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Abstract. Quantum Support Vector Machines (QSVMs) combine the fundamental principles of 

quantum computing and classical Support Vector Machines (SVMs) to improve machine 

learning performance. In this paper, the author will further explore QSVM. Firstly, introduce the 

basics of classical SVM, including hyperplane, margin, support vector, and kernel methods. Then, 

introduce the basic theories of quantum computing, including quantum bits, entanglement, 

quantum states, superposition, and some related quantum algorithms. Focuses on the concept of 

QSVM, quantum kernel methods, and how SVM runs on a quantum computer. Key topics 

include quantum state preparation, measurement, and output interpretation. Theoretical 

advantages of QSVMs, such as faster computation speed, stronger performance to process high-

dimensional data, and kernal computation. In addition, the author discussed the implementation 

of QSVM, quantum algorithms, quantum gradient descent, and optimization techniques for SVM 
training. The article also discusses practical issues such as error mitigation and quantum 

hardware requirements. The purpose of this paper is to show the advantages of QSVM by 

comparing SVM and QSVM. 

Keywords: Quantum Support Vector Machines, Quantum Computing, Quantum Algorithms. 

1.  Introduction 

The Support Vector Machine (SVM) is the cornerstone of the machine learning field. They have high 

efficiency when solving classification and regression tasks. The classical SVM uses mathematical 
concepts such as margins and support vectors to classify data points by finding the best hyperplane. 

However, as the amount of data increases, it becomes very complex. The shortcomings of the 

classical SVM become more and more obvious, especially when it solves high-dimensional data tasks 
and the computational speed decreases a lot. The quantum computing solves these challenges. Quantum 

Support Vector Machines (QSVMs) utilize the properties of quantum mechanics, such as superposition 

and entanglement, to provide a brand new method for machine learning. 

This paper explores the combination of quantum computing principles and classical SVMs to 
enhance machine learning performance. This paper explain the fundamental concepts of classical SVMs, 

including hyperplanes, margins, support vectors, and kernel methods. Then deeply explain the 

fundamental concepts of quantum computing, such as quantum bits, quantum states, and quantum gates, 
etc. 

One of the main topics of the paper is the theoretical advantages of QSVM, including faster 

computation speeds and higher performance with handle high-dimensional data. The research highlights 

how QSVMs utilize quantum algorithms and kernel methods to compute complex kernel functions that 
are difficult for classical computers to handle. Quantum algorithms provide new computational methods 
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that can speed up many kinds of machine learning tasks. In addition, the paper discusses practical 

considerations for implement of QSVMs, such as quantum hardware requirements and error mitigation 

techniques, which are essential for real-world applications of QSVMs. 

This paper illustrates the potential of quantum support vector machines to utilize quantum computing 
to advance machine learning. QSVMs provides a more accurate and faster way to compute. 

2.  Fundamentals of Support Vector Machine (SVM) 

To solve problems of classification and regression, the author use Support vector machine (SVM) . It 
has good robustness in high dimensional spaces and have high efficiency in image recognition. 

2.1.  Basic Concepts: Hyperplanes, Margins, and Support Vectors 

Hyperplane is the most important concept of SVM, which is a decision boundary. As shown in Figure 

1, it was used to separate different categories in the feature space. For two different categories of datasets, 
the author needs to find the hyperplane firstly. The distance between nearest data points(support vectors) 

and the hyperplane for each type of data is called margin, the author needs to maximize it.  

 

Figure 1. The horizontal and vertical axes depend on the units of our data. The red dash line represent 

hyperplane in 2D. The navy blue triangles and yellow circles represent two different data categories. 

The gap between two black dash line represent margin. The data points crossed by the black dash line 
are called support vectors. 

2.2.  Training and Optimization 

Training an SVM requires solving a quadratic optimization problem with linear constraints. This process 
is computationally intensive, especially for large datasets. The author needs to minimize it[1]: 
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where a is called weight vector, c is called bias term, i  are called slack variables and 
0i , B is 

called regularization parameter that keep balance between the margin(maximize) and the classification 

error(minimize), xi are the training examples. And 𝑦𝑖 are the corresponding labels, usually equal to 1 

or -1, depending on the category of data points. 
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2.3.  Kernel Methods 

The kernel method for nonlinear classification is one of the most powerful features of SVM . Mapping 

the data that we input into a higher dimensional space is called kernel, it is a function. In addition, it 

does not need to get the coordinates of data. In the transformed feature space, kernel methods allows 
SVM can find a linearly separating hyperplane. In original input space, it corresponds to the non-linear 

boundary. 

Here are some Commonly kernels[2]: 

                         Linear Kernel: jiji xxxxK ),(                          (3) 

It is suitable when the data seem to be linearly separable and when there is a low risk of overfitting.  
It usually does not require too much computational performance. 

