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Abstract. Polymers hold significant application value across various fields of modern society, 

with different application scenarios requiring specific thermal diffusivity coefficients. Finding 

polymer materials with targeted thermal diffusivities is crucial. However, due to the vast variety 

and complex structures of polymers, constructing a unified structured dataset for machine 

learning modeling is challenging. Although machine learning has shown great potential in 

materials science, it has rarely been applied to predict the heat diffusion coefficient of polymers. 

This paper constructs a dataset for predicting the thermal diffusion coefficient of polymers using 

a publicly available dataset by transforming the SMILES code of polymers into eight features 

with practical physical and chemical meanings. Using the Random Forest algorithm, training 

with 400 of these data and randomly selecting 200 of them for cross-validation, the accuracy of 

the test set reached 0.9. Additionally, through interpretability analysis, we found that the 

molecular weight of the polymer monomers, the TPSA (the polar surface area of the molecule), 

and the NRB (the number of rotatable bonds) are the main features affecting the polymer thermal 

diffusion coefficient. An increase in the TPSA and the NRB positively contributes to the thermal 

diffusivity, while an increase in molecular weight negatively contributes. Our study provides a 

new method for the prediction of polymer thermal diffusivity and creates a new paradigm for the 

study of polymer thermal diffusivity, promoting further development in this field. 
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1.  Introduction 

Polymer materials are used extensively in electronics[1], medical[2], aerospace[3], and other 

applications due to their lightweight, wear resistance, and ease of synthesis. Different fields and 

application scenarios require varying thermal diffusivity rates for polymer materials. Thermal diffusivity, 

also known as thermal conductivity, is a physical quantity that characterizes the speed at which an object 

warms, defined as the ratio of the amount of heat passing through a unit area in a unit of time to the 

temperature gradient over that area, measured in (m²/s). Materials with high thermal diffusivity are 

valuable in the thermal management of electronic devices. Materials with excellent thermal diffusivity 

are important for advancing ultra-high frequency and high-power microelectronic devices[4]. 

Conversely, materials with very low thermal diffusivity serve as excellent thermal insulation materials, 

widely demanded in in aerospace insulation and other areas[5]. Thus, finding an efficient and accurate 

method to screen materials with specific thermal diffusivity is particularly urgent. 
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In recent years, machine learning methods based on big data have begun to play an increasingly 

important role in many fields, such as materials science and physics, achieving significant success in 

predicting and screening various material properties, including battery performance[6] and the search 

for potential high-performance battery materials[7]. Compared with traditional experimental methods, 

machine learning offers significant time and cost advantages in screening materials. The laser pulse 

method for determining the thermal diffusivity of a sample requires the sample to be synthesized 

beforehand, and the total measurement time can be up to ten hours, which is not favorable for large-

scale screening of polymers with specific thermal diffusivity[8]. The machine learning model designed 

in this paper can analyze information from over 1000 polymers and predict and screen their thermal 

diffusivities within a few minutes. While computational simulation requires accurate modeling of the 

polymer material, machine learning eliminates the need to construct complex physical models and learns 

directly from existing data, avoiding errors that may result from simplifying the model for computation 

during simulation. Although machine learning has shown potential in predicting and screening material 

properties, it has rarely been applied to research in materials thermology, where the demand for materials 

with specific thermal diffusivities is high. 

This paper designs a set of Random Forest machine learning models to predict the thermal diffusivity 

of polymers and analyzes the relationship between certain specific structures in polymer monomers and 

the thermal diffusivity of polymers. We first found 1077 polymer monomer SMILES versus thermal 

diffusivity in a public dataset. Subsequently, the SMILES were converted into eight features with 

specific physical meanings, and then a machine learning model was trained to learn the relationship 

between these features and thermal diffusivity with an accuracy of 0.90. Additionally, we found that 

three quantities, namely, the molecular weight, the polar surface area of the molecule, and the number 

of rotatable bonds, have the highest degree of influence on the thermal conductivity of polymers by 

means of interpretability analysis, and analyzed them using the SHAP method to determine the 

directionality of their influence on the thermal diffusion coefficient. 

