astrophysical applications, such as analyzing particle behavior near black holes and 

neutron stars, highlight the importance of understanding fermion interactions in strong gravitational 

fields. The detailed mathematical framework and exact solutions provided herein lay a solid foundation 

for future research and practical applications. By enhancing the understanding of the fundamental 

interactions between quantum mechanics and gravity, this study opens new avenues for exploration and 

contributes to the ongoing efforts to develop a unified theory of physics. 
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