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Abstract. In daily life and industrial production, it is crucial to accurately detect changes in liquid 

level in containers. Traditional contact measurement methods have some limitations, while 

emerging non-contact image processing technology shows good application prospects. This 

paper proposes a container dynamic liquid level detection model based on U²-Net. This model 

uses the SAM model to generate an initial data set, and then evaluates and filters out high-quality 

pseudo-label images through the semi-supervised framework to build an exclusive data set. The 

model uses U²-Net to extract masking images of containers from the data set, and uses 

morphological processing to compensate for masking defects. Subsequently, the model 

calculates the grayscale difference between adjacent video frame images at the same position, 

segments the liquid level change area by setting a difference threshold, and finally uses a 

lightweight neural network to classify the liquid level state and achieves the accuracy of 91.39%. 

This approach not only mitigates the impact of intricate surroundings, but also reduces the 
demand for training data, showing strong robustness and versatility. A large number of 

experimental results show that the proposed model can effectively detect the dynamic liquid 

level changes of the liquid in the container, providing a novel and efficient solution for related 

fields. 

Keywords: Detection, data augmentation, semi-supervised learning, image processing. 

1.  Introduction 

Liquid level detection technology in containers plays a vital role in daily life. It not only prevents liquid 

overflow in home kitchens and ensures cooking safety, but also monitors the amount of liquid in storage 
tanks and reactors in the industrial field to ensure smooth and safe production processes. Also in 
construction, liquid level detection is used to monitor liquid level in tunnels and underground facilities 
to prevent flooding and structural damage. Scenarios like this are widely used. 

To accurately monitor liquid levels, traditional contact measurement methods like float gauges and 
pressure transmitters [1,2] offer high measurement accuracy but have certain limitations. These methods 
require the measuring element to be directly immersed in the liquid, making them unsuitable for harsh 

environments involving highly corrosive substances, extreme temperatures, or high pressures. 
In recent years, some non-contact remote measurement technologies have rapidly advanced, such as 

liquid level measurement systems based on radar and sonar principles [3,4]. These novel techniques 
eliminate the necessity for physical contact with the liquid being measured, offer a wide measurement 
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range, and highly adapt to different environments. However, they also face challenges like relatively 
high system costs and strict requirements on environmental conditions like temperature and pressure. 

With continuous advancements in computer vision and image processing, image-based liquid level 
detection methods are increasingly emerging and attracting widespread attention in the field. Traditional 

image algorithms have proposed numerous liquid level detection methods using image shooting and 
processing to obtain liquid level conditions through spatial mathematical relationships [5]. These 
methods achieved convincing results over a decade ago. However, the application of deep learning in 
image processing has ushered in a new era. For liquid level detection in large scenes like lakes and 
reservoirs, substantial advancements have been achieved [6,7,8,9,10,11]. For example, Fang et al. [8] 
used YOLOv4 to accurately locate liquid gauge scale characters, then used DeepLabv3+ to precisely 
segment the junction area between the gauge and liquid body, and finally extracted liquid level and 
calculated actual values using image processing techniques. Sun et al. [6] achieved high-precision, real-

time liquid level monitoring through steps like image pre-processing, edge detection, affine 
transformation correction, keyword positioning, and edge projection. Xia et al. [7] improved the 
superpixel and graph cutting algorithm, then performed liquid level detection based on the semantic 
segmentation network technology of U-net. Zhang et al. [10] proposed a liquid level height difference 
prediction method based on digital image processing by using a digital camera to capture a top view of 
the container, then performing image pre-processing, edge detection, and ellipse fitting to calculate the 
liquid level and distance from the container top. Bobovnik et al. [11] processed the images of the liquid 

surface and the measuring scale to detect the positions of the scale marks and the liquid level, correcting 
for lens distortion and parallax effects. Then, the machine vision system ultimately converts the liquid 
level position into a volume reading. 