                           Polynomial Kernel:
d

jiji xxxxK )c(),( 
              (4) 

where c is constant. 

It is suitable when the data have nonlinear relationships. It is also easier to interpret than some other 

nonlinear kernels like the RBF kernel. Compared to linear kernels, polynomial kernel require more 
computational performance. 

In addition, there are many other kernels, such as the Radial Basis Function Kernel, Gaussian Kernel, 

Sigmoid Kernel, Laplacian Kernel, etc. 

Each kernel function provides a different way to measure similarity between data points, it allows 
the SVM to capture relationships between data category. 

SVM’s performance depends on kernel method that the author choose, the regularization parameter, 

other hyper-parameters, etc. Proper validation are essential to achieving optimal results. Properly 
adjusted parameters also produce better results. 

In summary, classical SVMs are powerful tools in machine learning. They provide a framework for 

understanding more advanced concepts such as Quantum Support Vector Machines, which use quantum 
computing to increase the performance of SVMs. 

3.  Quantum Computing Basics 

The quantum computing represents an evolution in computing technology. It utilizes quantum 

mechanics to process data in a new way. 

3.1.  Qubits and Quantum States 

The essential concept of quantum information is the quantum bit. Classical bit can only represent 0 or 

1, but qubits can represent a superposition of two states meanwhile. This property is derived from the 
principles of quantum mechanics, it allows a quantum bit to perform multiple computations at the same 

time. The author uses Hilbert space to represent the state a vector(qubit), usually written as 

10  
, where   and   are complex coefficients, and it satisfies 

1
22
 

[3]. 

3.2.  Quantum Superposition and Entanglement 

Superposition allows combined states of 
0

 and 
1

 to represent a qubit. The combination of states 
allows for parallelism in quantum computing. Another critical phenomenon is entanglement, where the 

quantum states have two or more quantum bits, and they are interdependent. Entangled quantum bits 

have stronger correlations than any other classical system. It means the state of one quantum bit will be 
affected by the state of other quantum bit immediately, in spite of how far between them. It is important 

for most quantum algorithms. It provides the basis for quantum communication and computation[4].  
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3.3.  Bloch sphere 

The author uses bloch sphere which is a suitable way to represent the state of a quantum bit. It is a visual 

model of a qubit’s quantum state. As shown in Figure 2, a unit sphere in three-dimensional space, any 

points in the sphere can represent one possible state of a quantum bit. 

 

Figure 2. 
0

on positive z axis represent the classical bit value 0. 
1

on negative z axis represent the 

classical bit value 1. Equator represents superpositions of
0

and
1

with equal probabilities but 
different relative phases. 

In the Bloch sphere representation, this state is expressed using two real parameters: the azimuthal 

angle φ and the polar angle θ[5]: 

1)
2

sin(0)
2

cos(


 ie                      (5) 

3.4.  Quantum Gates and Circuits 

The quantum gate is the fundamental element in quantum circuits, similar to classical logic gates in 

digital circuits. As shown in Table 1, these gates operate the quantum bits through unitary 
transformations, they change their state according to specific quantum rules. 

Table 1. This table lists some Pauli gate and some other quantum gates[6]. 

Gates operation Matrix representation 
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,and 
1
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Controlled-NOT 

Gate 

It is a kind of two-qubits gate. The first qubit is 

called control qubit. If it is in 
1

, then the 
second qubit’s state flips. 
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A series of quantum gates constitute quantum circuit that allow quantum bits to perform 

computational tasks. Quantum circuits are similar to classical circuits. Qubits are usually initialized to 

a specific state, usually 
0

. Then Quantum gates are applied to the qubits in a specific sequence. 

 For instance, applying a Hadamard gate, and then applying a CNOT gate can create an entangled 
state. After the gates have been applied, the qubits are measured. Measurement can cause the collapse 

of the qubits from their quantum superpositions to classical states. It provided the final output of the 

computation. 

A Bell state is a specific type of entangled state. There are four Bell states. Here the author discusses 
the most common one[7]:  

                                
2

1100 


                             (6) 

This circuit involves two main quantum gates: the Hadamard gate and the Controlled-NOT gate. 

Start with two qubits in the initial state 
00

(Define
0000 

). Then apply the Hadamard 

Gate to Qubit 1, the Hadamard gate transfers the first qubit into a superposition state:  

                               
2
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
H                                 (7) 

After applying the Hadamard gate, the state is: 
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Then apply the CNOT Gate: 
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3.5.  Quantum Algorithms Relevant to Machine Learning 

Quantum Approximate Optimization Algorithm (QAOA) can find approximate solutions to 

optimization problems more efficiently than traditional algorithms. It does well in scheduling, resource 
allocation, and machine learning model optimization. QAOA starts with a superposition of all possible 

solutions. Then, it uses a sequence of quantum gates that encode the problem constraints and the 

objective function. Finally, it optimizes the parameters to maximize the probability of measuring the 
optimal solution[8]. 

