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Abstract. Now, surgeries are becoming more stable, safe, efficient and low-cost. During the 

surgical treatment of nasal diseases, surgical robotic robotics can help operate accurately and 

reduce the discomfort after surgery. However, due to the internal space of the nasal cavity 

being relatively narrow, it is difficult for the nasal surgical robot to contain multiple vision 

sensors and the monocular camera could not get information about the depth of the 3D objects 

in the scene, so the existing surgical robots cannot accomplish the three-dimensional modeling 

about the internal space of nasal cavity well. In practice, doctors still have to analyze pictures 

from the robotic, which may decrease the efficiency of the surgery and increase the risk to 

patients. This article designed a SLAM algorithm framework based on a depth estimation 

network, it can simulate the internal structure of the nasal cavity more accurately through 

pictures, which come from monocular endoscopic on surgical robotic. The insights gained in 

this study verify that the method of image segmentation can also make the depth representation 

of the nasal internal space more accurate and this method may help robots realize their 

self-position in the narrow area of the nasal cavity, which lays the foundations for the 

development of fully autonomous surgical robots. 
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1.  Introduction 

Minimally invasive surgery is a multi-person indirect hand-eye coordination process with the help of 

an endoscopic imaging system. In Table 1, the control group is traditional surgery and the observation 

group is endoscopic surgery [1]. The data in the table were analyzed by t test, and the data contained 

statistical significance when p≤0.05. 

Table 1. Comparing two groups of clinical indicators(∆±s). 

Group 
Number 

of case 

Time of 

operation 

(min) 

The nasal 

ventilation time 

(d) 

Hospital 

stays (d) 

Preoperative 

bleeding 

(ml) 

The mucosa 

recovery time 

(d) 

Observation 

group 
62 26.38±5.14 3.74±1.05 4.65±1.22 32.68±3.11 5.34±1.31 

Control 

group 
62 35.76±5.21 4.59±1.23 6.78±1.54 46.57±4.19 7.65±2.04 

t  10.092 4.139 8.537 20.960 7.502 

P  0.000 0.018 0.002 0.000 0.008 
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It can be seen from the table that compared with traditional surgery, minimally invasive surgery has 

demonstrated advantages in all surgical parameters. Due to its advantages of light pain, small incisions 

during operation, and quicker recovery after operation, it was soon applied to various surgeries. 

However, the nasal cavity is filled with delicate facial nerves and numerous blood vessels, requiring 

high positioning precision. Sparse texture features and a large amount of bodily fluids further 

complicate visual sensor-based image construction algorithms during surgery. These challenges 

prompting the application of Simulation Localization and Mapping technology in endoscopic fields. 

In recent years, the research of visual SLAM has become more popular. Although computer vision 

technology has developed for nearly half-century, the applications in endoscopy can still be considered 

a new field. By searching the articles on endoscopic visual processing in the SCI Extended database, 

only less than 15% of the articles are about the endoscopic visual SLAM method and related 3D 

reconstruction research [2]. So, the research institutions in endoscopic visual processing-related 

research are still in their infancy. 

The narrow space in the nasal cavity limits the types of sensors that can be carried by the end 

effector of surgical robots. Because of this, necessitates the use of a monocular endoscope for visual 

imaging in endoscopic surgical robot design and depth estimation become the primary problem in 3D 

scene reconstruction. Some classical algorithms for monocular endoscope depth estimation include 

Structure from Motion method and Shape From Shading method [3, 4]. These methods recover shapes 

from motion and shadows, but they only have low precision and cannot meet practical requirements. 

Nowadays, deep learning has been increasingly applied in various industries, containing different 

network models such as deep belief networks, Auto Encoder (AE) networks, and convolution neural 

networks. With the help of the powerful modelling advantages of deep learning and the strong learning 

capabilities of data, deep learning networks can accomplish accurate depth estimation using monocular 

images [5]. However, encoder networks have a significant distortion in the depth prediction during 

down sampling in 3D reconstruction. To address this issue, research fused shallow features, which 

contain more detailed information with deep features [6]. While these methods demonstrate good 

performance in reducing depth errors, they are limited by scene instability and may lead to incorrect 

estimations of relative depths within 3D scenes or exhibit poor predictive performance on certain 

datasets containing multiple images spanning an entire plane [7]. 