These methods have improved accuracy, generalization ability, and environmental adaptability but 
still face challenges and bottlenecks. Firstly, existing research mainly focuses on large liquid bodies, 
lacking relevant technology accumulation for tricky container scenarios. Secondly, most algorithms 
have high training data requirements, resulting in poor generalization capabilities when applied to 

different environments. Furthermore, complex environments introduce interference like lighting and 
occlusion, affecting detection accuracy, which means that mitigating the influence of environmental 
factors remains a critical challenge. Finally, for dynamically changing liquid level, accurate and stable 
detection is challenging due to factors like fluctuations, and existing methods lack modeling and analysis 
of dynamic processes. All these challenges await further breakthroughs and research. 

Based on the above analysis, this study proposed a new visual processing method for dynamic liquid 
level changes in containers, greatly addressing issues of high sample requirements, complex 
environmental influences, and limited detection scene sizes. Our main contributions are threefold: 

• We construct a dedicated dataset using the SAM model and evaluate it through the semi-supervised 
framework to obtain a standardized and specialized dataset. 

• By employing U²-Net for salient object extraction, we obtain the container masking, focusing the 
analysis solely on the liquid surface within the container image. This greatly mitigates interference 
from external environments and shifts the detection emphasis toward subtle changes in small scale 
features within the image. 

• We adopt image morphological compensation methods to significantly improve the quality of 

suboptimal masking, resulting in more distinct and smooth boundaries. 

2.  Related Works 

2.1.  SAM Model 

Segment Anything Model (SAM) [12] represents an innovative deep learning architecture designed to 
efficiently segment arbitrary image content through a prompt-based segmentation task. As shown in Fig. 
1, this model can generate precise segmentation masking in real time, without the need for specific task 
training, by utilizing flexible prompts such as points, bounding boxes, and text. SAM relies on a large-
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scale dataset named SA-1B, which includes over 1.1 billion auto-generated masking, ensuring the 
model’s generalization across diverse scenes. The zero- shot transfer learning capabilities of SAM have 
demonstrated remarkable performance across multiple downstream tasks, marking a significant 
breakthrough in the field of image segmentation. 

 

 

Figure 1. SAM architecture 

It’s noteworthy that SAM has learned a universal ability for object recognition and segmentation, 
thus its exceptional performance is not confined to specific object categories. Whether dealing with a 
single target or multiple targets of the same or different categories, SAM accurately segments them. 
This versatility positions SAM for a wide range of applications [13,14], such as interactive image editing, 
general object segmentation, and visual question answering, among others. Beyond segmentation 

quality, another major advantage of the SAM model is its computational efficiency. With no need for 
time-consuming task-specific fine-tuning, SAM can respond to user prompts in real time, rapidly 
producing segmentation outcomes, thereby facilitating downstream visual tasks and offering an 
excellent user interaction experience. 

SAM’s image segmentation capabilities and prompt adapt- ability guide the container masking 
creation, creating a foundational dataset for model training. Its scene generalization allows the use of 
various container types, broadening the method’s scope. While SAM presents real-time interaction, this 

study uses it for data creation, not full liquid level detection. To improve dataset reliability, we also 
integrate SemiReward [15] for masking quality refinement. 

2.2.  U²-Net 
U²-Net [16] architecture is a deep learning framework specifically tailored for salient object detection 
(SOD) tasks. Its core innovation lies in the unique nested U-shaped structure, which effectively captures 

rich contextual information at different scales. The architecture utilizes Residual U-blocks (RSUs) at 
each stage to extract multi-scale features while maintaining high-resolution feature maps. The clever 
design of the RSUs enhances the network’s depth without significantly increasing computational costs, 
allowing U²-Net to be trained from scratch without relying on pre-trained image classification backbones. 
This design not only improves SOD performance but also computational efficiency, providing a novel 
and efficient solution for the SOD domain. 

