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Abstract. Due to the swift advancement of Internet and computer technology in the 21st century, 

the demand for network security is increasing. Classic cryptographic algorithms like Rivest-

Shamir-Adleman (RSA) and Digital Signature Algorithm (DSA) are insufficient in the face of 

modern network environments, while elliptic curve cryptography (ECC) has become a research 

hotspot due to its high security and high efficiency. The purpose of this paper is to discuss the 

theoretical basis, security analysis, and practical application cases of elliptic curve cryptography, 

to provide readers with a comprehensive understanding and trigger further research and thinking. 

This paper analyzes the theoretical basis of ECC, including group theory, domain theory, and the 

definition and properties of elliptic curves, and analyzes the application of ECC in combination 

with practical application cases, such as the SM2 algorithm. The article first introduces the 

concept of groups, the definition of domains, and the basic properties of elliptic curves. Then, 

the security of ECC is analyzed, especially the complexity of the Elliptic Curve Discrete 

Logarithm Problem (ECDLP) and the selection of key length. In addition, the security of ECC 

in practical applications is discussed, including digital signatures, key exchange protocols, and 

applications in blockchain technology. The results show that ECC provides comparable security 

to traditional public key algorithms at a short key length, and shows strong security and 

efficiency in practical applications. As technology progresses and new threats arise, research in 

ECC will also evolve. 
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1.  Introduction 

As the Internet and computers are rapidly developing, the requirements for the security of computer 

networks have been increasing. The Rivest-Shamir-Adleman (RSA) algorithm is based on large prime 

factorization and the Digital Signature Algorithm (DSA) algorithm is based on discrete logarithm 

problems widely used in various security protocols and systems. However, these algorithms are no 

longer sufficient to meet the security requirements of computer networks. Therefore, it is particularly 

important to study elliptic curve cryptography with higher security under the same security level. In 

addition, high efficiency is also a major advantage of elliptic curve cryptography. In today's massive 

need for encryption or signature, various cryptographic encryption algorithms are widely used, and the 

problem of key storage comes with it. Elliptic curve cryptography uses a shorter key and studies show 

that the 160-bit elliptic curve cryptography algorithm is as secure as the 1024-bit RSA [1]. 
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In 1985, Neal Koblitz and Victor S. Miller made their first attempt at elliptic curve cryptography; In 

1998, ISO/IEC established elliptic curve cipher as a digital signature standard. In 2000, elliptic curve 

cryptography was adopted as an IEEE standard [2]. 

Today, elliptic curve cryptography has become one of the most widely used and secure cryptography. 

It is quite significant in cryptography, cyberspace security, information security, and system security. 

Elliptic curve cryptography is used in digital signature technologies, such as the Elliptic Curve Digital 

Signature Algorithm (ECDSA), which is now widely used in a variety of situations that require digital 

signatures [3]. Elliptic curve cryptography has also been applied to key exchange protocols like Elliptic 

Curve Diffie-Hellman (ECDH), which enables users to distribute keys more securely [4]. Nowadays, 

with the development of blockchain, the role of elliptic curve cryptography is more obvious, for example, 

Bitcoin uses the ESDCA digital signature algorithm to ensure security. With the development of 

technology and the optimization of hardware and software, the implementation of Elliptic Curve 

Cryptography (ECC) has become more and more efficient.  

However, elliptic curve cryptography still faces some problems. For example, despite the 

optimization, it is still unavoidably computationally huge. In addition to this, there is also the risk of 

quantum computing attacks, and according to Shor's algorithm, quantum computers can solve discrete 

logarithm problems on elliptic curves [5]. 

This paper will introduce elliptic curve cryptography from three aspects: theoretical basis, security 

analysis, and practical application cases so that readers can understand the basic principles of elliptic 

curve cryptography. In addition, this paper will make readers intuitively understand the importance of 

elliptic curve cryptography through security analysis and practical cases, lay a foundation for readers to 

study elliptic curve cryptography, and trigger some thinking. 

