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Abstract. In recent years, unmanned aerial vehicles (UAVs) have seen extensive use in fields 

such as agriculture, search and rescue, commercial, and military operations, driving the demand 

for autonomous navigation capabilities. Though GPS is the traditional method used for 

navigation, it becomes problematic in harsh environments like deserts. The Visual Simultaneous 

Localization and Mapping technology offers a solution to enhance UAV navigation in complex 

environments by constructing maps and localizing the UAV simultaneously in real time. This 

paper presents state-of-the-art visual SLAM technology developed for UAV navigation 

regarding algorithms like Oriented FAST and Rotated BRIEF SLAM (ORB-SLAM) and Large-

Scale Direct Monocular SLAM (LSD-SLAM), whereby their performance is also discussed, with 

its positives and negatives. In this regard, the latest progress and challenges in applications are 

reviewed and analyzed through relevant literature from the databases of PubMed, IEEE, and 

Google Scholar in the past five years. The novelty of this paper lies in the comprehensive 

evaluation of the application performance of different visual SLAM algorithms in UAV 

navigation and the proposal of future research directions. 

Keywords: UAV navigation, visual SLAM, environment perception, autonomous navigation, 

future directions. 

1.  Introduction 

In recent years, UAVs have developed rapidly and have been widely used in agriculture, search and 

rescue, commercial, military, and other fields [1]. The demand for UAVs is increasing, and so are the 

quality requirements. The capability of being able to navigate autonomously in complex environments 

has become a focal point of attention. Navigation is a key capability of UAVs, and traditional navigation 

relies on GPS, which is greatly limited in extreme environments such as deserts, significantly reducing 

the autonomous navigation capability of UAVs in these environments [2]. Visual SLAM is a technology 

that constructs maps and localizes itself simultaneously through visual sensors in an unknown 

environment. Initially applied in the field of robotics, visual SLAM enables autonomous navigation and 

obstacle avoidance by constructing maps and localizing in real time. By integrating SLAM technology, 

UAVs can overcome environmental constraints, achieving more precise navigation capabilities in 

extreme environments through the localization and mapping capabilities of SLAM [3]. 

This paper reviews the latest advancements in visual SLAM technology in the field of UAV 

navigation, analyzes existing major challenges, and explores future development directions. This paper 

systematically organizes and analyzes key methods and applications for enhancing UAV navigation 
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capabilities through SLAM technology by collecting relevant literature on UAVs and SLAM from 

databases such as PubMed, IEEE, and Google Scholar over the past five years. The structure of this 

paper is as follows: first, it introduces the principles and current status of visual SLAM, then evaluates 

several typical SLAM algorithms and analyzes UAV navigation schemes using visual SLAM, and 

finally discusses the challenges faced by UAV visual SLAM, future research directions, and draws 

conclusions. 

2.  Principles and current status of UAV visual SLAM technology 

The UAV visual SLAM technology uses cameras or other sensors mounted on the UAVs to collect 

surrounding environmental information in real time. It achieves localization and map construction 

through three main steps: 

The first step is featuring extraction and matching the UAV camera captures images of the 

surrounding environment and extracts key visual feature points from these images, such as corners or 

edges. These feature points typically have unique descriptors used for subsequent matching and 

localization. Next is the pose estimation. Using position information of the feature points, it estimates 

the motion of the UAV relative to the last position—that is, the pose of the UAV. This process involves 

the calculation of the movement of the UAV by way of rotation and translation, that is, the present 

position and orientation, internal and external parameters of the camera, to be established. Finally, the 

map is updated. As the UAV moves, new feature points are combined with the existing map and the 

map is continuously updated. These include map expansion, correction to match real environmental 

changes, and updates in the position of the UAV. 

Visual Simultaneous Localization and Mapping technology for UAVs has been progressing 

dynamically over the years. The latest version of the ORB series, called ORB-SLAM3, further extends 

the algorithm to work with monocular, stereo, and RGB-D cameras, making it even more robust and 

accurate in dynamic environments [4]. Visual SLAM is increasingly making use of deep learning. For 

example, D3VO uses deep learning to infer depth information and visual odometry to enhance the 

accuracy and robustness of map construction [5]. The application of deep reinforcement learning (DRL) 

in SLAM is also gradually increasing. Some studies use deep reinforcement learning algorithms (such 

as SAC) to enhance UAV autonomous navigation capabilities in dynamic environments, although these 

methods require longer training times, they exhibit excellent adaptability and obstacle avoidance 

capabilities [6]. 