This article addresses the problem of edge and inaccurate depth estimation of the maximum depth 

area in monocular images and proposes a method for monocular depth estimation based on Pyramid 

Split attention Network (PS-Net). First, PS-Net is based on boundary guidance and scene aggregation 

networks and introduces the Pyramid Split Attention (PSA) module to process multi-scale feature 

spatial information and extract some areas where depth gradient changes intensely or have the 

maximum depth. Then, the Mish function is used as the activation function in the decoder to further 

improve the performance of this network. Finally, the network is trained and evaluated on the SurgT 

and iBims-1 datasets. 

2.  Overall design scheme 

The entire research and experimental plan for surgical robots requires strict adherence to relevant 

ethical and safety regulations. Operations involving the human body necessitate prior approval from 

the government and full informed consent from the patients. Therefore, in designing the experiments, 

this research chooses a combined approach of simulation and data verification. The safety and 

feasibility of the experiment were tested by using simulation software such as Solid Works and Matlab, 

and the real-world operations used animal experiments to conduct. 

Firstly, this article used the publicly available SurgT datasets to collect and analyze the anatomical 

structures of the nasal cavity in the human body and then create a proprietary dataset specific to this 

area. This dataset includes the nasal cavity internal structures, easily reflective areas, flexible areas and 

weak feature areas. These features were utilized to optimize the design of the structure in the surgical 

robot arm end, resulting in a more suitable and reasonably flexible endoscopic surgical robot arm, 

which will be used in the human body and surgical operations. Subsequently, Solid Works will be 
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used to model the arm and test the rationality and feasibility of its design. After that, 3D simulation 

models will be employed to test the flexibility of the robotic arm and the efficiency of image capture. 

In the implementation of the SLAM system framework, the RGB image is first input into the 

network for simple processing in advance. Then, a newly designed network is trained to learn features, 

which is based on the structure of boundary guidance and scene aggregation networks. This network 

introduces the Pyramid Split Attention (PSA) module and effectively enhances network performance 

by employing a new Mish activation function in the decoder [8]. Following this, the depth information 

of images is predicted by a stripe refinement module through learning features. Finally, the 

visualization output of predicted depth maps is generated. 

Last, this article collects and statistically analyses the data and results in the experiments to adjust 

the scheme of experiments, and compares them with data obtained from other existing SLAM 

modelling software. In the quantitative analysis of result comparison, accuracy rate, recall rate, and a 

comprehensive parameter are used as parameters to assess the performance and accuracy of the depth 

estimation framework. 

3.  Algorithm network structure 

Convolution neural networks have been widely used in image recognition, because of their better 

accuracy and higher robustness. In this section, a brief summary of depth estimation networks will be 

given. 

The supervised depth estimation network is learned and trained by taking input RGB images with 

their real-world depth parameters, resulting in the optimal network model which can predict the depth 

of the monocular endoscope picture more accurately. This model can be used to obtain the depth 

values of new images when they are inputted into it. PS-Net is built upon boundary guidance and 

scene aggregation networks based on the traditional encoder-decoder structure [7]. 

This article introduces the Pyramid Split Attention module on this traditional structure and replaces 

the ReLU function in the decoder with the Mish activation function [8]. The network adopts ResNet50 

(Residual Network) as the basic network and uses dilated convolution to replace the original 3*3 

convolution in the 4th and 5th down sampling stages in order to obtain a larger receptive field about 

the picture and reduce computational cost. Furthermore, information from shallow layers is 

progressively put into deeper layers of the Bottom-Up-Top-Down Fusion (BUBF) modules through 

the networks, facilitating extraction of depth variations during down sampling and details present in 

high-resolution areas. Then the output of BUBF modules will be input to the SR (Super-Resolution) 

modules for further processing. 

The depth predicted module takes the output of the encoder as input and utilizes the dilated 

convolution and scene encoder of the Pyramid Split Attention module to capture long-distance pixel 

and multi-scale region correlations, and then they are put to the decoder. The decoder mainly works 

through four steps. The first two steps involve compressing channels and maintaining resolution by 

using the Large-Kernel Refinement Blocks (l-RB). In this article, the l-RB employs the Mish 

activation function to work. The last two steps employ a combination of l-RB and up sampling, similar 

to the upward projection method which is described in Laina and team’s paper [9]. 

