
 

 

Non-Contact Human Body Dimension Estimation Methods 

Based on Deep Learning: A Critical Analysis 

Yichen Zhang 

School of Artificial Intelligence, South China Normal University, Guangzhou, China  

20212005177@m.scnu.edu.cn 

Abstract. With the advancement of information technology, Human Body Dimension 

Estimation (HBDE) is moving towards digitalization and non-contact methods. This paper 

critically reviews non-contact HBDE methods based on deep learning, primarily covering image-

based methods, the Adaptive Body Structure Segmentation (ABSS) algorithm with height and 

weight measurements, and 3D meshes or point cloud data methods. Convolutional Neural 

Networks (CNNs) excel in image measurement, while the ABSS algorithm with adaptive 

segmentation achieves high accuracy. Recent studies, such as the Grey Wolf Optimizer-Elman 

Neural Network (GBWO-ENN) model, have significantly improved prediction accuracy by 

optimizing neural network structures. Additionally, 3D point cloud data combined with the 

Skinned Multi-Person Linear (SMPL) model has proven effective in complex scenarios. This 

paper summarizes the performance of various methods, analyzes common datasets, and explores 

future development directions for non-contact HBDE. Despite significant progress, this field still 

faces challenges such as data quality, scarcity of extreme samples, and privacy issues. Future 

research should focus on building high-quality datasets and developing lightweight measurement 

networks to meet practical application needs. 

Keywords: Non-contact measurement, human body dimension estimation, deep learning, 

convolutional neural networks. 

1.  Introduction 

With the rapid development of information technology, Human Body Dimension Estimation (HBDE) 

is advancing towards digitalization and non-contact methods. Human body dimensions refer to 

measurements of various parts of the body such as height, weight, or more detailed metrics like shoulder 

width or chest circumference. Reliable methods for measuring the former, such as scales for weight, 

already exist. However, methods for measuring the latter often have significant errors in everyday 

scenarios despite being of greater reference value in primary applications such as clothing design. 

Currently, non-contact HBDE methods mainly rely on 3D body scanning devices[1] or combine 

human depth data captured through RGB-D cameras. However, these methods face challenges such as 

high costs, stringent environmental requirements, and poor portability. Research on non-contact HBDE 

is still relatively scarce, and comprehensive reviews are particularly lacking. Therefore, this paper aims 

to provide a comprehensive, extensive, and in-depth summary of non-contact HBDE methods based on 

deep learning. 
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Starting from image-based measurement methods, methods based on the Adaptive Body Structure 

Segmentation (ABSS) algorithm with height, weight, and circumference values, and methods based on 

3D meshes or 3D point cloud data, this paper reviews recent research achievements in the field of non-

contact HBDE. It analyzes and compares the main models and performances of various methods and 

looks forward to the future development of HBDE. 

2.  Related Works 

Non-contact HBDE relies on neural networks trained on a large number of human body dimension 

measurement data samples. This section introduces some key related works. Table 1 summarizes several 

models used for HBDE and their backbone networks. 

Table 1. Network models and its backbone 

Network Models Backbone 

Neural Anthropometer CNN 

Shapy CNN 

BMnet CNN+GBWO-ENN 

GBWO-ENN ENN 

IWOA-ENN-MC ENN 

UGA-BP-MC BP 

PC-BoDiEs MLP 

Conv-BoDiEs  CNN 

Human Body Dimension Estimation: Non-contact methods for HBDE analyze images taken from 

different perspectives to measure various body dimensions without direct contact with the subject. In 

2016, Dibra et al.[2] first attempted to use Convolutional Neural Networks (CNNs) to recover 3D human 

meshes and body measurements from silhouettes, training on synthetic silhouette images generated from 

the CAESAR dataset. In 2020, Hu et al.[3] proposed a human body multi-feature point extraction and 

dimension measurement algorithm based on ABSS, called Human pesm-abss, which accurately acquires 

dimension information of various body parts. In 2021, Hu et al.[4] introduced a model based on a BP 

network, integrating the Upgrade Genetic Algorithm(UGA) and Markov Chain(MC) method, resulting 

in a simpler neural network structure. In 2022, Nataniel Ruiz et al.[5] proposed using adversarial 

generative networks to increase the number of extreme samples and combine multi-view images, 

significantly reducing measurement errors. In 2024, Yang et al.[6] proposed a human body dimension 

prediction method based on an Elman Neural Network (ENN) network, which improved global stability 

and prediction accuracy compared to Hu's Upgrade Genetic Algorithm-Back Propagation-Markov 