3.  Representative visual SLAM algorithms 

3.1.  ORB-SLAM 

Oriented FAST and Rotated BRIEF SLAM (ORB-SLAM) primarily use ORB features for image feature 

extraction and matching. The main important attributes of ORB features are that they are 

computationally efficient, have very fast matching speeds, and are invariant to changes of rotation and 

scale. Feature calculations are smaller in the amount, hence it fits a real-time system. 

ORB-SLAM first initializes the map through the extraction of feature points and their descriptors 

and later uses ORB features to conduct frame-to-frame matching and the estimation of camera poses. 

The system is implemented on a three-thread architecture: one is the tracking thread, which estimates 

camera pose in real time and selects keyframes; another is the local mapping thread, which locally 

optimizes keyframes and map points; and yet another is the loop closure detection thread, which detects 

and corrects loops. Finally, global optimization ensures the final consistency and accuracy of the map. 

This is a feature-based SLAM approach, where ORB feature points are adopted to match frames and 

close loops, so high precision and robustness can be achieved. Its tri-thread architecture makes it 

efficient in real time and strong in parallel processing. However, ORB-SLAM suffers from its 

performance on low-texture scenes and during fast motion and requires high computational resources 

[4]. 

Proceedings of  CONF-MPCS 2024 Workshop:  Quantum Machine Learning:  Bridging Quantum Physics and Computational  Simulations 
DOI:  10.54254/2753-8818/51/2024CH0173 

66 



 

 

3.2.  VINS-Mono 

Visual-Inertial Navigation System for Monocular (VINS-Mono) is a visual-inertial navigation 

technology used for robots, UAVs, and augmented reality devices. It can achieve high-precision, real-

time, and robust pose estimation by fusing monocular visual and inertial data. However, its computation 

complexity is very high and the influencing factors from lighting and a dynamic environment are strong 

at the same time. With the development of both algorithms and hardware, the technology of VINS-Mono 

will have more extensive applications and improvements. 

VINS-Mono first initializes an initial state through IMU and monocular camera and then performs 

joint optimization with the image feature points and IMU data in each frame for the estimation of camera 

pose and velocity. The system is composed of two key parts: front-end and back-end. The front-end 

extracts the feature points and makes frame-to-frame matching, while the back-end fuses the IMU and 

visual information using sliding window optimization. In the end, a global Bundle Adjustment further 

optimizes the pose and map. 

The accurate high-precision pose estimation and mapping of a robot are achieved using the VINS-

Mono by fusing IMU and monocular camera data concurrently, with high robustness to dynamic 

environments and high-speed motion. This improves the accuracy of the system, yet it is 

computationally complex, with low real-time performance and with a large demand on hardware 

resources [7]. 

3.3.  LSD-SLAM 

Large-scale direct Monocular SLAM (LSD-SLAM) is a direct algorithm for monocular SLAM 

dedicated to real-time localization and mapping in large-scale environments. The two main features of 

LSD-SLAM are the direct method and semi-dense mapping. 

LSD-SLAM first establishes an initial map through a short video sequence initialization process, 

then estimates camera pose through direct image alignment between consecutive frames, and generates 

semi-dense depth maps in each keyframe. With the continuous integration of new observations, the 

depth maps are optimized, and the system constructs a semi-dense 3D map using keyframes as nodes 

and depth maps as edges. Finally, global optimization (such as pose graph optimization) reduces 

cumulative errors and ensures global map consistency. 

LSD-SLAM uses the direct method to match and optimize image intensity values without requiring 

feature point extraction, and generates semi-dense maps, improving computational efficiency and 

robustness in low-texture scenes, suitable for real-time operation in large-scale environments. However, 

LSD-SLAM is sensitive to lighting changes and motion blur, and long-term operation may produce 

cumulative errors that need correction through global optimization [8]. 

3.4.  RTAB-Map 

Real-Time Appearance-Based Mapping (RTAB-Map), as an advanced SLAM technology, integrates 

visual appearance information and pose graph optimization, supporting multi-sensor fusion, providing 

powerful real-time localization and environmental perception capabilities, and offering critical support 

for autonomous navigation and task execution in complex environments. 