2.  Theoretical basis 

In the field of computer science and cryptography, elliptic curves on finite fields are generally studied, 

and some basic concepts are first analyzed. Before introducing finite fields and elliptic curves, this 

article will first introduce the concept of groups. In abstract algebra, a group is a basic algebraic structure. 

A group is a set and a binary operation on that set satisfies the following four conditions. The first 

condition is closure: For any two elements in the set that define the group, the result of using the binary 

operation that defines the group is still one element in the set. The second condition is that the binding 

is satisfied: for any three elements 𝑎, 𝑏, 𝑐 in the set: 

(𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐) (1) 

Where ∗ is a binary operation that defines the group. The third condition is the existence of a unit 

element: there is an element 𝑒 in the set that defines the group, such that for any element 𝑎 in the set: 

𝑒 ∗ 𝑎 = 𝑎 ∗ 𝑒 = 𝑎 (2) 

This element e is called a unit element or unitary element. The fourth condition is the inverse: for 

each element a in the group, there is an element b, such that: 

𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 = 𝑒 (3) 

This element b is called the inverse of a, which is usually denoted as a−1. Based on the group, the 

definition of the abelian group can be given: the abelian group refers to the commutative law that 

satisfies the operation based on the constituent group, that is, for any two elements a and b in the abelian 

group. 
𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 (4) 

The following describes the definition of a domain, which is a set of two binary operations, often 

referred to as addition and multiplication. For a set 𝐹 and two binary operations + and ∗, ( 𝐹, +,∗) is a 

domain if the following conditions are met: the elements in the domain and the + operation can form an 

abelian group, which is called an addition group. The elements in the set after removing the zero element 
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(0) need to be able to form an abelian group, which is called a multiplicative group. In addition to this, 

the distributive property needs to be satisfied between the addition and multiplication groups: for any 

three elements 𝑎, 𝑏, and 𝑐 in the domain. 

𝑎 ∗ (𝑏 + 𝑐) = (𝑎 ∗ 𝑏) + (𝑎 ∗ 𝑐) (5) 

Based on a domain, if the number of elements in the domain is limited, the domain is called a finite 

domain. In addition, the feature is also an important concept of the domain, and the feature 𝑝 of the 

finite field is a prime number, which represents the cyclic property of the elements in the domain under 

the addition operation, that is, for any element 𝑎 in the finite field. 

𝑝 ∗ 𝑎 = 𝑜 (6) 

Another concept in a finite field is order, and the order 𝑞 of a finite field is the number of elements 

in that domain. For finite fields, the order 𝑞 is a power of a prime number 𝑝. 

𝑞 = 𝑝𝑛 (7) 

Where 𝑛 is a positive integer. 

The domain can be used as a carrier for elliptic curves, and the definition of elliptic curves is given 

below: Elliptic curves on the domain, the field of real numbers, the field of complex numbers, and the 

finite field are described by a non-singular algebraic equation, the standard form of which is the 

Weierstrass form: 

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 (8) 

Where 𝑎 and 𝑏 are constants in the domain need to meet the following non-singular conditions 

4𝑎3 + 27𝑏2 ≠ 0 (9) 

This condition ensures that the curve is free from self-intersections or singularities. The image of an 

elliptic curve over a real field forms a smooth curve, where point 𝑃 on the elliptic curve represents all 

ordered pairs (𝑥, 𝑦) satisfying the elliptic curve equation. Additionally, there is a special point known 

as the infinity point 𝑂, sometimes referred to as the zero point, which lies on the elliptic curve in the 

projective plane. Its significance becomes evident in the addition rule. he addition rules for elliptic 

curves over the field of real numbers are defined as follows: Let 𝑃 be a elliptic curve point, 𝑄 another 

elliptic curve point, and 𝑙 be the straight line passing through 𝑃 and 𝑄, intersecting the curve at another 

point 𝐺, since the elliptic curve is symmetrical to the 𝑥 − 𝑎𝑥𝑖𝑠, the symmetry point 𝑅 in relation to the 