Chain(UGA-BP-MC)[4] and the 2023 Improved Whale Optimization Algorithm-Elman Neural 

Network-Markov Chain(IWOA-ENN-MC)[7] neural network models. 

Skinned Multi-Person Linear model(SMPL): SMPL[8] is a statistical model for 3D human shape and 

pose estimation based on 3D mesh vertices. It aims to capture the geometric shape and motion pose of 

the human body by training on large-scale 3D human scan data, and it is widely used in the field of 

computer vision. 

Human pesm-abss algorithm (referred to as ABSS algorithm below): This is a method for extracting 

feature points and measuring human dimensions from 2D images based on Adaptive Body Structure 

Segmentation[3]. The method combines height proportion and image preprocessing techniques to 

address issues with traditional image detection models, such as long detection times and inaccurate key 

points. This method can obtain relatively accurate human height, gender, and circumference width and 

thickness results from 2D human images. 

3.  Summary of Non-Contact HBDE Methods 

Generally, non-contact HBDE methods based on deep learning often rely on neural networks, with 

different methods employing different types of neural networks. Additionally, various non-contact 
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HBDE methods often require different types of input data, which has significant implications for the 

choice of methods in different application scenarios. Therefore, this paper categorizes these methods 

based on the types of input data required during the prediction process into image-based human 

dimension estimation methods, estimation methods based on the ABSS algorithm[3] with height, weight, 

and circumference values, and estimation methods based on 3D meshes or 3D point cloud data. This 

section will introduce representative methods from these categories, and the next section will compare 

their performance based on prediction results from specified datasets. 

3.1.  Image-Based Human Dimension Estimation Methods 

Classic image-based measurement methods use CNNs to extract features from RGB images. These 

extracted features are further processed to generate 3D human meshes based on these parameters or 

detect key points using specially trained neural networks. Traditional methods may also involve manual 

operations to obtain key point positions of the human body, including shoulders, elbows, wrists, etc. 

The key points obtained by the above methods are finally used to infer specific human measurement 

data through geometric calculations and regression models. This subsection will briefly introduce two 

representative methods and describe the improvements they have made based on the above basic 

implementation logic. 

3.1.1.  BMnet. This method[4] uses Generative Adversarial Networks (GANs) and CNNs for human 

dimension estimation, enhancing model robustness through adversarial samples. First, preprocessed 

front and side human images are input, and a unique adversarial body simulator is introduced to fill the 

gap of extreme individual data. After feature extraction by CNN, the extracted feature maps generate 

high-dimensional feature vectors through multiple layers of convolution and pooling operations. 

Subsequently, the feature vectors are input into a key point detection network to detect the coordinates 

of human key points, including shoulders, elbows, wrists, hips, knees, and ankles, and further infer 

specific human measurement data. Finally, the model outputs highly accurate human measurement 

results, demonstrating the effectiveness of using adversarial samples and multi-stage key point 

regression methods in human dimension estimation. Additionally, the model also includes tests on multi-

view inputs and height and weight inputs, all achieving ideal results. 

3.1.2.  Shapy. This method[9] uses CNNs to extract human features from RGB images, which are used 

to regress the parameters of the human model. Shapy still employs the method of generating 3D human 

meshes and recognizing human key points to obtain measurement values. Additionally, Shapy 

introduces a method to enhance model training through crowd-rated language shape attributes. By 

collecting linguistic descriptions of human shapes, such as "tall," "slim," "muscular," etc., and pairing 

them with the obtained 3D shapes, Shapy introduces loss functions related to language shape attributes 

in training, optimizing the model multidimensionally in combination with measurement value loss 

functions. 