Traditional PCA algorithms are difficult to handle when dealing with large data, but QPCA may have 

much faster speed. It encodes the the data’s covariance matrix into a quantum state. Then, it uses it to 
estimate the eigenvalues and the eigenvectors of the covariance matrix. Finally, it measures the quantum 

state to extract the principal components. 

Quantum Support Vector Machine (QSVM) can more efficiently handle high-dimensional data and 

large datasets than classical SVM, it provides faster speed and accuracy. QSVM uses quantum circuits 
to compute the kernel matrix, which measures the similarity in a higher-dimensional space. Then use 

quantum algorithms to address the quadratic optimization problem. Finally, use the trained quantum 

model to classify new data points. 
There are many other kinds of quantum algorithms for machine learning, the author does not list all 

quantum algorithms. 

4.  Quantum Support Vector Machines (QSVMs) 
The QSVM enhance classical SVM by using quantum computing principles to process high-dimensional 

data more efficiently. Including encoding data into quantum states, and measuring the quantum states. 
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By utilizing superposition and entanglement, QSVMs can significantly improve computational 

efficiency and accuracy. The conceptual framework of QSVM consists of the following components: 

4.1.  Quantum Data Encoding 

Amplitude Encoding uses the amplitudes of a quantum state to represent data. For example, a data vector 

 nxxxx ,,, 21 
, can be encoded into a quantum state  


n

i i ix
1


, where 

i
 are the basis 

states[9]. Basis Encoding uses the basis states of the qubits to represent traditional binary data. For 

example, a binary string 1101 can be encoded directly into the state 
1101

[10]. Angle Encoding is 
make data encoded into the rotation angles of qubits. This is often used in combination with other 

encoding methods to represent more complex data. 

4.2.  Quantum Kernel Methods 

Quantum kernel methods extend classical kernel methods, by utilizing quantum states and quantum 

circuits to compute the kernel function. The quantum kernel function is defined as the inner product of 
quantum states: 

                            
2

)()(),( yxyxK                             (10) 

where the inner product 
)()( yx 

 measures the similarity between the quantum states, it is similar 
to classical kernel functions[11]. 

4.3.  Implementing SVMs on Quantum Computers 

To encode classical data into quantum states, the author uses methods such as basis encoding or 
amplitude encoding. Designing quantum circuits to prepare these states. Quantum circuits compute the 

kernel matrix, which gets the similarity between input data points. Variational Quantum Eigensolver 

(VQE) or Quantum Approximate Optimization Algorithm (QAOA), are used to solve the optimization 
problem. The trained quantum SVM model can classify new data points by evaluating them in the 

quantum feature space[11]. 

On quantum computers, training SVM use quantum algorithms to optimize the model parameters. 

Here are some important quantum algorithms: Harrow-Hassidim-Lloyd (HHL) Algorithm, Quantum 
Support Vector Classification (QSVC), Quantum Principal Component Analysis (QPCA) 

4.4.  Quantum Gradient Descent 

In QGD, the parameters of the quantum machine learning model are often represented as quantum states. 
Quantum circuits are used to compute gradients. Usually use parameter-shift rule to compute[12]: 

If )(U  is a parameterized quantum gate and 


 is the expectation value of an observable O, the 

gradient of 


 can be estimated as: 
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
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


                      (11) 

After computing the gradient, the parameters of the quantum model are updated: 

                               








O
oldnew                              (12) 

where 


 is called learning rate. 
Computing the quantum gradient and updating the parameters is iteratively repeated. The algorithm 

will continue until it attains the stopping criteria. In QSVM, QGD is used to optimize the parameters of 
the quantum kernel and maximizes the margin(decision boundary) between classes in the transformed 

feature space. 
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4.5.  Quantum Measurement and Output Interpretation 

Once the quantum circuit has completed its computations, the final step is to measure the quantum state 

to get the results. Measurement collapses the quantum state into classical information, which can be 

predicted or categorized by interpreting the classical information. Each measurement outcome has 
probabilities, which depend on probability amplitude of the quantum state. Classical post-processing 

may be required to interpret the measurement results, and the author needs to use them for decision-

making in the SVM model. 

5.  Theoretical Advantages of QSVMs 

The Quantum Support Vector Machine have a series of theoretical advantages over Classical Support 

Vector Machines, mainly due to the properties of quantum computing. These advantages can improve 

the performance of machine learning models, especially when solve with more complex and higher 
dimensional data. The author will discuss the theoretical advantages of QSVMs: computational speedup, 

handling of high-dimensional data, and improved kernel computation. 