RTAB-Map first captures image and depth information using stereo or RGB-D cameras, then extracts 

and matches feature points using the visual bag-of-words model. This system is separated into front-end 

visual odometry and back-end loop closure detection and pose graph optimization: front-end on-the-fly 

pose estimation and local map updating, while the back-end ensures the consistency of the map with 

global pose-graph optimization through loop-closure detection. A final 3D dense map is then produced. 

RTAB-Map, based on the visual bag-of-words model and loop closure detection, has good loop 

closure detection capabilities and global consistency, suitable for large-scale 3D mapping environments. 

Its multi-sensor fusion improves robustness but has high computational overhead, relatively weak real-

time performance, and high hardware resource requirements [9]. 
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3.5.  Comparison of representative visual SLAM algorithms 

In the numerous implementations of visual SLAM algorithms, ORB-SLAM, VINS-Mono, LSD-SLAM, 

and RTAB-Map have advantages and disadvantages, suitable for different application scenarios. Table 

1 is a comparison and analysis of these SLAM algorithms. 

Table 1. Comparative analysis of visual SLAM algorithms. 

Algorithm Characteristics Advantages Disadvantages Suitable Scenarios 

ORB-

SLAM 

Uses ORB 

features for 

feature 

extraction and 

matching, 

three-thread 

architecture 

High computational 

efficiency, fast 

matching speed, 

strong real-time 

performance, strong 

parallel processing 

capability 

Poor performance 

in low-texture 

scenes and fast-

motion scenarios, 

high computational 

resource 

requirements 

Applications 

requiring high real-

time performance 

and abundant 

computational 

resources 

VINS-

Mono 

Fuses 

monocular 

vision and 

inertial data, 

tight coupling 

method 

High robustness and 

accuracy, good 

adaptability in 

dynamic 

environments and 

fast motion 

High computational 

complexity, weak 

real-time 

performance, high 

hardware resource 

requirements 

Complex 

environment 

localization and 

navigation 

LSD-

SLAM 

Direct method 

using image 

intensity values 

for matching 

and 

optimization, 

generates semi-

dense maps 

High computational 

efficiency, 

robustness in low-

texture scenes, 

suitable for large-

scale real-time 

operations 

Sensitive to 

lighting changes 

and motion blur, 

long-term operation 

may produce 

accumulated errors 

Real-time operation 

in low-texture, large-

scale environments 

RTAB-

Map 

Visual-based 

real-time 3D 

mapping and 

localization, 

supports multi-

sensor fusion 

Strong loop closure 

capability and global 

consistency, suitable 

for large-scale 3D 

mapping 

High computational 

overhead, weaker 

real-time 

performance, high 

hardware resource 

requirements 

Scenarios requiring 

multi-sensor fusion 

and complex 

environment 

perception 

3.6.  Future technological development of visual SLAM 

3.6.1.  Unsupervised learning visual SLAM. A general, typical traditional visual SLAM system greatly 

depends on labelled data, i.e., manually annotated maps for the localization and mapping processes. 

Unsupervised learning visual SLAM is reducing this dependency by learning and inferring a trajectory 

of the camera's motion and scene structure from unlabeled data in a self-supervised or weakly supervised 

way. 

3.6.2.  Visual SLAM technology in high-dynamic environments. Visual SLAM systems face some 

problems in high-dynamic environmental conditions, especially very bright lights, shadows, and fast 

dynamic objects. The technology works under such environments in an effort to increase robustness and 

performance for accurate estimation of camera motion and scene structure. The system should quickly 

adapt to dynamic lighting and scenes of high speed, hence raising the environmental perception 

capabilities by UAVs. 
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4.  Visual SLAM for UAV navigation 

This chapter will detail the practical application and advances of Visual SLAM technology over the last 

few years, and especially its wide use in UAV navigation. It introduces some popularly used SLAM 

algorithms, like ORB-SLAM, VINS-Mono, LSD-SLAM, RTAB-Map, their performance in different 

environments, and some advantages these methods have. Secondly, it presents case studies of the multi-

sensor fusion and semantic map-based navigation systems to analyze how technologies have furthered 

these components' autonomous navigation capabilities while enhancing robustness. 

