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Abstract. the Heisenberg uncertainty Principle is a fundamental principle in quantum mechanics, 

which was developed by the German physicist Werner Heisenberg and was proposed by him in 

1927. This principle states that for a pair of physical quantities that share phase space, such as 

position and momentum, it is impossible to accurately measure their values at the same time. 

There are several variants of it in harmonic analysis studies, and the article will introduce some 

of them in 𝑅1 space and 𝐿2 space. In the process of providing the Heisenberg inequality, the 

article proved the Plancherel identity and Schwartz inequality by using Fourier transform and 

inverse Fourier transform. Finally, author solved the equation of the wave function 𝜑(𝑥) . The 

famous physicists Heisenberg proposed one of the more novel ideas in quantum mechanics – the 

existence of unobservable orbits cannot be assumed, which did bring great influence in quantum 

mechanics. The article will introduce the conception of Heisenberg inequality and try to finish 

the proof. 

Keywords: Fourier transform, inverse Fourier transform, Cauchy-Schwartz inequality, 

Plancherel identity. 

1.  Introduction 

Harmonic analysis is a branch of mathematics that deals with the expansion of functions into Fourier 

series or Fourier integrals and related problems. It originates from the superposition problems of 

decomposing a periodic oscillation into simple harmonic oscillation in physics, and has now developed 

into a discipline with wide application [1]. Harmonic analysis not only involves mathematics, but also 

plays an important role in many disciplines such as information processing and quantum mechanics. 

Harmonic analysis is also used in tidal analysis, through which the tidal changes in a certain period can 

be calculated and the tidal properties of the area can be analyzed. Thus, harmonic analysis of tides is an 

important method used in Marine engineering for the analysis prediction of tidal changes [2]. 

Quantum mechanics, as a physical theory, is a branch of physics that studies the motion laws of 

microscopic particles in the material world. It mainly studies the basic theories of the structure and 

properties of atoms, molecules, condensed matter, as well as atomic nuclear and elementary particles. 

Together with relativity, it forms the theoretical basis of modern physics. Quantum mechanics is not 

only one of the basics theories of modern physics, but also widely used in chemistry and many other 

modern technologies [3]. 

Proceedings of  the 2nd International  Conference on Mathematical  Physics and Computational  Simulation 
DOI:  10.54254/2753-8818/41/2024CH0123 

© 2024 The Authors.  This  is  an open access article  distributed under the terms of  the Creative Commons Attribution License 4.0 
(https://creativecommons.org/licenses/by/4.0/).  

37 



 

 

Heisenberg inequality, which is also called by Heisenberg principle of uncertainty, is the bridge 

between the two theories. And the article will focus on how to prove the Heisenberg inequality using 

harmonic analysis and apply the results to the quantum mechanics. 

2.  Methods and Theory 

2.1.  background knowledge and method 

The author can use the method of taking the sum of a series of orthogonal basis to approximate a periodic 

function, essentially turning it into a sum of functions representing different frequencies [4] 

𝑓(𝑡) = ∑ 𝑐𝑘𝑒𝑖𝑘𝜔𝑡
+∞

𝑘=−∞
(1) 

To calculate c, the author will use the properties of orthogonal basis to simplify the result. 

Multiplying 𝑒−𝑖𝑛𝜔𝑡on both sides of the equations, the author will get 

𝑓(𝑡)𝑒−𝑖𝑛𝜔𝑡 = ∑ 𝑐𝑘𝑒𝑖(𝑘−𝑛)𝜔𝑡
+∞

𝑘=−∞
 (2) 

Taking the definite integral from 0 to T at both ends of the above equation 

𝑐𝑛 =
1

𝑇
∫ 𝑓(𝑡)𝑒−𝑖𝑛𝜔𝑡𝑑𝑡

𝑇

0

 (3) 

Now having accessed with the definition of Fourier series, the article will introduce Fourier transform 

to you. The author will begin by expanding the function f(t) as Fourier series on the interval [−𝑇/2, 𝑇/2] 

𝑓(𝑡) = ∑ 𝑐𝑛𝑒𝑖𝑛𝜔𝑡 
+∞

−∞
, 𝑐𝑛 =

1

𝑇
∫ 𝑓(𝑡)𝑒−𝑖𝑛𝜔𝑡

𝑇
2⁄

−𝑇
2⁄

 (4) 