3.2.  Estimation Methods for Height, Weight, and Circumference Values Based on the ABSS Algorithm 

Compared to the image-based human dimension estimation methods mentioned in the previous section, 

methods based on the ABSS algorithm for height, weight, and circumference values usually do not use 

CNNs as their core neural networks. Unlike traditional methods, these methods do not involve 

generating or using 3D body models but instead perform adaptive segmentation of key areas of the 

human structure based on orthogonal human images to obtain gender, height and weight values, and 

circumference values, and directly predict the outputs. Additionally, some optimization algorithms or 

stability and fluctuation handling methods are also included to optimize the neural network. This 

subsection will mention several representative methods and briefly introduce the neural networks and 

optimization methods they employ. 
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3.2.1.  GBWO-ENN.  Grey Black Wolf Optimization–Elman Neural Network(GBWO-ENN) method[6] 

improves the traditional Grey Wolf Optimization Algorithm (GWO) by addressing its problems of easily 

falling into local optima and balancing global and local searches. The proposed GBWO algorithm uses 

a nonlinear decreasing method to reduce the convergence coefficient, thereby optimizing the algorithm's 

performance. GBWO is then used to optimize the ENN, using the weights and thresholds output by the 

trained GBWO model as the initial parameters for ENN training, achieving good accuracy and 

robustness in human dimension prediction. 

3.2.2.  A-BP-MC. This method[4] addresses the issues of the widely used BP neural network for human 

dimension prediction, such as easily falling into local optima and improper initial weight and threshold 

assignments. By optimizing the BP neural network with the improved UGA, and using the Markov 

Chain method to improve model accuracy and prediction stability in unstable environments. The main 

execution steps of the model include input image, body type classification, adaptive segmentation of 

key areas of the human structure based on the ABSS algorithm[3], feature dimension extraction, UGA-

BP model training, and Markov correction model training, achieving good robustness and accuracy in 

human dimension prediction. 

3.3.  Human Dimension Estimation Methods Based on 3D Meshes or 3D Point Clouds 

Human dimension estimation methods based on 3D meshes or 3D point clouds often face challenges 

such as high data acquisition difficulty, significant cost, and scarcity of datasets. Alldieck et al. [10-12] 

proposed using depth cameras to acquire human depth information, then reconstructing the human body 

through the SMPL model and the Poisson method[13] to obtain circumference information of various 

parts. In the methods introduced in this section, 3D point clouds are directly used as input data, and the 

SMPL model is used to generate 3D human data and obtain measurements of various parts, which are 

then used for subsequent model training and validation. This subsection will introduce two typical 

human dimension estimation methods. 

3.3.1.  Neural Anthropometer. This model[14] proposes a classic human dimension estimation method 

using data generated by the SMPL model to obtain measurements of various parts of the human body 

through 3D modeling. Combined with the Blender software package, it synthesizes 2D images to train 

CNN, enabling the estimation of human dimensions from input 2D images. This method overcomes the 

scarcity of traditional human dimension data while providing a reliable human dimension estimation 

method. 

3.3.2.  Point Cloud Body Dimensions Estimation (PC-BoDiEs). This model[15] uses stacked Multi-

Layer Perceptron (MLP) convolution layers to extract global and local features from point cloud data 

and regress 16 predefined human dimensions. Each MLP layer is followed by a ReLU activation 

function to enhance the model's ability to handle nonlinear problems. The input to the PC-BoDiEs model 

is unorganized 3D body scan data merged from two viewpoints. This data is sampled using farthest point 

sampling to match a fixed number of points before being fed into the network, reducing the model's time 

and memory requirements. During training, the model parameters are optimized using the AMSGrad 

variant of the Adam optimizer. Throughout the training process, the learning rate is gradually reduced 

using a cosine decay strategy. The PC-BoDiEs model, by processing data from unorganized 3D point 

clouds, overcomes the cumbersome process of fitting human scan data to predefined body models, 

directly regressing body dimensions from point cloud data, effectively improving the accuracy and 

efficiency of human dimension estimation from 3D data. 
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4.  Major Datasets and Experimental Results Comparison 

4.1.  Major Datasets 

Table 2 introduces commonly used datasets in HBDE tasks. According to the number of samples, the 

number of measurement items, and the types of data included in different datasets, they are suitable for 

various HBDE tasks. 