Unlike traditional methods that depend on pre-trained back- bones [17], U²-Net’s ability to train from 

zero showcases performance comparable to or even better than the current state of the art. And the 
training loss L from [16] is defined as: 

𝐿 = ∑ 𝑤𝑠𝑖𝑑𝑒
(𝑚)

𝑀

𝑚=1

𝑙𝑠𝑖𝑑𝑒
(𝑚)

+𝑤𝑓𝑢𝑠𝑒 𝑙𝑓𝑢𝑠𝑒 (1) 

where 𝑀 is the number of side-output saliency maps, 𝑤𝑠𝑖𝑑𝑒
(𝑚)

 is the weight of the 𝑚th side-output loss, 

𝑙𝑠𝑖𝑑𝑒
(𝑚)

 is the loss of the 𝑚th side-output saliency map, 𝑤𝑓𝑢𝑠𝑒 is the weight of the fusion output loss, and 

𝑙𝑓𝑢𝑠𝑒 is the loss of the final fusion output saliency map. Each side-output loss 𝑙𝑠𝑖𝑑𝑒
(𝑚)

 is computed using 

the binary cross-entropy loss from U²-Net as shown below: 
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𝑙 = ∑ [𝑃𝐺(𝑟,𝑐)𝑙𝑜𝑔𝑃𝑆(𝑟,𝑐) + (1 −𝑃𝐺(𝑟,𝑐))𝑙𝑜𝑔(1− 𝑃𝑆(𝑟,𝑐))]

(𝐻,𝑊)

(𝑟,𝑐)

(2) 

where (𝑟, 𝑐) is the pixel coordinates and (𝐻,𝑊) is image size of height and width. 𝑃𝐺(𝑟,𝑐) and 𝑃𝑆(𝑟,𝑐) 
denote the pixel values of the ground truth and the predicted saliency probability map, respectively. The 

training process tries to minimize the overall loss 𝐿. In the testing process, here choose the fusion output 

𝑙𝑓𝑢𝑠𝑒 as final saliency map. 

U²-Net’s hierarchical U-shaped architecture and RSUs in- form the approach, allowing LiqD to 
enhance container segmentation precision without increasing computational de- mands. Its train-from-
zero approach enables to create models tailored for specific container data, deviating from U²-Net’s 
general SOD focus. We’ve adapted U²-Net for container segmentation by adjusting training data, loss 
functions, and adding morphological processing to better suit liquid level detection tasks. 

2.3.  Bottleneck in Hand-crafted Design 

2.3.1.  Morphological Compensation 
In the process of image analysis, defective images are commonly encountered. To address the issue like 
what this study encountered, Vizilter et al. [18] employed morphological image analysis to solve the 
problems of change detection and shape matching in images, which is similar to the idea of using 

morphological operations for image restoration as described by Raid et al.  [19]. By adopting these 
methods, defects can be compensated for by filling holes and connecting broken regions in the image. 

Firstly, a structuring element needs to be defined, which specifies the shape and size of the 
morphological operation. In this study, here choose to use an elliptical structuring element with a size 
of 5×5 pixels. The morphological closing operation, which consists of dilation followed by erosion, is 
then applied to the current binary image to fill small holes and connect broken regions. Based on this 
theory, the following equation can be derived: 

𝐴⊕𝐵 = {𝑥, 𝑦|(𝐵)𝑥𝑦 ∩ 𝐴 ≠ ⌀} (3) 

where (B)xy denotes the translation of the structuring element B such that its origin is at (x, y). The output 
pixel (x, y) is set to 1 if the intersection of the translated B with the set A is non-empty, otherwise it is 
set to 0. 

Erosion can shrink the target region, essentially causing the image boundaries to contract. It can be 

used to eliminate small, insignificant targets. The equation for erosion from [19] is expressed as: 

𝐴⊖𝐵 = {𝑥, 𝑦|(𝐵)𝑥𝑦 ⊆ 𝐴} (4) 

where (B)xy denotes the translation of the structuring element 
B such that its origin is at (x, y). The output pixel (x, y) is set to 1 if the translated B is completely 

contained within the set A, otherwise it is set to 0. This equation represents the erosion of A by the 

structuring element B. 