On can take the limit of T tends to infinite, then the author will get [5] 

𝑓(𝑡) =
1

2𝜋
∑ (∫ 𝑓(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

∞

−∞

) 𝑒𝑖𝜔𝑡𝑑𝜔
∞

−∞
 (5) 

Then, the article has shown the definition of Fourier transform, the new function is only related to 

the given frequency w, which describes the distribution density of the component in f(t) 

𝑓 = ∫ 𝑓(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞

 (6) 

2.2.  structure and content of the article 

In the first part of the Sec. 3.1, the author will choose a certain dense subspace with good properties 

𝐶↓
∞

(𝑅1), in which space, the equality can be proved easily only through properties of complex numbers, 

integration by parts, Cauchy-Schwartz inequality and the properties of rapidly decreasing function. All 

the properties will be proved by the author later. In the second Sec. 3.2, the author will generalize the 

results proved in 𝐶↓
∞

(𝑅1) to a more general function space 𝐿2(𝑅1). The author uses a function series 𝑓𝑛 

to approximate function f, which converges uniformly to 0 in the integral as n approaches infinity, which 

is also convergent, the original function and derivative being convergent under the 𝐿2 norm. In this 

circumstance, the derivative approximates the f derivative. The squares of the two norms remain 0 and 

form the square of the integral. If n goes to infinity, the equation holds, which is easy to estimate later 

with inequalities. Finally, the author finds the specific function 𝜑(𝑥) by solving an ODE, hence getting 

the results and the application condition. 

3.  Results and Application 

3.1.  proof in 𝑪↓
∞

(𝑹𝟏)space 

The calculation and properties of complex numbers are very important in this paper. By doing which, 

author will do the contraction [6] 
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|𝐴| ≥
1

2
(𝐴 + 𝐴∗) (7) 

If 𝐴 = 𝑎 + 𝑏, then 𝐴∗ = (𝑎 + 𝑏)∗ = 𝑎∗ + 𝑏∗. One can prove the inequalities in 𝑅1(𝐶↓
∞) space by 

using the calculation related to the Fourier transform and the inverse Fourier transform.  

𝑓(𝜔) = ∫ 𝑓(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡
+∞

−∞

(8) 

𝑓(𝑡) = ∫ 𝑓(𝜔)𝑒𝑖𝜔𝑡𝑑𝜔
+∞

−∞

 (9) 

By using the properties of rapidly decreasing function, one can know  

lim
𝑥→∞

𝑥𝑓(𝑥) = 0 (10) 

∫ |𝜑(𝑥)|2 = 1
+∞

−∞

 (11) 

Then, let the author prove the Heisenberg inequality if f ∈ 𝑪↓
∞(𝑹𝟏), which is a rapidly decreasing 

function. 

𝐼 = 4𝜋2 ∫ 𝑥2|𝑓(𝑥)|2𝑑𝑥 
+∞

−∞

∫ 𝛾2
+∞

−∞

|𝑓(𝑥)|
2
𝑑𝑥 (12) 

   

𝐼 = ∫ |𝑥𝑓(𝑥)|2
+∞

−∞

𝑑𝑥  ∫ |2𝜋𝑖𝛾𝑓(𝑥)|
2

+∞

−∞

𝑑𝑥 (13) 

Then, the author will use Plancherel’s identity. The proof is as follows. 

𝐽 = ∫ |𝑥(𝑡)|2
+∞

−∞

𝑑𝑡 = ∫ 𝑥(𝑡)𝑥∗(𝑡)𝑑𝑡
+∞

−∞

 (14) 

 = ∫ 𝑥(𝑡)
+∞

−∞

1

2𝜋
∫ 𝑥∗(𝑗𝜔)𝑒−𝑗𝜔𝑡𝑑𝜔𝑑𝑡

+∞

−∞

 (15) 

=
1

2𝜋
∫ 𝑥∗(𝑗𝜔)

+∞

−∞

∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡
+∞

−∞

𝑑𝜔 (16) 

=
1

2𝜋
∫ 𝑥∗(𝑗𝜔)