Table 2. Commonly used datasets in HBDE tasks, including the datasets’ name, number of samples, 

number of measurement items and the type of data used 

Dataset Name 
Number of 

Samples (People): 

Number of 

Measurement Items 
Data Type 

CAESAR 2400 40+ 2D､3D､Measurement Values 

MAD 4419 5 2D､Measurement Values 

BodyM 2505 14 2D､3D､Measurement Values 

ANSURⅡ 13000+ 100+ Measurement Values 

Human3.6M 17 - 2D､3D 

(1) CEASER (Civilian American and European Surface Anthropometry Resource): This dataset 

includes samples of adults from North America and Europe, providing detailed 3D body scans and 

body measurement data. It is widely used in generating 3D human mesh data using the SMPL model. 

(2) MMTS (Model Measurements Test Set): This dataset comes from several modeling agency websites 

and includes high-resolution multi-view human RGB images and detailed body measurement data. 

It was used in the training of the Shapy model [10], where researchers added semantic labels. 

(3) BodyM Dataset: This is an advanced dataset specifically for human pose estimation and 3D human 

reconstruction. It contains high-precision 3D body scans and pose annotations. The provided 3D 

human data includes 50 key points and was collected in a laboratory environment using different 

camera angles and lighting conditions to simulate outdoor image capture. Some subjects were 

photographed multiple times in different clothing to enhance the robustness of the dataset. 

(4) ANSUR II (Anthropometric Survey of U.S. Army Personnel): This dataset is a body measurement 

survey conducted by the U.S. military, aiming to collect and analyze the anthropometric data of U.S. 

soldiers. It has a large number of samples, containing over 100 body measurement items, but it does 

not include images, and all subjects are U.S. military personnel. 

(5) Human3.6M Dataset: This dataset contains approximately 3.6 million 3D human poses and 

corresponding image data from 11 professional actors (6 men and 5 women) performing in 17 

different scenarios. The dataset includes pixel-level labels for 24 body parts of these actors and high-

precision 3D joint data, which can be used to infer and calculate various human body dimensions. 

4.2.  Evaluation Metrics and Results 

Among the methods introduced in Section 3, all methods used Mean Absolute Error (MAE) as one of 

the standards to evaluate model performance in the experiments. Most of the experiments recorded 

results for chest circumference, waist circumference, and hip circumference. Although these 

experiments were conducted on different datasets, they still allow for an objective evaluation of the 

models' performance to some extent. Table 3 shows the MAE results obtained from evaluating different 

models on different datasets. 
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Table 3. Results of the models tested on different datasets, using MAE as evaluation metrics. 

Model Name 
Evaluation Metrics(MAE/mm) 

Evaluation Dataset 
Chest Hips Waist Overall 

Neural Anthropometer 25.22 27.53 25.85  26.20  SMPL Generated 

Shapy 
65.00  57.00  69.00  63.67  

HBW(Human Body 

Wild) 

64.00  74.00  98.00  78.67  MMTS 

BMnet(Single View) 33.95  31.03  31.93  32.30  

BodyM BMnet(Multi 

View+Height+Weight) 
15.92  9.74  15.44  13.70  

GBWO-ENN 13.80  8.50  8.40  10.23  ANSURⅡ 

IWOA-ENN-MC 15.91  17.16  17.85  16.97  CAESAR 

UGA-BP-MC 29.10  23.00  20.00  24.03  ANSURⅡ 

PC-BoDiEs 32.90  - 22.90  27.90  CAESAR 

Conv-BoDiEs  25.70  - 16.50  33.95  CAESAR 

It can be learnt from the table that PC-BoDiEs and Conv-BoDiEs (using grayscale images) have an 

overall result calculated as the average of only two metrics due to the missing hip test values. It is worth 

mentioning that the original test results included a larger number of metrics; for comparison purposes, 

only a subset is used here. The original MAE recorded for Conv-BoDiEs (using grayscale images) was 

46.40mm, and for PC-BoDiEs, it was 49.50mm. Similarly, due to the large number of measurement 

metrics in the original experimental results, the Neural Anthropometer model had an overall MAE of 

20.89mm when all measurement metrics were considered. 