4.1.  Practical application of visual SLAM algorithms in navigation systems 

One of the most widely used feature-based SLAM algorithms in UAV navigation is ORB-SLAM. In 

2019, Gómez-Ojeda et al. tested and demonstrated ORB-SLAM's practical application for UAV 

autonomous navigation. They proposed to use ORB-SLAM in high-precision map building and 

localization within an indoor flight environment. Through experiment, the result shows that ORB-

SLAM can maintain the localization in a stable and high-precise manner in challenging environments, 

whereas loop closure detection with ORB-SLAM effectively reduces accumulated errors so that UAVs 

can navigate with high precision during long flights [10]. 

The VINS-Mono system is an SLAM-based system, which can tightly integrate the data of the IMU 

and monocular camera with high accuracy and robustness. Qin and Shen demonstrated UAV navigation 

by VINS-Mono in 2020 and obtained high-precision localization and path planning of UAVs in a 

complex outdoor environment [7]. The inclusion of IMU data thus enabled VINS-Mono to provide 

stable attitude estimation, even when visual information was lost, ensuring its reliability in dynamic and 

fast-moving environments. 

LSD-SLAM is a direct monocular SLAM algorithm able to generate semi-dense 3D maps. In 2021, 

Zhou et al. explored the application of LSD-SLAM in autonomous flight of UAVs. They tested LSD-

SLAM in large outdoor spaces, and in such a situation, the direct method supported better performance 

that proved to keep the UAV in a stabilized navigation state in low-textured environments [8]. In general, 

LSD-SLAM is susceptible to changes of illumination and motion blur, and this part was improved in 

terms of the adaptability of the algorithm in complex environments. 

RTAB-Map is a SLAM algorithm based on the visual bag-of-words model and loop closure detection. 

It finds application in 3D mapping for large-scale environments. Recently, in 2022, Labbe and Michaud 

applied RTAB-Map to the UAV navigation system. They generated dense 3D maps with a stereo camera 

capturing images and depth information in such a complex mixed environment [9]. RTAB-Map's loop 

closure detection feature ensured that the map was consistent and accurate, such that the UAV could 

offer relatively stable navigation performance during a long flight. Multi-sensor fusion further improved 

the robustness of the system and showed good performance in complex environments. 

4.2.  Navigation system case studies 

The multi-sensor fusion-based visual navigation system mainly integrates data from cameras, LiDAR, 

IMU, and some other sensors in order to bring a better robustness and accuracy of the data. Experimental 

tests in complex indoor environments have shown that such systems enhance the stability of UAV 

navigation, thereby effectively compensating for the weakness associated with single-sensor data [11]. 

The paper of Jiedong Zhuang presents an effective way for cross-view matching in geolocating 

UAVs by using semantic maps to enhance navigation capabilities. To solve this problem, the author has 

proposed a multi-scale block attention (MSBA) network architecture for the extraction of features across 

different views and a multibranch structure for exploiting subtle inter-view relationships. Experimental 

results proved that this method achieves over 10% improvement in accuracy compared to the state-of-

the-art methods in the latest dataset of geolocation for UAVs and, at the same time, reduces inference 

time by 30% [12]. 
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Table 2. Comparative analysis of navigation system types. 

Navigation 

System Type 
Characteristics 

SLAM 

Integration 

Point 

Advantages Disadvantages 
Suitable 

Scenarios 

Multi-Sensor 

Fusion-Based 

Visual 

Navigation 

System 

Integrates 

multi-sensor 

data (camera, 

LiDAR, IMU, 

etc.) 

Combines 

with SLAM 

algorithms to 

improve 

localization 

and mapping 

accuracy 

Enhances 

robustness 

and accuracy, 

adapts to 

different 

environments, 

strong 

navigation 

stability 

High 

computational 

complexity, 

high hardware 

resource 

requirements 

Complex 

indoor and 

outdoor 

environment

s 

Semantic 

Map-Based 

Visual 

Navigation 

System 

Combines 

semantic map 

concept to 

improve UAV 

navigation 

capabilities 

Uses SLAM 

to generate 

maps and 

integrates 

semantic 

information 

Improves 

navigation 

accuracy and 

inference 

speed 

Relies on the 

accuracy of 

semantic 

information, 

high training 

data 

requirements 

Geolocation, 

wide range 

of 

applications 

Table 2 shows a comparative analysis of the characteristics, integration points with SLAM, 

advantages, disadvantages, and applicable scenarios of two types of navigation systems. 