2.3.2.  Grayscale Value Conversion 
Most of the images in this study are in color format, but the color information is not highly relevant. 
Therefore, it is crucial to introduce grayscale conversion to obtain meaningful numerical values. In terms 
of grayscale conversion methods, Saravanan [20] proposed a novel algorithm that addresses the contrast, 

sharpness, shadows, and structure of the image. This algorithm approximates, reduces, and adds to the 
chromaticity and luminosity of the RGB values. The formula from [20] is as follows: 
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𝑌 = 0.299𝑅 + 0.587𝐺 + 0.114𝐵
𝑈 = 0.565(𝐵 − 𝑌)

𝑉 = 0.713(𝑅 − 𝑌)

𝐼1 =

𝑅
3
+
𝐺
3
+
𝐵
3
+𝑈 + 𝑉

4
(5)

 

where Y represents luminance, while U and V represent chrominance. The calculation of Y is based on 
the weighted sum of RGB components, while the calculation of U and V is based on the differences 

between red, green, blue, and luminance. The intensity value I1 is computed by taking the average of the 
RGB components, adding the U and V components, and dividing the sum by 4. 

Traditional grayscale image algorithms are not specifically tailored for classification purposes. In the 
context of image classification, Güneş  ̧ et al. [21] proposed a novel color-to- grayscale conversion 
method based on Genetic Algorithm (GA). By utilizing GA, the conversion coefficients for color images 
are optimized to generate grayscale images with enhanced discriminative features, aiming to reduce 
errors in image classification problems. The formula from is as follows: 

𝑟′ =
𝑟

𝑟 + 𝑔 + 𝑏

𝑔′ =
𝑔

𝑟 + 𝑔 + 𝑏

𝑏′ =
𝑏

𝑟 + 𝑔 + 𝑏
𝐼2 = 𝑟′𝑅 +𝑔′𝐺 + 𝑏′𝐵 (6)

 

Integrating the above two methods, the final intensity value I is obtained by adding I1 and I2 through 
the weighted proportional coefficients α and β using the equation: 

𝐼 = 𝛼 ∙ 𝐼1 + 𝛽 ∙ 𝐼2 (7) 

where α and β are weighting coefficients satisfying α+β = 1. I1 takes into account visual factors such as 
luminance, chrominance, and contrast, while I2 emphasizes discriminative power for classification. The 
two methods are complementary to each other. By employing a weighted fusion approach, the visual 
quality can be enhanced while simultaneously taking classification performance into account. 

3.  Methodology 

Based on the algorithm analysis mentioned above, this study proposes the whole architecture of LiqD 
as illustrated in Fig. 2. The algorithm consists of four core modules: Data engine construction, salient 
object extraction from the container, morphological compensation of the container shape, and 
calculation of the height difference in the container for liquid level detection. 

3.1.  Construct Data Engine 

For the data engine approach, the core key is how to evaluate and filter labels and how to generate more 
label candidates of different qualities. SemiReward (SR) [15] has proposed an effective pseudo-label 
screening method for classification and regression tasks in the past. We modified this method to make 
it a method that can evaluate the generated masking. We use common Masking evaluation as the metric 
that can be learned allows the trained SR model to start evaluating and screening Masking. At the same 
time, data amplification is performed using methods such as noise addition and the most advanced mix-
up [22] to ultimately seek the possibility of traversing Masking as much as possible. Through the data 

engine, we found that this is a very resource-saving method to achieve better training purposes. 
Combined with many of the most advanced methods, it greatly improves the sample quality during 
training. 
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3.2.  Salient Target Extraction 
Using the U²-Net based salient object extraction algorithm to focus on container images. Initially, the 
SAM was employed for image collection and processing, resulting in a substantial dataset of container 
images along with their corresponding masking images for subsequent analysis. These images, along 

with the masking, ccc were fed into the U²-Net for training, resulting in a salient object detection model 
specifically designed for extracting containers from common images. 

