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Abstract. Real estate price prediction plays a vital role in urban planning, investment decision-

making, and risk management. However, existing prediction models often show problems such 

as insufficient generalization ability and susceptibility to outliers when faced with complex 

nonlinear relationships, multidimensional features, and noisy data. Therefore, choosing a model 

that can accurately capture complex patterns and has strong robustness has become the focus of 

research. This paper introduces the random forest model and compares it with multivariate linear 

regression, XGBoost, and support vector machine (SVM). Compared with the traditional 

regression model, the random forest model combines the flexibility of decision trees and the 

multi-level feature extraction ability of deep learning, and can better handle the complex 

nonlinear relationships in the Boston housing price dataset. The experimental results show that 

the random forest model has achieved excellent performance in all evaluation indicators, and the 

model accuracy indicators are distributed as MSE=8.2502, RMSE=2.8723, MAE=2.0668, and 

𝑅2=0.8875. These results show that the random forest model not only outperforms other models 

in prediction accuracy but also shows significant advantages in dealing with data complexity and 

improving generalization ability. Therefore, the random forest model provides an efficient and 

reliable tool for future real estate price prediction research and applications. 
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1.  Introduction 

The U.S. real estate market has long been the cornerstone of the U.S. economy, with housing prices 

being a key indicator of economic health and stability. Since 1991, U.S. real estate prices have gone 

through several cyclical fluctuations. Significantly, the collapse of the real estate bubble in 2007 

triggered a substantial drop in housing prices, profoundly affecting the U.S. economy [1]. Moreover, 

there was a close relationship between the House Price Index (HPI) and gross domestic product (GDP) 

before, during, and after the 2007-2008 mortgage and financial crisis [2]. However, the COVID-19 

pandemic has caused unprecedented disruption to the real estate market; it has made people more 

inclined to live in non-central urban areas with lower population density and warmer climates [3]. 

Lockdowns, shifts to remote work, and changes in consumer preferences have led to a surge in housing 

demand, pushing housing prices in many areas to record highs. According to Redfin, the median U.S. 

home price in June 2024 was $442,451, up 4% from the previous year [4]. The sudden surge in housing 

prices has raised concerns about affordability and sustainability, and accurate forecasts are more 

important than ever. Therefore, there are many factors that affect housing prices, covering all aspects. 

Examining past trends and forecasting future factors that influence the real estate market and housing 
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prices, along with understanding their significance, can enable individuals to make informed decisions 

in investment, financial planning, or home purchases. This, in turn, supports the healthy and stable 

growth of the real estate market. 

However, the real estate market encountered unprecedented challenges as a result of the COVID-19 

pandemic [5]. Severe infections have led people to prefer living in less densely populated, warmer, non-

central urban areas; many people have moved from New York City to the Northeast and West of the 

United States [3]. Boston's real estate market was also affected by the epidemic, but it still maintained a 

relatively high level of housing prices. Boston, being one of the United States' most historic cities, boasts 

abundant educational resources and robust economic sectors like healthcare and technology, which have 

bolstered the city's stable job market and, in turn, increased the demand for housing.  Therefore, high 

demand has kept Boston's housing prices at a high level during the epidemic. 

Scholars have proposed a variety of methods to predict housing prices, such as the Markov prediction 

model [6]. This paper will use the random forest algorithm to predict housing prices. This algorithm is 

highly praised for its excellent performance and wide application. The random forest algorithm can 

handle various types of data patterns and is particularly good at capturing complex underlying trends 

and seasonal changes, which are particularly important in housing price prediction. Housing prices in 

the real estate market are influenced by various complex factors, such as economic conditions, policy 

shifts, and seasonal changes. By incorporating these multidimensional factors, the random forest 

algorithm can yield more accurate and stable predictions [7]. As a result, this paper selects the random 

forest algorithm to address the challenges of predicting housing prices and aims to achieve reliable 

outcomes in a complex market environment. 

2.  Methodology 

2.1.  Data Sources 

Choosing a suitable dataset is the key to the success of a machine learning project [8]. An ideal dataset 

not only needs to provide enough information to support model training but also must be diverse and 

extensive to ensure good generalization of the model. The Boston House Price Dataset is popular for its 

completeness, clear variable definition, and good representativeness, and is therefore often used in 

various house price prediction studies. 

As a long-standing dataset, the Boston House Price Dataset has been widely studied, and its related 

literature and research results have high reference value [9, 10]. The dataset covers a variety of features 

closely related to house prices, such as crime rate, number of rooms, tax rate, etc., which are all important 

variables affecting house prices. Due to the moderate size of the dataset (containing 506 data points), it 

is very suitable for training and testing machine learning models, allowing researchers to obtain effective 

prediction results at a reasonable computational cost. 