2.  Methods 

All code in this paper was implemented in Python. This study uses a publicly available dataset sourced 

from GitHub9, which contains the SMILES codes of 1077 polymers and their corresponding heat 

diffusion coefficients. Since SMILES codes cannot be directly used as inputs to machine learning 

models, we used the rdkit.Chem.Descriptors module to encode SMILES into eight features with actual 

physical meaning. The features include the average molecular weight, polarity, hydrophobicity, 

rotational ability of chemical bonds, and some special functional groups. 

Correlation Calculation: Pearson correlation coefficients between features were calculated using 

pandas.DataFrame.corr[10]. 

Correlation Matrix Visualization: Correlation heatmaps were drawn using matplotlib[9] and 

seaborn[11]. 

Prior to model training, we normalized the feature data to eliminate differences between different 

measures. Normalization was performed using StandardScaler to ensure each feature had a mean of 0 

and a standard deviation of 1. We chose the RandomForestRegressor model for training due to its ability 

to handle high-dimensional data and nonlinear relationships. To optimize model performance, we used 

the GridSearchCV method to adjust model hyperparameters. The specific parameters were as follows: 

number of trees (n_estimators): 100 to 700; maximum depth (max_depth): 3 to 10. 

We randomly divided 1077 data into training and test sets, with 400 data used for training and 200 

data used for cross-validation. We used the 20-fold cross-validation (ShuffleSplit) method to ensure the 

stability and reliability of the model. 

Performance Metrics: The following metrics were used to assess the performance of the model: Mean 

Absolute Error (MAE), Mean Square Error (MSE), Coefficient of Determination (R²). 

In the test set, we assessed the predictive accuracy of the model by comparing the linear regression 

of the predicted values with the actual values. Feature importance analysis and SHAP (SHapley Additive 

exPlanations) value analysis were implemented through scikit-learn and shap libraries. 
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3.  Results and Discussion 

Initial processing of the dataset is crucial to ensure data quality and consistency, thereby improving 

model performance and accuracy. For the initial analysis, we plotted the kernel density distribution of 

the thermal diffusivity of the 1077 polymers in the dataset(Figure 1 below). The sample approximates a 

normal distribution with a maximum value of 2.27e-7 (m²/s) and a minimum value of 2.96e-8 (m²/s). 

There are no extreme values in the sample, with most polymers' thermal diffusivity centrally distributed 

in the range of 0.5-0.9e-7(m²/s). Hence, the collected dataset is suitable for machine learning. 

 

Figure 1. Kernel density distribution of polymer thermal diffusivity in the dataset 

The initial dataset only contained the polymer monomer SMILES strings and their corresponding 

thermal diffusivity data. Since SMILES notation encodes molecular structure in a linear string format 

and does not represent the three-dimensional arrangement of atoms, nor reflect the interaction between 

functional groups, it is not suitable for direct input into machine learning models. Thus, we first encoded 

SMILES into eight quantifiable features with actual physical or chemical meanings. 

Tabel 1. The abbreviations and meanings of the features. 

qed Quantitative estimation of drug similarity 

MolWt Average molecular weight of a molecule 

TPSA Polar surface area of a molecule 

FractionCSP3(FCSP3) 
Ratio of sp3 hybridized carbon atoms in a 

molecule 

NumHDonors(NHD) Number of hydrogen bond donors 

NumRotatableBonds(NRB) 
Number of rotatable bonds 

MolLogP(MLP) Degree of hydrophobicity of the molecule 

fr_halogen(fr_h) Number of halogens 

 