  

Figure 2. The architecture of LiqD. It consists of four core parts. (1) SemiReaward selects training 
set: SAM generates plenty of masking candidates after data augmentation and then SemiReward selects 
the high-quality masking to form the dataset; (2) SOD: After training from the specific dataset, use U²-
Net to get the masking. The masking will include the complete and incomplete shape; (3) Image 
Segmentation Container: For the masking without complete shape, use morphological compensation to 
gain the complete shape. And then, fuse the original image with masking to obtain the image with only 

the container part; (4) Liquid Level Detection: Uniform binarized images are obtained by inter-frame 
difference of the obtained fusion images, and these images are sent to neural networks EfficientNet for 

training with four liquid level state labels. 

3.3.  Container Morphology Compensation 

Following the application of the U²-Net model, certain images exhibited containers with colors closely 
resembling the surrounding environment, making them difficult to separate, which is shown in the left 
of Fig. 3. This resulted in discontinuity between adjacent segmented images. To address this issue, 
morphological operations were applied to the images to fill in the gaps and obtain complete images, 
ensuring a stable and continuous segmentation of the images, which is shown in right of Fig. 3. After 
being processed by the trained U²-Net salient object detection model, an image containing only the 
location in the image is obtained, and then fused with the original image to obtain an image containing 
only the container. 

 

  

Figure 3. Contrast for the compensation 
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3.4.  Dynamic Liquid Level Detection 
In motion object detection using frame differencing, the goal is to detect the changing parts by 
eliminating the static regions and retaining the areas with variations in the difference image. Zhan et al.  

[23] divided the edge difference image into several small blocks and determined whether they were 

motion regions by comparing the number of non-zero pixels with a threshold. By applying this method, 
it is possible to extract information about the changing liquid levels within the container. 

3.4.1.  Threshold Division 
According to the gray-level conversion method in this paper, the RGB values of each adjacent frame 
image are converted to grayscale values that are more conducive to image classification. Assuming the 

external environment and the container remain unchanged, the grayscale value changes at the 
corresponding positions between consecutive frames indicate the subtle dynamic changes in the liquid 
level inside the container. Then, a threshold is set for the magnitude of these value differences, and the 
optimal threshold is determined through experimentation. As shown in Fig 4, pixels with differences 
greater than the threshold are marked in white, while those below the threshold are marked in black. 
This process captures the minute changes in the liquid level in the container and assigns different labels 
to different liquid level states: rising liquid level, falling liquid level, low liquid level unchanged, and 

high liquid level unchanged. The labelled images are then input into a neural network for image 
classification. 

 

Figure 4. Threshold division 

3.4.2.  Liquid level detection 

After processing, since the detected objects are all uniform binary images, there is no need to use a 
complex neural network for image classification. Therefore, this paper selects a lightweight neural 
network, EfficientNet-B0 [24], for training, testing, and validation. The images shown in Fig 5 and their 

corresponding labels are input into the neural network for image classification, thereby obtaining a 
neural network that can detect this specific task. By utilizing this neural network, this paper achieves 
the final detection of dynamic liquid level changes. 

              
(a) increase   b) decrease 
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(c) keep low    (d) keep high 

Figure 5. Four labels of liquid level 

4.  Experiment and Result Analysis 

4.1.  Test for SOD 

Following the implementation of U²-Net for dynamic liquid level detection, here compared its 
performance with several well-known semantic segmentation models to benchmark its effectiveness. 
These models include U-Net [25], DeepLabV3+ [26], Mask R-CNN [27], F3Net [28], HRNet [29], and 
PSPNet [30]. The evaluation metrics [31] employed in the comparison were Accuracy (Acc), Precision 
(P), Recall (R), F1-score, Mean Absolute Error (MAE). 