4.3.  Evaluation Results Summary 

As shown in Table 3, methods based on the ABSS algorithm for height, weight, and circumference 

values generally have higher accuracy. Among the image-based methods, both Neural Anthropometer 

and BMnet (Single View) exhibit good accuracy. It is worth noting that the latter shows a significant 

improvement in accuracy after incorporating multi-view images (not listed in the table), and its accuracy 

reaches an MAE of 13.70mm after including height and weight as metrics, almost comparable to the 

accuracy of GBWO-ENN, which does not rely on images. This highlights the important role of height 

and weight values and adversarial augmentation in improving the accuracy of human dimension 

estimation. It also provides a direction for future research: whether more accurate height and weight 

values can be obtained from images to assist in the measurement of more human dimension metrics, 

thereby enabling accurate measurement of multiple human dimensions using images alone. 

5.  Conclusion 

As a research hotspot in the field of artificial intelligence in recent years, non-contact human body 

dimension estimation has significant practical implications in areas such as clothing design, health status 

estimation, and posture recognition. This paper categorizes human body dimension estimation methods 

based on the type of input data used: image-based human dimension estimation, estimation of height, 

weight, and circumference values using the ABSS algorithm, and estimation based on 3D human meshes 

or 3D point clouds. The paper summarizes the network models employed by these methods and their 

characteristics. It also introduces commonly used datasets and evaluation metrics in the field of human 

dimension estimation, analyzing the performance of different network models on various datasets. 

Although significant research progress has been made in non-contact human body dimension 

estimation based on deep learning, several problems and challenges remain: 

Quality of existing human image datasets needs improvement: The commonly used datasets contain 

some blurry images, and variations in gender and camera distance significantly impact the model's 
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estimation accuracy. Additionally, some datasets used in research have a relatively homogeneous sample 

type, such as the ANSUR II dataset, which uses body measurement data from U.S. Army soldiers. These 

factors can affect the accuracy of the model's human dimension estimation results. 

Scarcity of extreme samples and lack of representativeness: Current research on human dimension 

estimation based on 3D human meshes or 3D point clouds mainly relies on SMPL synthetic data, which 

may lead to insufficient generalization ability in practical applications. Most training datasets also lack 

samples of extreme body types, potentially reducing the model's prediction accuracy for these rare body 

types. Using adversarial Body Simulators (ABS) may significantly increase the time and cost of 

generating samples. 

Occlusion issues and user privacy concerns: When the subject is wearing loose-fitting clothing, 

changes in body contour may affect the model's prediction results. Collecting 3D human data or precise 

2D human images often requires subjects to wear tight-fitting clothing or no clothing, which raises 

potential privacy issues. Additionally, for methods based on the ABSS algorithm, optimizing the 

adaptive segmentation method to obtain accurate values is an important factor to consider. 

Computational power requirements for model deployment: As the performance of human dimension 

estimation network models improves, the computational power required for model deployment and 

operation in real-life and production scenarios may not be met, preventing the models from achieving 

their expected prediction results. 

In summary, addressing the above issues requires the establishment of comprehensive, well-

classified human dimensions and image datasets with clear indicators. Improving the quality of datasets 

and synthetic data, and creating representative datasets, are the main directions for future dataset 

optimization. Current research methods are constrained by deployment costs and computational power 

requirements, making them difficult to apply in personal practical use. Therefore, the development of 

lightweight human dimension estimation networks will be a primary research direction in the future. 

Building models that can adapt to various input data in different application scenarios and addressing 

potential issues in obtaining input data are key to the widespread application of human dimension 

estimation networks. 
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