5.  Challenges and future directions 

5.1.  Challenges  

5.1.1.  Computational resource limitations. The computational complexity of UAV visual SLAM 

algorithms is high, requiring extensive processing of visual and sensor data to achieve real-time 

localization and mapping. Current UAV platforms are often resource-constrained, particularly in terms 

of computational power and battery life, making it difficult to meet these high computational demands. 

For instance, algorithms like ORB-SLAM and VINS-Mono require complex image feature extraction 

and matching, as well as tightly coupled optimization of IMU data. These processes demand efficient 

computational resources, limiting the application of these algorithms on resource-constrained embedded 

platforms. 

5.1.2.  Environmental adaptability. UAVs face numerous challenges in different environments, such as 

lighting changes, low-texture scenes, dynamic objects, and adverse weather conditions, which can affect 

the performance and robustness of visual SLAM algorithms. For example, LSD-SLAM performs poorly 

under lighting changes and in low-texture scenes, and ORB-SLAM encounters difficulties in fast-motion 

and low-texture environments. These problems have an influence on the ability of the UAVs to adapt in 

the changing environment, which in turn impacts the final result in terms of accuracy and stability in 

navigation and localization. 

5.1.3.  Sensor data quality. Visual SLAM technology is based on high-quality sensor data, including 

camera images and IMU data. Under practical applications, the sensor data is vulnerable to noise, 

distortion, and transmission time and can lower data quality. For example, the noise and drift of IMU 

data affect the fusion accuracy of visual and inertial data, thereby lowering localization and mapping 

Proceedings of  CONF-MPCS 2024 Workshop:  Quantum Machine Learning:  Bridging Quantum Physics and Computational  Simulations 

DOI:  10.54254/2753-8818/51/2024CH0173 

70 



 

 

performances by VINS-Mono. Cameras may produce blurred images during motion, affecting image 

feature extraction and matching, thereby impacting the overall performance of SLAM algorithms. 

5.2.  Future directions 

To address these challenges, future research can explore the following directions: 

5.2.1.  Hardware acceleration and low-power design. This method utilizes dedicated hardware 

accelerators (such as GPUs and FPGAs) and optimized embedded system designs to improve 

computational efficiency and reduce power consumption, meeting the resource constraints of UAV 

platforms. The existence of dedicated hardware can help the processing speed of SLAM algorithms 

greatly, in turn, largely improve real-time performance and computation efficiency. Besides, low-power 

design might further enhance flight time for UAVs and thus increase their practicability in real-world 

applications. However, designing and optimizing hardware architectures is complex, and developing 

efficient embedded systems requires significant engineering efforts. 

5.2.2.  Unsupervised learning and adaptive algorithms. Visual SLAM algorithms based on 

unsupervised learning and adaptive methods are developed to enhance adaptability and robustness in 

different environments, reducing reliance on labelled data and manual parameter tuning. Unsupervised 

learning methods can automatically extract environmental features, and adaptive algorithms can adjust 

SLAM parameters according to environmental changes, improving system robustness. Nonetheless, the 

effectiveness of unsupervised learning algorithms depends on large amounts of data, and ensuring 

algorithm stability in different environments remains a challenge. 

5.2.3.  Multi-sensor fusion. Multi-Sensor Fusion integrates data from multiple sensors (such as LiDAR, 

depth cameras, IMUs, etc.) to enhance system robustness and data quality, improving UAV navigation 

capabilities in complex environments. This direction faces challenges such as the complexity of sensor 

data fusion algorithms and the difficulty of synchronizing data from different sensors in time and space. 

6.  Conclusion  

This paper reviewed the applications of visual SLAM technology in UAV visual navigation, focusing 

on the performance and advantages of classical algorithms like ORB-SLAM, LSD-SLAM, VINS-Mono, 

and RTAB-Map in practical scenarios. These algorithms have made significant progress in enhancing 

UAV autonomous navigation capabilities but still face challenges in environmental adaptability, 

computational resource requirements, and sensor data quality. Future directions shall concentrate on 

improving algorithm robustness in highly dynamic environments and optimizing visual SLAM systems' 

accuracy and real-time performance using deep learning techniques. Additionally, multi-sensor fusion 

and hardware acceleration designs will improve computational efficiency and energy consumption, 

further promoting the widespread application of visual SLAM technology in fields such as military, 

industrial monitoring, and logistics delivery. These studies will provide essential support for UAV 

autonomous navigation and task execution in complex environments, driving the further development 

and application of UAV technology. 
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