+∞

−∞

𝑥(𝑗𝜔)𝑑𝜔 (17) 

 =
1

2𝜋
∫ |𝑥(𝑗𝜔)|2

+∞

−∞

𝑑𝜔 (18) 

In the steps 2 and 3, just take inverse Fourier transform and Fourier transform in order. Then, by 

using Plancherel’s identity, the author can turn the formula into [7] 

𝐼 = ∫ |𝑥𝑓(𝑥)|2𝑑𝑥
+∞

−∞

∫ |
𝑑𝑓(𝑥)

𝑑𝑥
|

2

𝑑𝑥
+∞

−∞

 (19) 

Then, the author will use Cauchy-Schwarz’s inequality: For any two elements x and y in the inner 

product space, Schwarz’s inequality states that the square of the absolute value of their inner product is 

not greater than the product of their norms. 

Here, the author is going to prove Schwartz’s inequality. For functions 𝜑, 𝛿: |(𝜑, 𝛿)| ≤ |𝜑||𝛿|, 

𝜗 = 𝛿 −
(𝜑, 𝛿)

|𝜑|2
𝜑, (|𝜑|2 ≥ 0) (20) 
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(𝜗, 𝜗) = |𝛿|2 − (𝛿, 𝜑)
(𝜑, 𝛿)

|𝜑|2
−

(𝜑, 𝛿)∗

|𝜑|2
(𝜑, 𝛿) +

(𝜑, 𝛿)∗(𝜑, 𝛿)

|𝜑|4
|𝜑|2 = 𝜑2 −

|(𝜑, 𝛿)|2

|𝜑|2
 (21) 

And because of |𝜑|2 ≥ 0, then the formula can be written as [8] 

|(𝜑, 𝛿)| ≤ |𝜑||𝛿| (22) 

The result is as required. According to the inequality which the author has proved yet, one can turn 

upwards formula into 

𝐼 ≥ [∫ |𝑥𝑓 ′(𝑥)𝑓∗(𝑥)
+∞

−∞

|𝑑𝑥]

2

 (23) 

Because the basic property of complex number (the norm of a complex number is greater than the 

norm of its real part), |𝐴| ≥
1

2
(𝐴 + 𝐴∗). Then, the author can change the result into 

𝐼 ≥ 𝑃 = [∫ 𝑥
1

2

+∞

−∞

(𝑓 ′𝑓∗ + (𝑓 ′𝑓∗)
∗
) 𝑑𝑥]

2

 (24) 

The properties of complex function show that If A=a+b, then 𝐴∗ = (𝑎 + 𝑏)∗ = 𝑎∗ + 𝑏∗. By using 

this properties, the author can rewrite result [9] 

𝑃 =
1

4
[∫ 𝑥

1

2
(𝑓 ′𝑓∗ + 𝑓 ′∗𝑓) 𝑑𝑥

+∞

−∞

]

2

 (25) 

By using the derivative multiplication rule: (𝑢𝑣)′ = 𝑢′𝑣 + 𝑣′𝑢 , the result (𝑓′𝑓∗ + 𝑓′∗𝑓) can be 

written as 2(|𝑓|2)′. Thus, the result can be transformed into 

𝑃 =
1

4
[∫ 𝑥 (|𝑓|2)

′

𝑑𝑥
+∞

−∞

]

2

 (26) 

In the next step, the author will use integration by parts 

𝑃 =
1

4
[(𝑥|𝑓|2)

−∞

+∞

− ∫ |𝑓|2𝑑𝑥
+∞

−∞

]

2

 (27) 

Because the function is a rapidly decreasing function, which means the first polynomial equals to 0. 

Then people can get the result 

𝑃 =
1

4
[∫ |𝑓(𝑥)|2

+∞

−∞

𝑑𝑥]

2

 =
1

4
‖𝑓‖

2

4
. (28) 

People now know in this space, the norm of  f  is 1. Thus, the article have got the result 

(∫ 𝑥2|𝜑(𝑥)|2𝑑𝑥
+∞

−∞

) (∫ 𝜀2|�̂�(𝑥)|2𝑑𝜀
+∞

−∞

) ≥
1

16𝜋2
 (29) 

3.2.  proof in 𝑳𝟐(𝑹𝟏)space 

Firstly, the author proved in a certain dense subspace with good properties. Then, the author will 

generalize to a more general function space, which is proving the equality in 𝐿2space. 