2.2.  Feature explanation 

Table 1 shows 13 feature information and 1 price information in the Boston House Price Dataset. The 

first column lists the abbreviations of the features, and the second column provides detailed explanations 

of these features. These features are important reference factors affecting house prices. 

Table 1. Characteristics of Boston housing price dataset 

Features Feature explanation range 

MEDV Median price of owned homes ($1000) 5-50 

CRIUR crime rate per individual in urban regions 0-88.97 

ZN Percentage of residential lots exceeding 25,000 square feet 0-100 

NCLUR Share of non-retail commercial land within urban regions 0-27.74 

CRDV Charles River dummy variable  0 or 1 

NOC Nitric oxide concentration 0.385-0.871 
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MCPR Mean room count per residence 3.561-8.78 

POHCP Proportion of owner-occupied houses constructed prior to 1940 0-100 

WDBFC Weighted distances to Boston's five central areas 1.129-12.126 

PIR Proximity index of radial roads 1-24 

TAX Full property tax rate per $10,000 187-711 

UTSR Urban teacher-student ratio 12.6-22 

BK where Bk denotes the share of black individuals in the town 0.32-396.9 

PLSTA Percentage of the population with lower status 0-37.97 

2.3.  Variable selection 

In machine learning, especially regression problems, commonly used indicators for evaluating model 

performance include R-squared (𝑅2), Mean Absolute Error (MAE), Mean Squared Error (MSE), and 

Root Mean Squared Error (RMSE) [11]. These evaluation metrics offer various insights into the model's 

performance in predicting housing prices. 𝑅2 reveals the explanatory power of the model; MAE and 

RMSE provide the absolute size of the error; and MSE emphasizes the penalty for large errors. By 

integrating these metrics, the model’s performance can be thoroughly assessed, ensuring it captures 

overall housing price trends while minimizing errors in specific predictions [12]. 

2.4.  Model selection 

By integrating the outputs of numerous decision trees, Random Forest serves as an ensemble learning 

method that boosts prediction accuracy. It is an improved combination algorithm based on classification 

trees based on the bagging algorithm. The algorithm is composed of many unpruned decision trees. The 

core concept involves applying the bootstrap resampling method to randomly select k sample sets, with 

replacement, from the original dataset to create new training sets. These k new training sets are then 

used to generate k decision trees, which together form a random forest for classifying or regressing the 

test set data [13]. 

During the model training process, each decision tree is trained based on randomly selected samples 

and features [14]. Since the training samples and features of each decision tree are different, the 

generated trees are diverse. In classification tasks, Random Forests reach the final decision through a 

majority vote, while in regression tasks, they produce the final prediction by averaging the outputs of 

all the individual trees. 

Random forest is implemented based on the bagging theory. Random forest uses a decision tree as 

the base classifier model after bagging [15]. First, the original data set is randomly sampled using the 

Bootstrap method to generate multiple training sets and corresponding test sets. A decision tree is trained 

for each training set. The decision trees under different training sets are independent of each other. These 

decision trees constitute a random forest. Moreover, when building a decision tree, a random subset of 

features is selected from the complete set of attributes in the training data. This subset serves as the split 

criteria for the current node of the tree. Throughout the creation of the random forest model, the size of 

this random feature subspace remains consistent. These are also the two most critical random steps in a 

random forest. Finally, the classification result is generated by voting on each decision tree. Since the 

bagging algorithm used by random forest is an integrated learning algorithm, both samples and features 

are randomly sampled, thus avoiding overfitting. The bagging process is shown in Figure 1. 

Table 1. (continued). 
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Figure 1. Bagging process diagram 

The random forest algorithm follows these steps: 

Step 1: The Bagging algorithm is applied to randomly draw k sample sets from the original dataset 

S, forming new sub-training sets. These k sample sets are then used to build k CART decision trees. 

Step 2: During the training phase of each CART regression tree, when the dataset contains M features, 

the algorithm randomly selects m features (where m < M) for each node. From the chosen features, the 

algorithm determines the optimal split point to separate the data into left and right subtrees, repeating 

this process until a predetermined stopping criterion is reached. 

Step 3: Following the process in Step 2, k CART regression tree models are constructed. 

Step 4: The final prediction for each CART regression tree is determined by calculating the mean of 

the leaf nodes corresponding to the sample point. 

Step 5: The random forest's final prediction is achieved by averaging the outputs from all k CART 

regression trees. 