The PSA module uses a 114*152*64 image as an input, which is obtained through down sampling 

of the datasets. In order to achieve better results in deep prediction, it is necessary to input shallow 

images to represent more details in the feature map. The output is combined with BUBF and sent into 

the SR module. In the SR module, the output in decode is fused with that in BUBF and PSA modules, 

then generates the final required depth picture. This research indicates that depth pictures obtained 

using this method can exhibit fewer depth errors. 

4.  PSA module 

In the process of depth estimation, the first step is collecting spatial feature points. This is achieved by 

utilizing visual sensors to capture the three-dimensional coordinates of these pictures and employing 

image processing algorithms to detect and extract these coordinates. This article integrated a pyramid 
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slip attention module into the traditional extraction stage. This module enhances inter-scale and 

cross-channel information correlation through the utilization of multi-scale convolution kernels and 

global average pooling operations, because of this action the accuracy of predictions for edge and 

farthest distance areas has been improved [10]. 

The execution plan of this module is approximately three steps. Firstly, the input image is split it 

into S groups based on channels by using the Split and Concat module (SPC). Different-sized 

convolution kernels are then used to obtain feature maps with multi-scale information at the channel 

level. Subsequently, the output of the split and fusion module is put into a weight module to derive 

weights for different channels, thereby obtaining attention weights for each level's feature map, and 

then normalising the attention weight values for each group. Finally, through these operations, 

multi-scale information is integrated with cross-channel attention, and then they are put into every 

block which is split from feature groups to improve pixel-level attention. In order to produce improved 

pixel-level attention, multi-scale spatial information and cross-channel attention are ultimately 

incorporated into blocks of each split feature group using these techniques. 

In order to achieve different spatial resolutions and depths, the input pictures are split into S groups 

based on the different channel levels, with S=4. Each groups will be processed by convolutions of 

varying scales, the scales of these convolutions can be expressed by formula: Ki = 2×(i+1)+1 

(i=0,1,2....,S-1), Where the i is the number of the split group, in order to obtain a larger receptive field. 

To reduce the increased computational complexity resulting from larger convolution kernel sizes, this 

research applies the feature grouping convolutions in each group, with the number of groups as G =

2
Ki−1

2 . Finally, the feature maps of different scales are fused together in the channel dimension using 

the concatenation function as shown in equation (1). Fn is the corresponding output after each set of 

convolutions 

F = Cat([F0,F1, … . ,Fs−2,Fs−1]) (1) 

Subsequently, the output of SPC module is utilized as an input for Squeeze-and-Excitation (SE) 

weights. This process encodes global information by performing a global average pooling operation on 

the multi-scale feature maps obtained from the splitting and fusion modules, as described in Equation 

(2). W is the number of columns of pixels and H is the rows of pixels, respectively. Following this, 

adaptive channel relationships are calibrated through two fully connected layers and activation 

functions, as outlined in Equation (3), to acquire channel attention weight information. Finally, the 

normalized attention values for different channels are integrated with the input of the SE module 

through weighted fusion. 

g
c
=

1

H × W
×∑∑ xc(i, j)

W

j=1

H

i=1

(2) 

wc = σ (W1δ (W0(gc
))) (3) 

This article integrates multi-scale spatial information into each split feature group by partitioning 

the image, thereby achieving the effect of grouping feature point extraction. It establishes a SLAM 

model framework based on a depth estimation network to accurately assess the depth position of the 

human nasal cavity during surgery, enhancing the adaptability and accuracy of the SLAM system. The 

model was tested and validated on a standard dataset, and getting a good result. 

5.  The operation of experimental 

This research operated experiments on an NVIDIA 3060 GPU using the PyTorch framework. This 

article evaluated the degree of accuracy improvement of the method by operating repetitive 

experiments and averaging the results on the iBims-1 and NYUD v2 datasets. Training and testing of a 

new framework were performed on the NYUD v2 datasets, while evaluation took place on the iBims-1 

datasets.  
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The iBims-1 datasets were specifically designed to test the method of monocular depth estimation. 

These datasets have high-quality pictures and depth maps with good precise because they were 

captured by digital cameras which only have one lens to reflex. Compared with other datasets, the 

quality of monocular camera pictures in the iBims-1 datasets was similar to monocular endoscope 

images. It is important to note that due to variations in the experimental environment, some data in this 

article may be different from those presented in the original paper. 