Table 1. SOD model comparison 

Model Acc P R F1-score MAE 

U-Net 0.77 0.79 0.97 0.86 17.26 

DeepLabV3+ 0.72 0.75 0.95 0.82 22.95 

Mask R-CNN 0.80 0.86 0.93 0.88 14.44 

F3Net 0.62 0.66 0.89 0.7 30.24 

HRNet 0.78 0.93 0.82 0.87 12.28 

PSPNet 0.75 0.83 0.90 0.85 16.73 

U²-Net 0.90 0.95 0.94 0.94 5.52 

 
As indicated in Table 1, U²-Net shows superior performance compared to the other models evaluated. 

It achieves the highest accuracy at 0.90, significantly higher than the next best- performing model, Mask 
R-CNN, which has an accuracy of 0.80. U²-Net’s precision and recall scores, 0.95 and 0.94 respectively, 
highlight its effectiveness in correctly classifying salient areas in the images. 

The F1-score for U²-Net is 0.94, confirming its robustness and the effective balance it strikes between 

precision and recall. In terms of error metrics, U²-Net records the lowest values with a mean absolute 
error of 5.52, emphasizing its precision and reliability in predicting liquid level changes. 

These comparative results underscore the potential of U²- Net for practical deployment in scenarios 
where accurate liquid level detection is paramount, such as in industrial control systems. The evaluation 
suggests that U²-Net could serve as a reliable model for similar segmentation tasks that demand high 
accuracy and consistency. 

4.2.  Test for morphological compensation 

To evaluate the impact of morphological compensation on the performance of the liquid level detection 
processing, here conducted a set of ablation experiments. In these experiments, here used the same 
dataset and evaluation metrics as in the main experiments, with the only difference being the removal 
of the morphological processing step after the masking generation. Here compared the masking quality 
and liquid level detection performance with and without morphological compensation, and the results 
are shown in Table 2. 
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Table 2. Morphological compensation evaluation 

Evaluation metric With compensation Without compensation 

Masking IoU 0.95 0.76 

Masking smoothness* 0.92 0.69 

Extraction accuracy 0.93 0.58 
*Masking Smoothness is measured using the edge smoothness metric, which calculates the variance of the curvature of the 

masking edges. Higher values indicate smoother edges. 

 
The experimental results in Table 2 demonstrate that using morphological compensation can 

significantly improve the quality of making and the performance of liquid level detection. 
Morphological compensation increases the Masking IoU and Masking Smoothness scores for the 
masking. Regarding liquid level detection performance, morphological compensation enhances the 
accuracy of liquid level change region extraction. 

The ablation experiments prove the necessity and effective- ness of morphological compensation in 
the proposed liquid level detection algorithm. Without morphological compensation, the masking 
generated by U²-Net suffers from defects such as discontinuities and jagged edges, resulting in lower 
masking quality scores and interfering with the subsequent liquid level change region extraction. 
However, by applying morphological compensation as a post-processing strategy, these defects are 
effectively repaired, and the masking be- comes more complete and smoother. This improves the 
integrity and smoothness of the masking generated by U²- Net, compensating for some shortcomings of 
deep learning models in semantic segmentation tasks, and provides a more reliable foundation for the 

subsequent liquid level change region extraction, significantly enhancing the performance of liquid level 
detection. 

4.3.  Test for threshold 
The threshold range is between 0 and 255. However, according to the research and general principles of 
threshold proposed by Robertson et al. [32], the optimal threshold range should not exceed half of the 

maximum range. To comprehensively test the thresholds, a preliminary threshold ranges from 0 to 127 
was set, divided into intervals of length 8. The initial segmentation results are shown in Fig. 6. 