Because ‖𝑥𝑓‖2 > 0 (function f is a rapidly decreasing function in any space), one may assume that 

‖𝛾𝑓‖
2

< ∞. If the opposite circumstance holds, there’s nothing to prove because the result will be much 

greater. In this case, you can’t measure accurately both the location and the momentum of a particle. 

This means the Plancherel’s identity which the author has proved, 𝑓 ′̂ = 2𝜋𝑖𝑓, also holds in the 𝐿2(𝑅1) 

space. Thus, the proof for 𝐶↓
∞(𝑅1) also holds for this circumstance [10] 

∫ 𝑥(𝑓 ′𝑓∗ + 𝑓 ′∗𝑓)𝑑𝑥
+∞

−∞

 (30) 
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Now, the author set a function 𝑓𝑛 ∈ 𝐶↓
∞in order to approximate f . Because the subspace is dense, 

there are continuous functional series. As for 𝑛 → ∞,  the series converges uniformly to 0 in the integral, 

which is also analytically convergent, and the original function and derivative converge under the 𝐿2 
norm. The function meets the requirement 

lim
𝑛↑∞

∫ (1 + 4𝜋2𝛾2)|𝑓�̂� + 𝑓|
2
𝑑𝛾

+∞

−∞

 (31) 

lim
𝑛↑∞

‖𝑓𝑛 − 𝑓‖2
2 + ‖𝑓𝑛

′ − 𝑓 ′‖
2

2
= lim

𝑛↑∞
∫ (1 + 4𝜋2𝛾2)|𝑓�̂� − 𝑓|

2
𝑑𝛾 = 0

+∞

−∞

. (32) 

They can be proved simply by finding two equations 

‖𝑓𝑛 − 𝑓‖2
2 = ∫ |𝑓�̂� − 𝑓|

2
𝑑𝛾

+∞

−∞

, ‖𝑓𝑛
′ − 𝑓 ′‖

2

2
= ∫ 4𝜋2𝛾2|𝑓�̂� − 𝑓|

2
𝑑𝛾

+∞

−∞

 (33) 

And because of|𝑓𝑛(𝑥) − 𝑓(𝑥)| ≤ ‖𝑓�̂� − 𝑓‖
1
. The author can use Cauchy-Schwartz inequalities to 

zoom the formula 

𝐼 ≤ [∫ (1 + 4𝜋2𝛾2)
−1

𝑑𝛾
+∞

−∞

]

1
2⁄

[∫ (1 + 4𝜋2𝛾2)|𝑓2̂ − 𝑓|
2
𝑑𝛾

+∞

−∞

]

1
2⁄

 (34) 

By using Schwartz’s inequality. For any fixed 𝑥, and one can have 

∫ 𝑥(𝑓 ′𝑓∗ + 𝑓 ′∗𝑓)
+∞

−∞

𝑑𝑥 = lim
𝑙↑∞

lim
𝑛↑∞

∫ 𝑥(𝑓𝑛
′𝑓𝑛

∗ + 𝑓𝑛
′∗𝑓𝑛)𝑑𝑥

|𝑥|≤𝑙

                                                     

= lim
𝑙↑∞

lim
𝑛↑∞

[𝑥(|𝑓𝑛|2)−𝑙
𝑙 − ∫ |𝑓𝑛|2𝑑𝑥

|𝑥|≤𝑙

] 

= lim
𝑙↑∞

𝑙[|𝑓(𝑙)|2 + |𝑓(−𝑙)|2] − ‖𝑓‖2
2  (35) 

The proof in this step is with the same logic with the one in 2.1, because the function is a rapidly 

decreasing function, one can rewrite the result into −‖𝑓‖2
2. Then, the author has finished the whole 

proof in this space. 

For the next step, the article will focus on the specific wave function 𝜑 . By observing the proof, 

author finds that for specific 𝛽, which always satisfies a differential equation 𝜑′(𝑥) = 𝛽𝑥𝜑(𝑥). Then, 

the author solves the ODE by separating variables, the author gets the solution, which is 𝜑(𝑥) =

𝐴𝑒
𝛽𝑥2

2
⁄

 , and |𝐴|2 = √2𝐵
𝜋⁄ , 𝛽 = −2𝐵 < 0. 