These features cover the average molecular mass, polarity, hydrophobicity, rotational ability of 

chemical bonds, and some special functional groups. To avoid redundant features, which could 

negatively impact machine learning modeling by increasing training time, storage cost, risk of 

overfitting, and poor model interpretability, we calculated the correlation between each feature and the 

target quantity (thermal diffusivity) and plotted a correlation heatmap(Figure 2 below). The highest 

correlation among the feature values is 0.85, and the highest negative correlation is 0.73, indicating no 

strong correlation among the features. Therefore, the features can be used as a training set for predicting 

the thermal diffusivity of polymer monomers. 
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Figure 2. Heat map of correlation between individual features and target quantities 

Selecting appropriate data from the public dataset for machine learning modeling is conducive to 

improving model training speed with minimal impact on prediction accuracy. We randomly selected 

400 out of 1077 data for the training set and used grid search to generate random forest models with 

node layers ranging from 3 to 10 and the number of nodes per layer ranging from 100 to 700. The best-

performing model was selected based on the MAE of the linear regression of the real data and predicted 

data. Then, 200 data were randomly selected from the remaining data, and the accuracy of the model 

prediction was verified using cross-validation. The R-squared of the test set is about 0.90, indicating 

good results. The test chart(Figure 3) is shown below. 

 

Figure 3. Cross-validation of Random Forest Model Performance for Predicting Polymer Thermal 

Diffusivity 

Analyzing the importance of each feature in the prediction model, we found that the molecular weight 

has the highest influence on the thermal diffusivity of polymers with a feature importance of 0.266. The 

polar surface area of the molecule and the number of rotatable bonds contribute significantly to thermal 

diffusivity with feature importance of 0.209 and 0.178, respectively. Figure 4 (a) shows a visualization 

of the importance of each feature in the model. 
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Figure 4. (a) Histogram of the importance of features in the model; (b) The SHAP figure 

To reveal the directionality of feature values on the target quantities, we further analyzed the 

contribution of each feature to the thermal diffusivity of the polymer using SHAP values(Figure 4b). 

We found that smaller values of the polar surface area of the molecule correspond to lower thermal 

diffusivity, higher molecular weights result in lower thermal diffusivity, and fewer rotatable bonds lead 

to lower thermal diffusivity. 

These findings can be explained by experimental results and theory. Polymers with lower molecular 

weight monomers tend to be structurally simpler, allowing greater freedom of molecular motion and 

more efficient heat transfer by thermal vibration compared to higher molecular weight monomers. 

Polymers with high molecular weight monomers tend to have more complex chains, which may collide 

and scatter duringchains' thermal vibration, resulting in lower heat transfer efficiency. TPSA describes 

the polar characteristics of the molecule and the physical quantity of molecular hydrophilicity. Polymers 

with higher TPSA values often exhibit hydrogen bonding and dipole interactions, leading to a more 

ordered structure that facilitates heat transfer in specific directions. Experiments have shown that highly 

polar polymers (e.g., polyamides, polyesters) have significantly higher thermal diffusivity than low-

polarity polymers (e.g., polyolefins). A low number of rotatable bonds may result in a rigid molecular 

structure, restricting the efficiency of energy transfer within and between molecules, thus resulting in 

lower thermal diffusivity. 

4.  Conclusion 

In this paper, we have used a machine learning approach to predict the heat diffusion coefficients of 

polymers, providing a new methodology for screening and designing polymer materials with specific 

heat diffusivities in both experimental and theoretical approaches. We constructed our dataset using 

publicly available datasets by encoding the SMILES in them as eight features with actual physical 

meaning. Subsequently, we used a random forest model with 400 data as a training set and cross-

validated the data with 200 randomly selected data, achieving a test set accuracy of 0.9. We then 

performed an interpretability analysis of this highly accurate predictive model and found that three 

features, the relative molecular weight of the polymer monomers, the polar surface area of the molecules, 

and the number of rotatable bonds, have a large degree of influence on the heat diffusion coefficients. 

An increase in the polar surface area and the number of rotatable bonds of a molecule contributes 

positively to the thermal diffusivity, while an increase in the molecular weight contributes negatively to 

the thermal diffusivity. Our work opens up a new paradigm in the study of thermal diffusivity of 

polymers and provides a new methodology, which will help to advance the research in this field. 
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