5.1.  Computational Speedup 

5.1.1.  Quantum Parallelism 

It allows a quantum computer to process multiple inputs simultaneously according to the superposition 

principle, . In classical computing, classical bit can only represent two states (either 0 or 1). But a 
quantum bit can represent a superposition of two states. 

5.1.2.  Simultaneous Computation 

When multiple quantum bits are entangled, a quantum computer can compute a huge number of states 

simultaneously. If a system has n qubits, the largest number of states is 
n2 . This parallelism allows 

quantum computers to compute many possible solutions at the same time. 

5.2.  Handling High-Dimensional Data 
Quantum computing has unique advantages to solve these challenges. With the number of quantum bits 

increases, the quantum state space exponential increases. Quantum computers can easily operate in very 

high-dimensional spaces. This allows QSVM to process high-dimensional data more efficiently. 

Quantum kernel methods can compute the inner products of quantum states more efficiently than 
classical methods. These inner products form the kernel matrix, which is essential for SVM training. 

Quantum circuits can evaluate complex kernel functions that are infeasible for classical computers. 

Quantum circuits can compute complex kernel functions that classical computers can not do. 

6.  Implementation of QSVMs 

6.1.  Quantum Hardware Requirements and Practical Considerations 

QSVMs require a sufficient number of qubits to represent the data. It depends on the size and complexity 

of the dataset. For example, if a dataset has n features, then it may require 
n2log

 qubits for basic 

encoding. Connectivity between qubits is important for implementing complex quantum circuits. Long 

coherence times are necessary to maintain quantum states during computation. However, longer 

coherence times will reduce the likelihood of decoherence. It will produce errors during the computation. 
At high temperatures, thermal noise in the environment influences the stability of quantum bits and leads 

to computational errors. By cooling the quantum computer to extremely low temperatures, the 

background thermal noise can be reduced. But cooling to extremely low temperatures is also a challenge. 
QSVM algorithms often require deep quantum circuits. The number of sequential quantum gates is 

called depth. However, more quantum gates are more likely to produce errors. 
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6.2.  Error Mitigation 

Error mitigation is an important technique of quantum computing, especially for implementing Quantum 

Support Vector Machines. Due to the nature of quantum states and the current limitations of quantum 

hardware, various techniques are used to reduce the impact of errors, such as Quantum Error Mitigation 
Techniques, Quantum Error Correction Codes, Noise-Aware Compilation, etc. 

In Zero-Noise Extrapolation, it runs the quantum circuit at different artificial noise levels and 

extrapolates the results back to the zero-noise case. By adding noise and measuring the results, the author 
can extrapolate what the results would have been if there was no noise. Surface code is a topological 

code that arranges quantum bits in a two-dimensional lattice. It can correct errors by measuring special 

information from surrounding quantum bits. When designing quantum circuits, it is important to make 

them more resistant to noise. This includes minimizing circuit depth and optimizing gate sequences to 
reduce the overall probability of error[13]. 

Error reduction is important for the practical implementation of QSVM on current quantum hardware. 

Error mitigation techniques provide ways to reduce errors without expending too much resources. By 
using a combination of these techniques, the reliability and accuracy of QSVM can be increased. 

7.  Conclusion 

This paper explores the integration of quantum computing principles with classical support vector 
machines (SVMs) to improve machine learning performance. It begins with the classical SVMs, 

emphasizing their efficiency in classification and regression tasks, but highlighting their limitations in 

handling high-dimensional data and computational speed. 

Quantum computing uses qubits, superposition, and quantum entanglement to enable parallelism and 
faster computation. It also solves the limitations of classical SVMs. The paper deeply discusses the 

components of Quantum Support Vector Machines (QSVMs), such as quantum data encoding, quantum 

kernel methods, and the implementation of SVMs on quantum computers. QSVMs utilize quantum 
circuits to compute kernel matrices more efficiently which has advantages in processing complex and 

high-dimensional data. 

The paper emphasizes the theoretical advantages of QSVMs over classical SVMs, including faster 

computation and better kernel computation through quantum parallelism. The paper also explores the 
practical challenges of implementing QSVMs, such as quantum hardware requirements, error mitigation 

techniques, and the requirement for deep quantum circuits. 

In conclusion, this paper shows that quantum support vector machines solve the computational 
limitations of classical SVMs. The combination of quantum computing and SVM principles can handle 

large and complex datasets more efficiently, which can improve the speed and accuracy of machine 

learning applications. However, to fully utilize the performance of QSVM, we need to solve the 
problems in practical applications, especially those related to quantum hardware. 
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