Figure 2 describes the generation process of the random forest. 
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Figure 2. Generation Process Diagram of random forest 

3.  Results and discussion 

3.1.  Data visualization analysis 

The random forest model is not like some algorithms that require data normalization (such as SVM or 

K nearest neighbor). Decision trees are essentially based on rule-based partitioning of space, so the scale 

of the data does not have to be consistent. In the Boston housing price data set, the data distribution is 

shown in Figure 3, with the characteristics of right-skewed distribution, outliers, and multi-peak 

distribution. The robustness of the random forest model and its ability to handle nonlinear relationships 

can effectively deal with the characteristics existing in the data. This paper directly inputs these features 

into the random forest model without doing too much data preprocessing. 
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Figure 3. Boston housing price dataset feature data distribution 

3.2.  Random forest Model Prediction 

Figure 4 and 5 present a direct comparison between the actual values and the predicted values when the 

Random Forest model was trained and tested on the Boston housing price dataset. Table 2 provides the 

evaluation metric values for the Random Forest model during both the training and testing phases.  The 

R^2 value on the training set is close to 1, indicating that the model can fit the training data well. It is 

also reflected in the scatter plot of Figu 4 of the training set. The scatter points of the actual value and 

the predicted value are basically distributed near the diagonal, indicating that the model almost perfectly 

predicts the training data. The 𝑅2 value on the test set is 0.8875. Although it has decreased compared 

with the training set, it still shows good predictive ability. Figure 5's scatter plot of the test set reveals 

that while most predicted values closely align with actual values, there is a slight bias in the predictions 

for some extreme values, particularly in the higher housing price range where the model's accuracy 

diminishes. Nevertheless, the random forest model overall demonstrates strong performance. This is due 

to the adaptability of the random forest model to multiple feature types. The random forest can flexibly 

respond to these features by integrating multiple decision trees and making full use of this feature 

information to improve the prediction performance. Additionally, the Random Forest model enhances 

its generalization ability and mitigates overfitting by incorporating randomness, such as through the 

random selection of features and samples during the construction of each tree. 
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Figure 4. True value and predicted value during random forest model training 

 

Figure 5. True value and predicted value when testing the random forest model 

Table 2. Random forest Model Performance 

Training Testing 

MSE RMSE MAE 𝑅2 MSE RMSE MAE 𝑅2 

2.3078 1.5192 0.9558 0.9734 8.2502 2.8723 2.0668 0.8875 

3.3.  Comparison results of various methods 

To evaluate the performance of the Random Forest model on a specific dataset, this paper compared it 

with three other models: Multiple Linear Regression, XGBoost, and Support Vector Machine (SVM) 

[16-18]. Multiple Linear Regression is a conventional approach that fits a linear equation to multiple 

features to minimize the difference between predicted and actual values. XGBoost, or Extreme Gradient 

Boosting, is an ensemble technique that improves prediction accuracy by combining several weak 

classifiers, usually decision trees, and assigning different weights to each. The Support Vector Machine 

is a supervised learning model used widely for classification and regression, which distinguishes classes 

or predicts continuous values by finding the optimal hyperplane in a high-dimensional space. 

Table 3 shows the performance comparison of the four models. It can be clearly seen that random 

forest outperforms other models in all evaluation indicators. The mean square error (MSE) and root 

mean square error (RMSE) of multiple linear regression and support vector machine are higher, and the 

coefficient of determination (𝑅2) is lower, indicating that they are obviously insufficient in capturing 

the complexity and nonlinear relationship of data. Although XGBoost performs better than multiple 
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linear regression and support vector machines, its error is still higher than random forest and its 𝑅2 is 

slightly lower. 

Multiple linear regression and support vector machines are primarily good at capturing linear 

relationships and therefore perform poorly when faced with the complex nonlinear relationships that 

may exist in the Boston housing price data set. In contrast, Random Forest and XGBoost, as ensemble 

learning methods, significantly improve prediction performance by combining multiple weak models. 

Random forest constructs multiple decision trees by randomly selecting features and samples, which 

effectively reduces the bias and variance of a single model. XGBoost optimizes the model through 

gradient boosting trees, but due to its complexity and the need for parameter tuning, its performance on 

some data sets may be slightly worse than random forest. 

Random forests are particularly good at dealing with noise and outliers because they integrate the 

predictions of multiple decision trees, reducing the sensitivity of a single decision tree to noise. As a 

result, random forests excel in dealing with complex data and reducing model bias, outperforming 

multiple linear regression, support vector machines, and XGBoost. Its integrated learning method and 

noise resistance give it higher accuracy and stability in practical applications. 

Table 3. Performance comparison of various methods 

Model MSE RMSE MAE R² 

Multiple Linear Regression 12.03 3.47 2.76 0.68 

Random Forest 5.2 2.28 1.62 0.86 

XGBoost 6.78 2.6 1.96 0.82 

Support Vector Machine 11.9 3.45 2.68 0.68 

 

To clearly illustrate the benefits of the random forest model compared to other models, this article 

uses three distinct colors in the comparison chart to represent the predicted and actual values. Green 

circles represent sample points where all models perform well, red crosses represent sample points 

where all models perform poorly, and blue boxes represent sample points where the random forest model 

performs well but other models perform poorly. 