𝑥 − 𝑎𝑥𝑖𝑠 of 𝐺 is also on the curve, and 𝑅 is defined as the result of 𝑃 + 𝑄, in particular, when 𝑃 and 𝑄 

are the same point, it can be found that l and tangent are defined as the same, That is, 𝐺 is the tangent of 

the elliptic curve at the point 𝑃(𝑄) and the other intersection point of the elliptic curve. The addition of 

finite fields follows the graphical idea of real number fields, and the specific calculation rules are defined 

as follows:: 

𝐼𝑓 𝑃 ≠ 𝑄, 𝜆 =
𝑌𝑞 − 𝑌𝑝

𝑋𝑞 − 𝑋𝑃
 𝑚𝑜𝑑 𝑝 (10) 

𝐼𝑓 𝑃 = 𝑄, 𝜆 =
3𝑋𝑝

2 + 𝑎

2𝑌𝑝
 𝑚𝑜𝑑 𝑝 (11) 

𝑋𝑟 = 𝜆2 − 𝑋𝑝 − 𝑋𝑞 𝑚𝑜𝑑 𝑝 (12) 

𝑌𝑟 = 𝜆(𝑋𝑝 − 𝑋𝑟) − 𝑌𝑝 𝑚𝑜𝑑 𝑝 (13) 

𝑂 + 𝑂 = 𝑂 (14) 

𝑃 + 𝑂 = 𝑃 (15) 

𝑃 + (−𝑃) = 𝑂 (16) 
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Where 𝜆 is the slope of the line connected by 𝑃𝑄, in particular, when 𝑃 = 𝑄, 𝜆 represents the slope 

of the tangent at that point. 𝑋 and 𝑌 denote the x-coordinate and y-coordinate, while the subscript 

represents the point, and the fraction represents the inverse operation. After getting the formula for 

calculating the addition, the multiplier rule can be derived, for example: 

2𝑃 = 𝑃 + 𝑃 (17) 

3.  Security analysis 

The strength of ECC relies on the complexity of the elliptic curve discrete logarithm problem (ECDLP), 

i Currently, no known polynomial-time algorithm can efficiently solve ECDLP. The complexity of 

known algorithms such as Pollard's rho in solving ECDLP is about 𝑂 (𝑛
1

2),where n is the size of a finite 

field [6]. This means that it will not be feasible to calculate the time it takes to unravel ECDLP for 

properly selected elliptic curves and domain parameters. In addition, as with other cryptosystems, key 

length is an important consideration for ECC security. Due to the difficulty of ECDLP, ECC can provide 

security comparable to traditional public key algorithms, including RSA and DSA, at short key lengths. 

For instance, a 256-bit ECC key offers approximately equivalent security to a 3072-bit RSA key. [7]. 

This results in significant performance benefits, including faster computing and fewer storage 

requirements. 

There are a few things to keep in mind to further enhance security. The first is the selection of elliptic 

curves, not all elliptic curves are equally safe. It is necessary to select a standard curve that has been 

rigorously analyzed and validated, such as the curves P-256 and P-384 recommended by the National 

Institute of Standards and Technology (NIST) or the curve secp256k1 used by Bitcoin [8]. There may 

be known attack methods or weaknesses for some specific curves. In addition, to prevent side-channel 

attacks, the ECC implementation needs to use a constant-time algorithm to avoid leaking critical time 

information. A side-channel attack may infer key information by analyzing physical characteristics such 

as the timing of the encryption operation, electromagnetic leakage, power consumption, etc.  

The security of ECC also relies on some existing algorithms, for example, ECC relies on a high-

quality random number generator RNG to generate private and ephemeral keys. A fragile random 

number generator can lead to key compromise. For example, the Sony PS3 hack in 2010 was due to the 

use of an insecure random number generator [9]. In addition, the security management of keys is 

essential for any cryptosystem. ECC keys need to be properly generated, stored, and used to prevent 

unauthorized parties from obtaining them.  