3.3.  Results and Application 

The exact expression of Heisenberg’s inequality first appeared in the study of quantum mechanics when 

researchers were trying to determine the position and momentum of an example at the same time. 

Suppose that there is a electron moving along a line and there are laws of physics that can be described 

by a state function 𝜑. 

The position of the electron is described by the probability that the particle located in (a,b). Function 

|𝜑(𝑥)|2𝑑𝑥 is the density function, and the expectation function is 

�̅� = ∫ 𝑥|𝜑(𝑥)|2
+∞

−∞

 (36) 

Then the author can discuss the value of the x that minimizes the error, which is a great significance 

in quantum mechanics. The error is 

∫ (𝑥 − �̅�)2|𝜑(𝑥)|2𝑑𝑥
+∞

−∞

 (37) 

And the error of the momentum is 

∫ (𝜀 − 𝜀0)2|�̂�(𝜀)|2𝑑𝜀
+∞

−∞

 (38) 
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4.  Conclusion 

According to the Heisenberg inequality the author has proved, the result is just the product of the error 

of the position and momentum is greater than 1 16𝜋2⁄ . There are plenty of applications of Heisenberg 

inequality. For example, magnetic resonance imaging is a medical imaging technique used to observe 

the internal structure of biological tissues. In magnetic resonance imaging (MRI), the resonance signal 

of the atomic nuclear can be obtained by applying the enhanced magnetic field and electromagnetic 

pulse to the object under test. According to Heisenberg’s uncertainty principle, doctors cannot accurately 

measure the position and momentum of an atomic nucleus at the same time, so in MRI, people can only 

get position or momentum information to a certain extent, which is why MRI images are often blurry. 

The Heisenberg Uncertainty Principle is a fundamental principle in modern physics that has profoundly 

changed people’s understanding of the natural world. Although this principle prevents people from 

accurately determining the position and momentum of an elementary particle at the same time, it has 

not stopped people from using this principle to perform some important calculations and analysis. In the 

future, with the development of science and technology, people may find more opportunities to use the 

uncertainty principle to better understand and apply the fundamental laws of the natural world.  

References 

[1] McCarthy D W, Probst R C, Low F J. (1985). Infrared detection of a close cool companion to 

Van Biesbroeck. Astrophysical Journal, 290, 29-42. 

[2] Lévy-Leblond, Jean-Marc. (2021). Correlation of Quantum Properties and the Generalized 

Heisenberg Inequality. American Journal of Physics, 54(2), 135–36.  

[3] Lahti, Pekka J., Maciej J. Maczynski. (1987). Heisenberg Inequality and the Complex Field in 

Quantum Mechanics. Journal of Mathematical Physics, 28(8), 1764–69.  

[4] Grünbaum, F. Alberto. (2023). The Heisenberg Inequality for the Discrete Fourier Transform. 

Applied and Computational Harmonic Analysis, 15(2), 163–67. 

[5]  Stan, Aurel. (2005). On Heisenberg Inequality. Communications in Contemporary Mathematics, 

07(01), 75–88. 

[6] De La Peña, Luis. (1980). Conceptually Interesting Generalized Heisenberg Inequality. American 

Journal of Physics, 48(9), 775–76. 

[7] Mueller, C., and Stan A. (2005). A Heisenberg Inequality for Stochastic Integrals. Journal of 

Theoretical Probability, 18(2), 291–315. 

[8] Wiener, Norbert. (1930). Generalized Harmonic Analysis. Acta Mathematica, 55, 117–258. 

[9] Hewitt, Edwin, and Kenneth A. Ross. Abstract Harmonic Analysis. Springer Berlin Heidelberg, 

1963. 

[10] Schwab, Keith C., and Michael L. Roukes. (2015). Putting Mechanics into Quantum Mechanics. 

Physics Today, 58(7), 36–42. 

Proceedings of  the 2nd International  Conference on Mathematical  Physics and Computational  Simulation 

DOI:  10.54254/2753-8818/41/2024CH0123 

42 