When marking these sample points, this paper used different error thresholds. The green threshold is 

set to the 25th percentile of the error distribution, indicating sample points with small errors and that all 

models can fit well. These points usually have typical characteristics and obvious patterns. The red 

threshold is set to the 60th percentile of the error distribution, indicating sample points that are difficult 

for all models to fit. These points may contain outliers, noise, or complex features, resulting in large 

prediction errors. The blue threshold is set to the 60th percentile of the random forest model error 

distribution to mark sample points where random forests perform well but other models perform poorly. 

These points usually contain complex nonlinear relationships or outliers. Random forests, due to their 

advantages in ensemble learning, can better capture these complex patterns and thus perform well at 

these points. 

Through these marks, the performance of each model in different situations is obvious. For example, 

the sample points marked with green circles have smaller errors, indicating that the characteristics of 

these sample points are more typical and all models can accurately predict. The sample points marked 

with red crosses have larger errors, which may be due to outliers or complex features, making it difficult 

for all models to accurately predict. The sample points marked with blue boxes are areas of special 

concern, showing that random forests can still maintain good prediction performance in complex 

situations that other models have difficulty dealing with, which shows that random forests have strong 

nonlinear processing capabilities and robustness. Even for the challenging sample points marked with 

red crosses, the random forest model outperforms the other models, further emphasizing its effectiveness 

in managing noise and outliers (Figure 6). 
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Figure 6. Comparison of prediction performance of different models  

3.4.  Feature Impact 

The Boston housing price dataset contains 13 features and 1 median housing price. To identify which 

features most significantly affect prices and which feature variations have the most noticeable impact, 

the feature importance scores from the random forest model can be analyzed [19]. 

The feature importance score is used to assess how much each feature contributes to the model's 

predictions. In the Random Forest model, this score is determined by evaluating the feature's influence 

in the tree-splitting process [20]. Specifically, the model tracks the information gain (such as the 

reduction in impurity) achieved by each node split and then computes the average information gain a 

feature contributes across all decision trees to derive its importance score. Common impurity measures 

used in this context include Gini impurity and information gain. 

Table 4. Features and feature importance 

Feature Importance Feature Importance 

CRIUR 0.029511 WDBFC 0.016782 

ZN 0.001249 PIR 0.003502 

NCLUR 0.008698 TAX 0.019408 

CRDV 0.001474 UTSI 0.01502 

NOC 0.015363 BK 0.011843 

MCPR 0.549466 PLSTA 0.312055 

POHCP 0.015629   

The feature importance score chart is shown in Figure 7, and the detailed values of the feature 

importance score are shown in Table 4. Number of rooms has the highest importance score at 0.55. This 

shows that the number of rooms has the greatest impact on house prices. Typically, an increase in the 

number of rooms means a larger house, greater comfort, and therefore higher housing prices. This is 

followed by the low-income population ratio, whose importance score is approximately 0.32. This shows 

that the proportion of low-income people has a significant impact on housing prices. Areas with a higher 

proportion of low-income people generally have lower housing prices, and vice versa. 
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Figure 7. Feature importance score 

Other features such as crime rate, air pollution index, house age, and distance to the city center have 

lower importance scores, with scores of each feature ranging from approximately 0.02 to 0.05. Although 

these features have some impact on housing prices, their impact is smaller than the number of rooms 

and the proportion of low-income people. This result is in line with intuitive understanding, because the 

number of rooms directly reflects the size and comfort of the house, while the proportion of low-income 

people reflects the economic level of the community and the demand for housing. 

4.  Conclusion 

Through the research in this article, it can be concluded that the random forest model has shown 

significant advantages in predicting Boston housing prices. Although traditional models such as multiple 

linear regression, XGBoost, and support vector machines can also provide effective predictions in 

specific situations, random forest models have higher prediction accuracy and better generalization 

capabilities when dealing with complex nonlinear relationships and multidimensional features. powerful. 

Experimental results indicate that the random forest model excels not only in short-term predictions but 

also in sustaining high accuracy and stability when handling varied and complex housing price data. 

However, future housing price forecasts still face challenges, especially under the influence of 

economic fluctuations, policy changes and unpredictable external factors and long-term forecasts may 

become more uncertain. In addition, as urban development and market conditions continue to change, 

housing price prediction models need to be continuously optimized and updated to adapt to new data 

and environments. This means that although random forest models perform well in the current dataset, 

in wider applications, they still need to be combined with other methods and models to improve the 

overall predictive power. 
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