Based on previous research, this article selected 50K RGB-D images from the NYUD v2 datasets 

for training and 654 pairs for testing [11]. In this experiment, 20 epochs were set with batch size = 8 

and using the Adam optimizer with parameter was (β1, β2) = (0.9,0.999) and the weight was declining 

with 104. The initial learning rate was set to 0.0001 and reduced by 10% each 5 epochs. 

To train the model, all images and labels were down-sampled from their original resolution of 

640×480 to 320×240 using bilinear interpolation and then cropping to a size of 304×228 from the 

middle [8]. To align the output, the labels which were cropped further down-sampled to the resolution 

of 152×114. In addition, the output was up-sampled to a resolution of 304×228 pixels in order to 

evaluate the model. 

The model proposed in this article demonstrates superior estimation capabilities for deep prediction 

in complex backgrounds. As illustrated in the vitro experiment, a scene featuring a bookshelf and a 

table was chosen, with more complex object placement and clear depth relationships. The original 

Bs-Net method is revealed with some issues while conducting depth estimation at greater depths and 

object boundaries. Compare with that, the depth map predicted by the network proposed in this article 

distinctly presents the scene layout and relative depth. The edges of the entire image are relatively neat 

and clear. 

In the quantitative analysis of result comparison, accuracy rate (4), recall rate (5), and 

comprehensive parameter (6) are used as the three parameters for analysis. There are three parameters 

in these calculation formulas as follows: tp the number of correctly predicted boundary pixels. fp  

the number of incorrect boundary predictions that were mistakenly predicted as correct. fn the 

number of correct boundary predictions that were mistakenly predicted as incorrect. 

When counting the pixels of the number of boundaries, this article sets the threshold value which is 

t (t ϵ{0.25, 0.5, 1}). The threshold is based on the gray histogram of the image to determine the image 

boundary. When the value of a part of pixels in the gray histogram is greater than the threshold set, it 

is considered as the depth estimation boundary. The calculation formula is given as follows: 

P =
tp

tp + fp

(4) 

R =
tp

tp + fn

(5) 

F1 =
2 × P × R

P + R
(6) 

Based on these three parameters, a rough estimation of the quality of image generation is presented 

in the following table 2. It can be observed from the table that, compared to the existing methodology, 

the proposed approach in this article demonstrates significant advantages in accuracy and 

comprehensive parameters, resulting in good image depth estimation. 

Table 2. Comparison of boundary accuracy of different methods. 

Method Accuracy rate Recall rate Comprehensive parameter 

Threshold value>0.25 

Dharmasiri 0.577 0.626 0.591 

This article 0.672 0.527 0.575 

Threshold value>0.5 
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Dharmasiri 0.531 0.509 0.506 

This article 0.685 0.513 0.592 

Threshold value>1 

Dharmasiri 0.617 0.489 0.533 

This article 0.736 0.509 0.617 

6.  Conclusion 

By adding the step of pyramid split attention in feature extraction, the network enhances the 

information correlation between scales by using multi-scale convolution kernels and global average 

pooling operation, which makes the network extract multi-scale information with better consistency. It 

shows good performance in edge areas and the deepest depth areas. 

However, when extracting features from images, the pyramid split attention module is required to 

improve the quality of pictures. Compared to the original approach, although the proposed solution has 

improved image quality to some extent, it requires a longer response time and may cause delays in 

practical operations. In the experimental process, despite achieving favorable results in vitro 

environment due to limitations of the experimental equipment only general vitro datasets could be 

utilized for verification. Because of this, there were constraints on conducting in vivo cavity 

experiments during the validation phase.  

In the future, it still needs to be further verified by in vivo experiments or using models. 

Furthermore, incorporating split and extraction during image processing led to process slowly and 

significant delays during practical operations. Therefore, it is necessary to improve the image response 

time for actual applications. 

The quantitative analysis of the experimental data proves the Pyramid Split Attention network can 

better estimate the depth of low-feature pictures in the reconstruction of monocular camera images. 

This model is very suitable for application in the narrow and less feature information parts such as the 

nasal cavity. It is of great significance in the picture’s reconstruction of the human endoscope. 
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