In addition to known threats and vulnerabilities, potential threats are also worth considering. While 

there is currently no known effective attack capable of breaching the security of ECC, cryptography 

research is constantly advancing. The emergence of new attack methods can affect the long-term 

security of ECC. Especially concerning the possible impact of quantum computing, such as Shor's 

algorithm, which can efficiently solve problems like integer factorization and discrete logarithms. If a 

practical quantum computer emerges, existing ECCs will not be able to defend against such attacks. 

Therefore, researchers are developing quantum-resistant cryptography systems to replace existing 

public-key cryptography schemes. ECC is widely used in scenarios such as TLS/SSL, digital signatures 

(such as ECDSA), and key exchange (such as ECDH). Its safety has been proven in real-world 

applications, but it also needs to be constantly reviewed and improved. It is also important to follow the 

latest security standards and best practices when developing and deploying ECC. 

4.  Practical example 

SM2 is a public-key cryptography algorithm standard based on elliptic curves, developed by the State 

Cryptography Administration of China (SCA), relying on the discrete logarithm problem of elliptic 

curves. The core part of the SM2 encryption algorithm is the encryption and decryption process, which 

is shown below, and two flowcharts are drawn in this paper, Figure 1 and Figure 2 make it more intuitive: 

Encryption process (Figure 1): 

𝐴1:Generate random number 𝑘 ∈ [1, 𝑛 − 1]; 
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𝐴2:Calculate 𝐶1 = [𝑘]𝐺 = (𝑥1, 𝑦1); 

𝐴3:Calculate 𝑆 = [ℎ]𝑃𝐵; 

𝐴4:Calculate [𝑘]𝑃𝐵 = (𝑥2, 𝑦2); 

𝐴5:Calculate 𝑡 = 𝐾𝐷𝐹(𝑥2 || 𝑦2, 𝑘𝑙𝑒𝑛); 

𝐴6:Calculate 𝐶2 =  𝑀 ⊕  𝑡; 

𝐴7:Calculate 𝐶3 =  𝐻𝑎𝑠ℎ(𝑥2 || 𝑀 || 𝑦2); 

𝐴8:Output ciphertext 𝐶 =  𝐶1 || 𝐶2 || 𝐶3. 

 

Figure 1. Flowchart of encryption (Original) 

Decryption process (Figure 2): 

𝐵1:Extract 𝐶1 from 𝐶; 

𝐵2:Calculate 𝑆 = [ℎ]𝐶1; 

𝐵3:Calculate [𝑑𝐵]𝐶1 = (𝑥2, 𝑦2); 

𝐵4:Calculate  𝑡 = 𝐾𝐷𝐹(𝑥2 || 𝑦2, 𝑘𝑙𝑒𝑛); 

𝐵5:Extract 𝐶2 from 𝐶 and calculate 𝑀′ =  𝐶2 ⊕  𝑡; 

B6:Calculate 𝑢 =  𝐻𝑎𝑠ℎ(𝑥2 || 𝑀′ || 𝑦2), extract 𝐶3 from 𝐶; 

B7:Output plaintext 𝑀′ [10]. 
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Figure 2. Flowchart of decryption (Original) 

5.  Conclusion 

This paper deeply discusses the theoretical basis, security analysis, and practical application cases of 

Elliptic Curve Cryptography (ECC), and draws several important conclusions. First of all, ECC has 

become an important branch of cryptography due to its short key length and high security, especially in 

modern computer network environments that require high efficiency and security. Second, despite the 

potential threats such as quantum computing attacks, ECC has shown strong security and efficiency in 

real-world applications. In addition, ECC implementation has become more and more efficient, thanks 

to continuous optimization of hardware and software. 

ECC is used in various applications, including digital signature technology, key exchange protocols, 

and blockchain technology, such as Bitcoin, which relies on ECC for security. These applications 

demonstrate the important role of ECC in securing online transactions and communications. 

As technology advances and new threats arise, research in ECC will continue to develop and adapt. 

Especially in the context of the upcoming era of quantum computing, the research on the security of 

ECC and the development of quantum-resistant cryptography will be of great significance to ensure that 

the digital world can withstand potential security threats in the future. 
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