As the threshold increases beyond 80, the binary information in the image significantly decreases, 
and the degree of variation between the images decreases greatly. The distinct characteristics among the 
four types of labels gradually become blurred, and the similarity between the images increases. When 
the threshold is further increased to 120, the images become predominantly black, and the four types of 
label information almost have the same black features. If training is forcibly conducted at this stage, it 

would be equivalent to performing object detection on images with the same features after being 
segmented into four labels, leading to a phenomenon where the results are extremely close to being all 
correct, which is an inappropriate behaviour. When the threshold is set too low, the resulting image after 
differentiation will capture numerous minor variations. These variations may be influenced by 
atmospheric haze or uneven flickering of lights, which can lead to erroneous detection of changes in 
areas where no actual changes occurred during the camera capture process. Therefore, setting an 
excessively small threshold is also unreasonable. 

 

Figure 6. Change for threshold 
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Based on the above considerations, values below 10 or above 80 for the threshold are not within the 
range of consideration. By comparing the accuracy of the threshold, the model can select the optimal 
threshold, and the resulting difference images using various threshold values within this range shown in 
Fig. 7. 

 

Figure 7. Threshold result comparison 

The data presented in Fig 7 illustrates the comparative results of the threshold experiments. The graph 
shows the accuracy of detecting neighbouring differences for each tested threshold value. As the 
threshold changes from 11 to 80, the accuracy reaches a peak of 92.19% at a threshold value of 50. 

These results suggest that setting the threshold too low may lead to the detection of noise, while 
setting it too high may cause important differences to be missed. The optimal thresh old value of 50 
achieved the best balance between detecting meaningful differences and filtering out noise, resulting in 
the highest accuracy. The experiment demonstrates the importance of carefully selecting an appropriate 
threshold to maximize performance, and the results provide a valuable reference for similar tasks. By 
setting the threshold to 50, we were able to clearly distinguish significant differences, enabling more 
accurate and reliable analysis in this liquid level detection system. 

4.4.  Test for overall process 
According to the process in Fig 8, following the steps of salient target extraction, partial incomplete 
image compensation, original image and incomplete image fusion, inter-frame difference and liquid 
level classification, 18 images with a total duration of 31 minutes and 30 frames per second were 
processed. 

 

Figure 8. Change for threshold 

In this detection, video frames are extracted for detection at 3 frames per second, that is, one frame 

is extracted from every 10 frames in the video for subsequent processing. After U²-Net extracts salient 
targets, the morphology of the image is used. Make up to ensure the integrity of the images of adjacent 
frames, then perform image fusion and gray value conversion, perform inter-frame difference according 
to the threshold of 50, and finally send these differentiated pictures to a large number of trained 
EfficientNet networks for processing Liquid level status classification was completed to complete the 
final test detection. The liquid level image classification accuracy obtained through the EfficientNet 
network reached 91.39%. 
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5.  Conclusion 

In this study, we developed a novel approach for liquid level state detection by combining image 
differencing and binarization techniques. This model demonstrated strong robustness against variations 
in container types and environ mental conditions. By simplifying input images into binary 

representations focusing on the target object, here achieved accurate classification using a 
straightforward neural network architecture, without the need for complex network designs. 

A key advantage of this model is its reduced reliance on large training datasets, made possible by 
leveraging the SemiReward framework to generate high-quality pseudo labelled images using the SAM 
model. The resulting dedicated dataset enabled efficient training and generalization of this model. 

Integrating image differencing and object-focused binarization simplifies complex visual 
information into manageable representations. By focusing on essential features of the target object, this 
model effectively captures and analyzes relevant changes while being resilient to background variations. 

However, this method also has some limitations. A major drawback is the inability to take into 
account the influence of environmental factors such as aerosol. In some application scenarios, aerosol 
may be generated in the container, obscuring the liquid level and interfering with image analysis. It is 
difficult to eliminate the influence of aerosol by relying on computer vision alone, and auxiliary means 
such as external blowing may be required. Future work could incorporate dehazing algorithms to 
overcome this limitation. 

It is the liquid level detection model that offers a robust, efficient, and generalizable approach for 

analyzing small changes in static object environments. By simplifying complex images and leveraging 
high-quality pseudo-labelled data, here have demonstrated the potential for solving a wide range of 
similar problems with reduced data requirements and computational complexity. 
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